forked from OSchip/llvm-project
3017 lines
105 KiB
C++
3017 lines
105 KiB
C++
//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expr class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace clang;
|
|
|
|
/// isKnownToHaveBooleanValue - Return true if this is an integer expression
|
|
/// that is known to return 0 or 1. This happens for _Bool/bool expressions
|
|
/// but also int expressions which are produced by things like comparisons in
|
|
/// C.
|
|
bool Expr::isKnownToHaveBooleanValue() const {
|
|
const Expr *E = IgnoreParens();
|
|
|
|
// If this value has _Bool type, it is obvious 0/1.
|
|
if (E->getType()->isBooleanType()) return true;
|
|
// If this is a non-scalar-integer type, we don't care enough to try.
|
|
if (!E->getType()->isIntegralOrEnumerationType()) return false;
|
|
|
|
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
switch (UO->getOpcode()) {
|
|
case UO_Plus:
|
|
return UO->getSubExpr()->isKnownToHaveBooleanValue();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Only look through implicit casts. If the user writes
|
|
// '(int) (a && b)' treat it as an arbitrary int.
|
|
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
|
|
return CE->getSubExpr()->isKnownToHaveBooleanValue();
|
|
|
|
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
switch (BO->getOpcode()) {
|
|
default: return false;
|
|
case BO_LT: // Relational operators.
|
|
case BO_GT:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ: // Equality operators.
|
|
case BO_NE:
|
|
case BO_LAnd: // AND operator.
|
|
case BO_LOr: // Logical OR operator.
|
|
return true;
|
|
|
|
case BO_And: // Bitwise AND operator.
|
|
case BO_Xor: // Bitwise XOR operator.
|
|
case BO_Or: // Bitwise OR operator.
|
|
// Handle things like (x==2)|(y==12).
|
|
return BO->getLHS()->isKnownToHaveBooleanValue() &&
|
|
BO->getRHS()->isKnownToHaveBooleanValue();
|
|
|
|
case BO_Comma:
|
|
case BO_Assign:
|
|
return BO->getRHS()->isKnownToHaveBooleanValue();
|
|
}
|
|
}
|
|
|
|
if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
|
|
return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
|
|
CO->getFalseExpr()->isKnownToHaveBooleanValue();
|
|
|
|
return false;
|
|
}
|
|
|
|
// Amusing macro metaprogramming hack: check whether a class provides
|
|
// a more specific implementation of getExprLoc().
|
|
namespace {
|
|
/// This implementation is used when a class provides a custom
|
|
/// implementation of getExprLoc.
|
|
template <class E, class T>
|
|
SourceLocation getExprLocImpl(const Expr *expr,
|
|
SourceLocation (T::*v)() const) {
|
|
return static_cast<const E*>(expr)->getExprLoc();
|
|
}
|
|
|
|
/// This implementation is used when a class doesn't provide
|
|
/// a custom implementation of getExprLoc. Overload resolution
|
|
/// should pick it over the implementation above because it's
|
|
/// more specialized according to function template partial ordering.
