forked from OSchip/llvm-project
447 lines
16 KiB
C++
447 lines
16 KiB
C++
//== BasicConstraintManager.cpp - Manage basic constraints.------*- C++ -*--==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines BasicConstraintManager, a class that tracks simple
|
|
// equality and inequality constraints on symbolic values of ProgramState.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SimpleConstraintManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
|
|
namespace { class ConstNotEq {}; }
|
|
namespace { class ConstEq {}; }
|
|
|
|
typedef llvm::ImmutableMap<SymbolRef,ProgramState::IntSetTy> ConstNotEqTy;
|
|
typedef llvm::ImmutableMap<SymbolRef,const llvm::APSInt*> ConstEqTy;
|
|
|
|
static int ConstEqIndex = 0;
|
|
static int ConstNotEqIndex = 0;
|
|
|
|
namespace clang {
|
|
namespace ento {
|
|
template<>
|
|
struct ProgramStateTrait<ConstNotEq> :
|
|
public ProgramStatePartialTrait<ConstNotEqTy> {
|
|
static inline void *GDMIndex() { return &ConstNotEqIndex; }
|
|
};
|
|
|
|
template<>
|
|
struct ProgramStateTrait<ConstEq> : public ProgramStatePartialTrait<ConstEqTy> {
|
|
static inline void *GDMIndex() { return &ConstEqIndex; }
|
|
};
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
// BasicConstraintManager only tracks equality and inequality constraints of
|
|
// constants and integer variables.
|
|
class BasicConstraintManager
|
|
: public SimpleConstraintManager {
|
|
ProgramState::IntSetTy::Factory ISetFactory;
|
|
public:
|
|
BasicConstraintManager(ProgramStateManager &statemgr, SubEngine &subengine)
|
|
: SimpleConstraintManager(subengine, statemgr.getBasicVals()),
|
|
ISetFactory(statemgr.getAllocator()) {}
|
|
|
|
ProgramStateRef assumeSymEquality(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment,
|
|
bool Assumption);
|
|
|
|
ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) {
|
|
return assumeSymEquality(State, Sym, V, Adjustment, false);
|
|
}
|
|
|
|
ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) {
|
|
return assumeSymEquality(State, Sym, V, Adjustment, true);
|
|
}
|
|
|
|
ProgramStateRef assumeSymLT(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V,
|
|
const llvm::APSInt& Adjustment);
|
|
|
|
ProgramStateRef assumeSymGT(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V,
|
|
const llvm::APSInt& Adjustment);
|
|
|
|
ProgramStateRef assumeSymGE(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V,
|
|
const llvm::APSInt& Adjustment);
|
|
|
|
ProgramStateRef assumeSymLE(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V,
|
|
const llvm::APSInt& Adjustment);
|
|
|
|
ProgramStateRef AddEQ(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V);
|
|
|
|
ProgramStateRef AddNE(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V);
|
|
|
|
const llvm::APSInt* getSymVal(ProgramStateRef state,
|
|
SymbolRef sym) const;
|
|
|
|
bool isNotEqual(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V) const;
|
|
|
|
bool isEqual(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V) const;
|
|
|
|
ProgramStateRef removeDeadBindings(ProgramStateRef state,
|
|
SymbolReaper& SymReaper);
|
|
|
|
bool performTest(llvm::APSInt SymVal, llvm::APSInt Adjustment,
|
|
BinaryOperator::Opcode Op, llvm::APSInt ComparisonVal);
|
|
|
|
void print(ProgramStateRef state,
|
|
raw_ostream &Out,
|
|
const char* nl,
|
|
const char *sep);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
ConstraintManager*
|
|
ento::CreateBasicConstraintManager(ProgramStateManager& statemgr,
|
|
SubEngine &subengine) {
|
|
return new BasicConstraintManager(statemgr, subengine);
|
|
}
|
|
|
|
// FIXME: This is a more general utility and should live somewhere else.