|
|
template <class E>
|
|
SourceLocation getExprLocImpl(const Expr *expr,
|
|
SourceLocation (Expr::*v)() const) {
|
|
return static_cast<const E*>(expr)->getSourceRange().getBegin();
|
|
}
|
|
}
|
|
|
|
SourceLocation Expr::getExprLoc() const {
|
|
switch (getStmtClass()) {
|
|
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
|
|
#define ABSTRACT_STMT(type)
|
|
#define STMT(type, base) \
|
|
case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
|
|
#define EXPR(type, base) \
|
|
case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
|
|
#include "clang/AST/StmtNodes.inc"
|
|
}
|
|
llvm_unreachable("unknown statement kind");
|
|
return SourceLocation();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Primary Expressions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExplicitTemplateArgumentList::initializeFrom(
|
|
const TemplateArgumentListInfo &Info) {
|
|
LAngleLoc = Info.getLAngleLoc();
|
|
RAngleLoc = Info.getRAngleLoc();
|
|
NumTemplateArgs = Info.size();
|
|
|
|
TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
|
|
for (unsigned i = 0; i != NumTemplateArgs; ++i)
|
|
new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
|
|
}
|
|
|
|
void ExplicitTemplateArgumentList::initializeFrom(
|
|
const TemplateArgumentListInfo &Info,
|
|
bool &Dependent,
|
|
bool &ContainsUnexpandedParameterPack) {
|
|
LAngleLoc = Info.getLAngleLoc();
|
|
RAngleLoc = Info.getRAngleLoc();
|
|
NumTemplateArgs = Info.size();
|
|
|
|
TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
|
|
for (unsigned i = 0; i != NumTemplateArgs; ++i) {
|
|
Dependent = Dependent || Info[i].getArgument().isDependent();
|
|
ContainsUnexpandedParameterPack
|
|
= ContainsUnexpandedParameterPack ||
|
|
Info[i].getArgument().containsUnexpandedParameterPack();
|
|
|
|
new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
|
|
}
|
|
}
|
|
|
|
void ExplicitTemplateArgumentList::copyInto(
|
|
TemplateArgumentListInfo &Info) const {
|
|
Info.setLAngleLoc(LAngleLoc);
|
|
Info.setRAngleLoc(RAngleLoc);
|
|
for (unsigned I = 0; I != NumTemplateArgs; ++I)
|
|
Info.addArgument(getTemplateArgs()[I]);
|
|
}
|
|
|
|
std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
|
|
return sizeof(ExplicitTemplateArgumentList) +
|
|
sizeof(TemplateArgumentLoc) * NumTemplateArgs;
|
|
}
|
|
|
|
std::size_t ExplicitTemplateArgumentList::sizeFor(
|
|
const TemplateArgumentListInfo &Info) {
|
|
return sizeFor(Info.size());
|
|
}
|
|
|
|
/// \brief Compute the type- and value-dependence of a declaration reference
|
|
/// based on the declaration being referenced.
|
|
static void computeDeclRefDependence(NamedDecl *D, QualType T,
|
|
bool &TypeDependent,
|
|
bool &ValueDependent) {
|
|
TypeDependent = false;
|
|
ValueDependent = false;
|
|
|
|
|
|
// (TD) C++ [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains:
|
|
//
|
|
// and
|
|
//
|
|
// (VD) C++ [temp.dep.constexpr]p2:
|
|
// An identifier is value-dependent if it is:
|
|
|
|
// (TD) - an identifier that was declared with dependent type
|
|
// (VD) - a name declared with a dependent type,
|
|
if (T->isDependentType()) {
|
|
TypeDependent = true;
|
|
ValueDependent = true;
|
|
return;
|
|
}
|
|
|
|
// (TD) - a conversion-function-id that specifies a dependent type
|
|
if (D->getDeclName().getNameKind()
|
|
== DeclarationName::CXXConversionFunctionName &&
|
|
D->getDeclName().getCXXNameType()->isDependentType()) {
|
|
TypeDependent = true;
|
|
ValueDependent = true;
|
|
return;
|
|
}
|
|
// (VD) - the name of a non-type template parameter,
|
|
if (isa<NonTypeTemplateParmDecl>(D)) {
|
|
ValueDependent = true;
|
|
return;
|
|
}
|
|
|
|
// (VD) - a constant with integral or enumeration type and is
|
|
// initialized with an expression that is value-dependent.
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
|
|
if (Var->getType()->isIntegralOrEnumerationType() &&
|
|
Var->getType().getCVRQualifiers() == Qualifiers::Const) {
|
|
if (const Expr *Init = Var->getAnyInitializer())
|
|
if (Init->isValueDependent())
|
|
ValueDependent = true;
|
|
}
|
|
|
|
// (VD) - FIXME: Missing from the standard:
|
|
// - a member function or a static data member of the current
|
|
// instantiation
|
|
else if (Var->isStaticDataMember() &&
|
|
Var->getDeclContext()->isDependentContext())
|
|
ValueDependent = true;
|
|
|
|
return;
|
|
}
|
|
|
|
// (VD) - FIXME: Missing from the standard:
|
|
// - a member function or a static data member of the current
|
|
// instantiation
|
|
if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
|
|
ValueDependent = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void DeclRefExpr::computeDependence() {
|
|
bool TypeDependent = false;
|
|
bool ValueDependent = false;
|
|
computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent);
|
|
|
|
// (TD) C++ [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains:
|
|
//
|
|
// and
|
|
//
|
|
// (VD) C++ [temp.dep.constexpr]p2:
|
|
// An identifier is value-dependent if it is:
|
|
if (!TypeDependent && !ValueDependent &&
|
|
hasExplicitTemplateArgs() &&
|
|
TemplateSpecializationType::anyDependentTemplateArguments(
|
|
getTemplateArgs(),
|
|
getNumTemplateArgs())) {
|
|
TypeDependent = true;
|
|
ValueDependent = true;
|
|
}
|
|
|
|
ExprBits.TypeDependent = TypeDependent;
|
|
ExprBits.ValueDependent = ValueDependent;
|
|
|
|
// Is the declaration a parameter pack?
|
|
if (getDecl()->isParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
}
|
|
|
|
DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
|
|
ValueDecl *D, const DeclarationNameInfo &NameInfo,
|
|
NamedDecl *FoundD,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
QualType T, ExprValueKind VK)
|
|
: Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
|
|
D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
|
|
DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
|
|
if (QualifierLoc)
|
|
getInternalQualifierLoc() = QualifierLoc;
|
|
DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
|
|
if (FoundD)
|
|
getInternalFoundDecl() = FoundD;
|
|
DeclRefExprBits.HasExplicitTemplateArgs = TemplateArgs ? 1 : 0;
|
|
if (TemplateArgs)
|
|
getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
|
|
|
|
computeDependence();
|
|
}
|
|
|
|
DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
ValueDecl *D,
|
|
SourceLocation NameLoc,
|
|
QualType T,
|
|
ExprValueKind VK,
|
|
NamedDecl *FoundD,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
return Create(Context, QualifierLoc, D,
|
|
DeclarationNameInfo(D->getDeclName(), NameLoc),
|
|
T, VK, FoundD, TemplateArgs);
|
|
}
|
|
|
|
DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
ValueDecl *D,
|
|
const DeclarationNameInfo &NameInfo,
|
|
QualType T,
|
|
ExprValueKind VK,
|
|
NamedDecl *FoundD,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
// Filter out cases where the found Decl is the same as the value refenenced.
|
|
if (D == FoundD)
|
|
FoundD = 0;
|
|
|
|
std::size_t Size = sizeof(DeclRefExpr);
|
|
if (QualifierLoc != 0)
|
|
Size += sizeof(NestedNameSpecifierLoc);
|
|
if (FoundD)
|
|
Size += sizeof(NamedDecl *);
|
|
if (TemplateArgs)
|
|
Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
|
|
|
|
void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
|
|
return new (Mem) DeclRefExpr(QualifierLoc, D, NameInfo, FoundD, TemplateArgs,
|
|
T, VK);
|
|
}
|
|
|
|
DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
|
|
bool HasQualifier,
|
|
bool HasFoundDecl,
|
|
bool HasExplicitTemplateArgs,
|
|
unsigned NumTemplateArgs) {
|
|
std::size_t Size = sizeof(DeclRefExpr);
|
|
if (HasQualifier)
|
|
Size += sizeof(NestedNameSpecifierLoc);
|
|
if (HasFoundDecl)
|
|
Size += sizeof(NamedDecl *);
|
|
if (HasExplicitTemplateArgs)
|
|
Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
|
|
|
|
void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
|
|
return new (Mem) DeclRefExpr(EmptyShell());
|
|
}
|
|
|
|
SourceRange DeclRefExpr::getSourceRange() const {
|
|
SourceRange R = getNameInfo().getSourceRange();
|
|
if (hasQualifier())
|
|
R.setBegin(getQualifierLoc().getBeginLoc());
|
|
if (hasExplicitTemplateArgs())
|
|
R.setEnd(getRAngleLoc());
|
|
return R;
|
|
}
|
|
|
|
// FIXME: Maybe this should use DeclPrinter with a special "print predefined
|
|
// expr" policy instead.