|
|
bool BasicConstraintManager::performTest(llvm::APSInt SymVal,
|
|
llvm::APSInt Adjustment,
|
|
BinaryOperator::Opcode Op,
|
|
llvm::APSInt ComparisonVal) {
|
|
APSIntType Type(Adjustment);
|
|
Type.apply(SymVal);
|
|
Type.apply(ComparisonVal);
|
|
SymVal += Adjustment;
|
|
|
|
assert(BinaryOperator::isComparisonOp(Op));
|
|
BasicValueFactory &BVF = getBasicVals();
|
|
const llvm::APSInt *Result = BVF.evalAPSInt(Op, SymVal, ComparisonVal);
|
|
assert(Result && "Comparisons should always have valid results.");
|
|
|
|
return Result->getBoolValue();
|
|
}
|
|
|
|
ProgramStateRef
|
|
BasicConstraintManager::assumeSymEquality(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment,
|
|
bool Assumption) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
if (AdjustmentType.testInRange(V) != APSIntType::RTR_Within)
|
|
return Assumption ? NULL : State;
|
|
|
|
// Get the symbol type.
|
|
BasicValueFactory &BVF = getBasicVals();
|
|
ASTContext &Ctx = BVF.getContext();
|
|
APSIntType SymbolType = BVF.getAPSIntType(Sym->getType(Ctx));
|
|
|
|
// First, see if the adjusted value is within range for the symbol.
|
|
llvm::APSInt Adjusted = AdjustmentType.convert(V) - Adjustment;
|
|
if (SymbolType.testInRange(Adjusted) != APSIntType::RTR_Within)
|
|
return Assumption ? NULL : State;
|
|
|
|
// Now we can do things properly in the symbol space.
|
|
SymbolType.apply(Adjusted);
|
|
|
|
// Second, determine if sym == X, where X+Adjustment != V.
|
|
if (const llvm::APSInt *X = getSymVal(State, Sym)) {
|
|
bool IsFeasible = (*X == Adjusted);
|
|
return (IsFeasible == Assumption) ? State : NULL;
|
|
}
|
|
|
|
// Third, determine if we already know sym+Adjustment != V.
|
|
if (isNotEqual(State, Sym, Adjusted))
|
|
return Assumption ? NULL : State;
|
|
|
|
// If we reach here, sym is not a constant and we don't know if it is != V.
|
|
// Make the correct assumption.
|
|
if (Assumption)
|
|
return AddEQ(State, Sym, Adjusted);
|
|
else
|
|
return AddNE(State, Sym, Adjusted);
|
|
}
|
|
|
|
// The logic for these will be handled in another ConstraintManager.
|
|
// Approximate it here anyway by handling some edge cases.
|
|
ProgramStateRef
|
|
BasicConstraintManager::assumeSymLT(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) {
|
|
APSIntType ComparisonType(V), AdjustmentType(Adjustment);
|
|
|
|
// Is 'V' out of range above the type?
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (V > ComparisonType.convert(Max)) {
|
|
// This path is trivially feasible.
|
|
return state;
|
|
}
|
|
|
|
// Is 'V' the smallest possible value, or out of range below the type?
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (V <= ComparisonType.convert(Min)) {
|
|
// sym cannot be any value less than 'V'. This path is infeasible.
|
|
return NULL;
|
|
}
|
|
|
|
// Reject a path if the value of sym is a constant X and !(X+Adj < V).
|
|
if (const llvm::APSInt *X = getSymVal(state, sym)) {
|
|
bool isFeasible = performTest(*X, Adjustment, BO_LT, V);
|
|
return isFeasible ? state : NULL;
|
|
}
|
|
|
|
// FIXME: For now have assuming x < y be the same as assuming sym != V;
|
|
return assumeSymNE(state, sym, V, Adjustment);
|
|
}
|
|
|
|
ProgramStateRef
|
|
BasicConstraintManager::assumeSymGT(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) {
|
|
APSIntType ComparisonType(V), AdjustmentType(Adjustment);
|
|
|
|
// Is 'V' the largest possible value, or out of range above the type?