|
|
std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
|
|
ASTContext &Context = CurrentDecl->getASTContext();
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
|
|
if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
|
|
return FD->getNameAsString();
|
|
|
|
llvm::SmallString<256> Name;
|
|
llvm::raw_svector_ostream Out(Name);
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
|
|
Out << "virtual ";
|
|
if (MD->isStatic())
|
|
Out << "static ";
|
|
}
|
|
|
|
PrintingPolicy Policy(Context.getLangOptions());
|
|
|
|
std::string Proto = FD->getQualifiedNameAsString(Policy);
|
|
|
|
const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
|
|
const FunctionProtoType *FT = 0;
|
|
if (FD->hasWrittenPrototype())
|
|
FT = dyn_cast<FunctionProtoType>(AFT);
|
|
|
|
Proto += "(";
|
|
if (FT) {
|
|
llvm::raw_string_ostream POut(Proto);
|
|
for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
|
|
if (i) POut << ", ";
|
|
std::string Param;
|
|
FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
|
|
POut << Param;
|
|
}
|
|
|
|
if (FT->isVariadic()) {
|
|
if (FD->getNumParams()) POut << ", ";
|
|
POut << "...";
|
|
}
|
|
}
|
|
Proto += ")";
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
|
|
if (ThisQuals.hasConst())
|
|
Proto += " const";
|
|
if (ThisQuals.hasVolatile())
|
|
Proto += " volatile";
|
|
}
|
|
|
|
if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
|
|
AFT->getResultType().getAsStringInternal(Proto, Policy);
|
|
|
|
Out << Proto;
|
|
|
|
Out.flush();
|
|
return Name.str().str();
|
|
}
|
|
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
|
|
llvm::SmallString<256> Name;
|
|
llvm::raw_svector_ostream Out(Name);
|
|
Out << (MD->isInstanceMethod() ? '-' : '+');
|
|
Out << '[';
|
|
|
|
// For incorrect code, there might not be an ObjCInterfaceDecl. Do
|
|
// a null check to avoid a crash.
|
|
if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
|
|
Out << ID;
|
|
|
|
if (const ObjCCategoryImplDecl *CID =
|
|
dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
|
|
Out << '(' << CID << ')';
|
|
|
|
Out << ' ';
|
|
Out << MD->getSelector().getAsString();
|
|
Out << ']';
|
|
|
|
Out.flush();
|
|
return Name.str().str();
|
|
}
|
|
if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
|
|
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
|
|
return "top level";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
|
|
if (hasAllocation())
|
|
C.Deallocate(pVal);
|
|
|
|
BitWidth = Val.getBitWidth();
|
|
unsigned NumWords = Val.getNumWords();
|
|
const uint64_t* Words = Val.getRawData();
|
|
if (NumWords > 1) {
|
|
pVal = new (C) uint64_t[NumWords];
|
|
std::copy(Words, Words + NumWords, pVal);
|
|
} else if (NumWords == 1)
|
|
VAL = Words[0];
|
|
else
|
|
VAL = 0;
|
|
}
|
|
|
|
IntegerLiteral *
|
|
IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
|
|
QualType type, SourceLocation l) {
|
|
return new (C) IntegerLiteral(C, V, type, l);
|
|
}
|
|
|
|
IntegerLiteral *
|
|
IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
|
|
return new (C) IntegerLiteral(Empty);
|
|
}
|
|
|
|
FloatingLiteral *
|
|
FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
|
|
bool isexact, QualType Type, SourceLocation L) {
|
|
return new (C) FloatingLiteral(C, V, isexact, Type, L);
|
|
}
|
|
|
|
FloatingLiteral *
|
|
FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
|
|
return new (C) FloatingLiteral(Empty);
|
|
}
|
|
|
|
/// getValueAsApproximateDouble - This returns the value as an inaccurate
|
|
/// double. Note that this may cause loss of precision, but is useful for
|
|
/// debugging dumps, etc.
|
|
double FloatingLiteral::getValueAsApproximateDouble() const {
|
|
llvm::APFloat V = getValue();
|
|
bool ignored;
|
|
V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
return V.convertToDouble();
|
|
}
|
|
|
|
StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
|
|
unsigned ByteLength, bool Wide,
|
|
bool Pascal, QualType Ty,
|
|
const SourceLocation *Loc,
|
|
unsigned NumStrs) {
|
|
// Allocate enough space for the StringLiteral plus an array of locations for
|
|
// any concatenated string tokens.
|
|
void *Mem = C.Allocate(sizeof(StringLiteral)+
|
|
sizeof(SourceLocation)*(NumStrs-1),
|
|
llvm::alignOf<StringLiteral>());
|
|
StringLiteral *SL = new (Mem) StringLiteral(Ty);
|
|
|
|
// OPTIMIZE: could allocate this appended to the StringLiteral.
|
|
char *AStrData = new (C, 1) char[ByteLength];
|
|
memcpy(AStrData, StrData, ByteLength);
|
|
SL->StrData = AStrData;
|
|
SL->ByteLength = ByteLength;
|
|
SL->IsWide = Wide;
|
|
SL->IsPascal = Pascal;
|
|
SL->TokLocs[0] = Loc[0];
|
|
SL->NumConcatenated = NumStrs;
|
|
|
|
if (NumStrs != 1)
|
|
memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
|
|
return SL;
|
|
}
|
|
|
|
StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
|
|
void *Mem = C.Allocate(sizeof(StringLiteral)+
|
|
sizeof(SourceLocation)*(NumStrs-1),
|
|
llvm::alignOf<StringLiteral>());
|
|
StringLiteral *SL = new (Mem) StringLiteral(QualType());
|
|
SL->StrData = 0;
|
|
SL->ByteLength = 0;
|
|
SL->NumConcatenated = NumStrs;
|
|
return SL;
|
|
}
|
|
|
|
void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
|
|
char *AStrData = new (C, 1) char[Str.size()];
|
|
memcpy(AStrData, Str.data(), Str.size());
|
|
StrData = AStrData;
|
|
ByteLength = Str.size();
|
|
}
|
|
|
|
/// getLocationOfByte - Return a source location that points to the specified
|
|
/// byte of this string literal.
|
|
///
|
|
/// Strings are amazingly complex. They can be formed from multiple tokens and
|
|
/// can have escape sequences in them in addition to the usual trigraph and
|
|
/// escaped newline business. This routine handles this complexity.
|
|
///
|
|
SourceLocation StringLiteral::
|
|
getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
|
|
const LangOptions &Features, const TargetInfo &Target) const {
|
|
assert(!isWide() && "This doesn't work for wide strings yet");
|
|
|
|
// Loop over all of the tokens in this string until we find the one that
|
|
// contains the byte we're looking for.
|
|
unsigned TokNo = 0;
|
|
while (1) {
|
|
assert(TokNo < getNumConcatenated() && "Invalid byte number!");
|
|
SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
|
|
|
|
// Get the spelling of the string so that we can get the data that makes up
|
|
// the string literal, not the identifier for the macro it is potentially
|
|
// expanded through.
|
|
SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
|
|
|
|
// Re-lex the token to get its length and original spelling.
|
|
std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
|
|
bool Invalid = false;
|
|
llvm::StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
|
|
if (Invalid)
|
|
return StrTokSpellingLoc;
|
|
|
|
const char *StrData = Buffer.data()+LocInfo.second;
|
|
|
|
// Create a langops struct and enable trigraphs. This is sufficient for
|
|
// relexing tokens.