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (V >= ComparisonType.convert(Max)) {
|
|
// sym cannot be any value greater than 'V'. This path is infeasible.
|
|
return NULL;
|
|
}
|
|
|
|
// Is 'V' out of range below the type?
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (V < ComparisonType.convert(Min)) {
|
|
// This path is trivially feasible.
|
|
return state;
|
|
}
|
|
|
|
// Reject a path if the value of sym is a constant X and !(X+Adj > V).
|
|
if (const llvm::APSInt *X = getSymVal(state, sym)) {
|
|
bool isFeasible = performTest(*X, Adjustment, BO_GT, V);
|
|
return isFeasible ? state : NULL;
|
|
}
|
|
|
|
// FIXME: For now have assuming x > y be the same as assuming sym != V;
|
|
return assumeSymNE(state, sym, V, Adjustment);
|
|
}
|
|
|
|
ProgramStateRef
|
|
BasicConstraintManager::assumeSymGE(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) {
|
|
APSIntType ComparisonType(V), AdjustmentType(Adjustment);
|
|
|
|
// Is 'V' the largest possible value, or out of range above the type?
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
ComparisonType.apply(Max);
|
|
|
|
if (V > Max) {
|
|
// sym cannot be any value greater than 'V'. This path is infeasible.
|
|
return NULL;
|
|
} else if (V == Max) {
|
|
// If the path is feasible then as a consequence we know that
|
|
// 'sym+Adjustment == V' because there are no larger values.
|
|
// Add this constraint.
|
|
return assumeSymEQ(state, sym, V, Adjustment);
|
|
}
|
|
|
|
// Is 'V' out of range below the type?
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (V < ComparisonType.convert(Min)) {
|
|
// This path is trivially feasible.
|
|
return state;
|
|
}
|
|
|
|
// Reject a path if the value of sym is a constant X and !(X+Adj >= V).
|
|
if (const llvm::APSInt *X = getSymVal(state, sym)) {
|
|
bool isFeasible = performTest(*X, Adjustment, BO_GE, V);
|
|
return isFeasible ? state : NULL;
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
ProgramStateRef
|
|
BasicConstraintManager::assumeSymLE(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) {
|
|
APSIntType ComparisonType(V), AdjustmentType(Adjustment);
|
|
|
|
// Is 'V' out of range above the type?
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (V > ComparisonType.convert(Max)) {
|
|
// This path is trivially feasible.
|
|
return state;
|
|
}
|
|
|
|
// Is 'V' the smallest possible value, or out of range below the type?
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
ComparisonType.apply(Min);
|
|
|
|
if (V < Min) {
|
|
// sym cannot be any value less than 'V'. This path is infeasible.
|
|
return NULL;
|
|
} else if (V == Min) {
|
|
// If the path is feasible then as a consequence we know that
|
|
// 'sym+Adjustment == V' because there are no smaller values.
|
|
// Add this constraint.
|
|
return assumeSymEQ(state, sym, V, Adjustment);
|
|
}
|
|
|
|
// Reject a path if the value of sym is a constant X and !(X+Adj >= V).
|
|
if (const llvm::APSInt *X = getSymVal(state, sym)) {
|
|
bool isFeasible = performTest(*X, Adjustment, BO_LE, V);
|
|
return isFeasible ? state : NULL;
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
ProgramStateRef BasicConstraintManager::AddEQ(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V) {
|
|
// Now that we have an actual value, we can throw out the NE-set.
|
|
// Create a new state with the old bindings replaced.
|
|
state = state->remove<ConstNotEq>(sym);
|
|
return state->set<ConstEq>(sym, &getBasicVals().getValue(V));
|
|
}
|
|
|
|
ProgramStateRef BasicConstraintManager::AddNE(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V) {
|
|
|
|
// First, retrieve the NE-set associated with the given symbol.
|
|
ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
|
|
ProgramState::IntSetTy S = T ? *T : ISetFactory.getEmptySet();
|
|
|
|
// Now add V to the NE set.
|
|
S = ISetFactory.add(S, &getBasicVals().getValue(V));
|
|
|
|
// Create a new state with the old binding replaced.
|
|
return state->set<ConstNotEq>(sym, S);
|
|
}
|
|
|
|
const llvm::APSInt* BasicConstraintManager::getSymVal(ProgramStateRef state,
|
|
SymbolRef sym) const {
|
|
const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
|
|
return T ? *T : NULL;
|
|
}
|
|
|
|
bool BasicConstraintManager::isNotEqual(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V) const {
|
|
|
|
// Retrieve the NE-set associated with the given symbol.
|
|
const ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
|
|
|
|
// See if V is present in the NE-set.
|
|
return T ? T->contains(&getBasicVals().getValue(V)) : false;
|
|
}
|
|
|
|
bool BasicConstraintManager::isEqual(ProgramStateRef state,
|
|
SymbolRef sym,
|
|
const llvm::APSInt& V) const {
|
|
// Retrieve the EQ-set associated with the given symbol.
|
|
const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
|
|
// See if V is present in the EQ-set.
|
|
return T ? **T == V : false;
|
|
}
|
|
|
|
/// Scan all symbols referenced by the constraints. If the symbol is not alive
|
|
/// as marked in LSymbols, mark it as dead in DSymbols.
|
|
ProgramStateRef
|
|
BasicConstraintManager::removeDeadBindings(ProgramStateRef state,
|
|
SymbolReaper& SymReaper) {
|
|
|
|
ConstEqTy CE = state->get<ConstEq>();
|
|
ConstEqTy::Factory& CEFactory = state->get_context<ConstEq>();
|
|
|
|
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
|
|
SymbolRef sym = I.getKey();
|
|
if (SymReaper.maybeDead(sym))
|
|
CE = CEFactory.remove(CE, sym);
|
|
}
|
|
state = state->set<ConstEq>(CE);
|
|
|
|
ConstNotEqTy CNE = state->get<ConstNotEq>();
|
|
ConstNotEqTy::Factory& CNEFactory = state->get_context<ConstNotEq>();
|
|
|
|
for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
|
|
SymbolRef sym = I.getKey();
|
|
if (SymReaper.maybeDead(sym))
|
|
CNE = CNEFactory.remove(CNE, sym);
|
|
}
|
|
|
|
return state->set<ConstNotEq>(CNE);
|
|
}
|
|
|
|
void BasicConstraintManager::print(ProgramStateRef state,
|
|
raw_ostream &Out,
|
|
const char* nl, const char *sep) {
|
|
// Print equality constraints.
|
|
|
|
ConstEqTy CE = state->get<ConstEq>();
|
|
|
|
if (!CE.isEmpty()) {
|
|
Out << nl << sep << "'==' constraints:";
|
|
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I)
|
|
Out << nl << " $" << I.getKey() << " : " << *I.getData();
|
|
}
|
|
|
|
// Print != constraints.
|
|
|
|
ConstNotEqTy CNE = state->get<ConstNotEq>();
|
|
|
|
if (!CNE.isEmpty()) {
|
|
Out << nl << sep << "'!=' constraints:";
|
|
|
|
for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
|
|
Out << nl << " $" << I.getKey() << " : ";
|
|
bool isFirst = true;
|
|
|
|
ProgramState::IntSetTy::iterator J = I.getData().begin(),
|
|
EJ = I.getData().end();
|
|
|
|
for ( ; J != EJ; ++J) {
|
|
if (isFirst) isFirst = false;
|
|
else Out << ", ";
|
|
|
|
Out << (*J)->getSExtValue(); // Hack: should print to raw_ostream.
|
|
}
|
|
}
|
|
}
|
|
}
|