|
|
LangOptions LangOpts;
|
|
LangOpts.Trigraphs = true;
|
|
|
|
// Create a lexer starting at the beginning of this token.
|
|
Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
|
|
Buffer.end());
|
|
Token TheTok;
|
|
TheLexer.LexFromRawLexer(TheTok);
|
|
|
|
// Use the StringLiteralParser to compute the length of the string in bytes.
|
|
StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
|
|
unsigned TokNumBytes = SLP.GetStringLength();
|
|
|
|
// If the byte is in this token, return the location of the byte.
|
|
if (ByteNo < TokNumBytes ||
|
|
(ByteNo == TokNumBytes && TokNo == getNumConcatenated())) {
|
|
unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
|
|
|
|
// Now that we know the offset of the token in the spelling, use the
|
|
// preprocessor to get the offset in the original source.
|
|
return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
|
|
}
|
|
|
|
// Move to the next string token.
|
|
++TokNo;
|
|
ByteNo -= TokNumBytes;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "sizeof" or "[pre]++".
|
|
const char *UnaryOperator::getOpcodeStr(Opcode Op) {
|
|
switch (Op) {
|
|
default: assert(0 && "Unknown unary operator");
|
|
case UO_PostInc: return "++";
|
|
case UO_PostDec: return "--";
|
|
case UO_PreInc: return "++";
|
|
case UO_PreDec: return "--";
|
|
case UO_AddrOf: return "&";
|
|
case UO_Deref: return "*";
|
|
case UO_Plus: return "+";
|
|
case UO_Minus: return "-";
|
|
case UO_Not: return "~";
|
|
case UO_LNot: return "!";
|
|
case UO_Real: return "__real";
|
|
case UO_Imag: return "__imag";
|
|
case UO_Extension: return "__extension__";
|
|
}
|
|
}
|
|
|
|
UnaryOperatorKind
|
|
UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
|
|
switch (OO) {
|
|
default: assert(false && "No unary operator for overloaded function");
|
|
case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
|
|
case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
|
|
case OO_Amp: return UO_AddrOf;
|
|
case OO_Star: return UO_Deref;
|
|
case OO_Plus: return UO_Plus;
|
|
case OO_Minus: return UO_Minus;
|
|
case OO_Tilde: return UO_Not;
|
|
case OO_Exclaim: return UO_LNot;
|
|
}
|
|
}
|
|
|
|
OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
|
|
switch (Opc) {
|
|
case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
|
|
case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
|
|
case UO_AddrOf: return OO_Amp;
|
|
case UO_Deref: return OO_Star;
|
|
case UO_Plus: return OO_Plus;
|
|
case UO_Minus: return OO_Minus;
|
|
case UO_Not: return OO_Tilde;
|
|
case UO_LNot: return OO_Exclaim;
|
|
default: return OO_None;
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Postfix Operators.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
|
|
Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
|
|
SourceLocation rparenloc)
|
|
: Expr(SC, t, VK, OK_Ordinary,
|
|
fn->isTypeDependent(),
|
|
fn->isValueDependent(),
|
|
fn->containsUnexpandedParameterPack()),
|
|
NumArgs(numargs) {
|
|
|
|
SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
|
|
SubExprs[FN] = fn;
|
|
for (unsigned i = 0; i != numargs; ++i) {
|
|
if (args[i]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (args[i]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (args[i]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
|
|
}
|
|
|
|
CallExprBits.NumPreArgs = NumPreArgs;
|
|
RParenLoc = rparenloc;
|
|
}
|
|
|
|
CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
|
|
QualType t, ExprValueKind VK, SourceLocation rparenloc)
|
|
: Expr(CallExprClass, t, VK, OK_Ordinary,
|
|
fn->isTypeDependent(),
|
|
fn->isValueDependent(),
|
|
fn->containsUnexpandedParameterPack()),
|
|
NumArgs(numargs) {
|
|
|
|
SubExprs = new (C) Stmt*[numargs+PREARGS_START];
|
|
SubExprs[FN] = fn;
|
|
for (unsigned i = 0; i != numargs; ++i) {
|
|
if (args[i]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (args[i]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (args[i]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
SubExprs[i+PREARGS_START] = args[i];
|
|
}
|
|
|
|
CallExprBits.NumPreArgs = 0;
|
|
RParenLoc = rparenloc;
|
|
}
|
|
|
|
CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
|
|
: Expr(SC, Empty), SubExprs(0), NumArgs(0) {
|
|
// FIXME: Why do we allocate this?
|
|
SubExprs = new (C) Stmt*[PREARGS_START];
|
|
CallExprBits.NumPreArgs = 0;
|
|
}
|
|
|
|
CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
|
|
EmptyShell Empty)
|
|
: Expr(SC, Empty), SubExprs(0), NumArgs(0) {
|
|
// FIXME: Why do we allocate this?
|
|
SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
|
|
CallExprBits.NumPreArgs = NumPreArgs;
|
|
}
|
|
|
|
Decl *CallExpr::getCalleeDecl() {
|
|
Expr *CEE = getCallee()->IgnoreParenCasts();
|
|
// If we're calling a dereference, look at the pointer instead.
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
|
|
if (BO->isPtrMemOp())
|
|
CEE = BO->getRHS()->IgnoreParenCasts();
|
|
} else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
|
|
if (UO->getOpcode() == UO_Deref)
|
|
CEE = UO->getSubExpr()->IgnoreParenCasts();
|
|
}
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
|
|
return DRE->getDecl();
|
|
if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
|
|
return ME->getMemberDecl();
|
|
|
|
return 0;
|
|
}
|
|
|
|
FunctionDecl *CallExpr::getDirectCallee() {
|
|
return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
|
|
}
|
|
|
|
/// setNumArgs - This changes the number of arguments present in this call.
|
|
/// Any orphaned expressions are deleted by this, and any new operands are set
|
|
/// to null.
|
|
void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
|
|
// No change, just return.
|
|
if (NumArgs == getNumArgs()) return;
|
|
|
|
// If shrinking # arguments, just delete the extras and forgot them.
|
|
if (NumArgs < getNumArgs()) {
|
|
this->NumArgs = NumArgs;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we are growing the # arguments. New an bigger argument array.
|
|
unsigned NumPreArgs = getNumPreArgs();
|
|
Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
|
|
// Copy over args.
|
|
for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
|
|
NewSubExprs[i] = SubExprs[i];
|
|
// Null out new args.
|
|
for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
|
|
i != NumArgs+PREARGS_START+NumPreArgs; ++i)
|
|
NewSubExprs[i] = 0;
|
|
|
|
if (SubExprs) C.Deallocate(SubExprs);
|
|
SubExprs = NewSubExprs;
|
|
this->NumArgs = NumArgs;
|
|
}
|
|
|
|
/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
|
|
/// not, return 0.
|
|
unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const {
|
|
// All simple function calls (e.g. func()) are implicitly cast to pointer to
|
|
// function. As a result, we try and obtain the DeclRefExpr from the
|
|
// ImplicitCastExpr.
|
|
const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
|
|
if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
|
|
return 0;
|
|
|
|
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
|
|
if (!DRE)
|
|
return 0;
|
|
|
|
const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
|
|
if (!FDecl)
|
|
return 0;
|
|
|
|
if (!FDecl->getIdentifier())
|
|
return 0;
|
|
|
|
return FDecl->getBuiltinID();
|
|
}
|
|
|
|
QualType CallExpr::getCallReturnType() const {
|
|
QualType CalleeType = getCallee()->getType();
|
|
if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
|
|
CalleeType = FnTypePtr->getPointeeType();
|
|
else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
|
|
CalleeType = BPT->getPointeeType();
|
|
else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
|
|
// This should never be overloaded and so should never return null.
|
|
CalleeType = Expr::findBoundMemberType(getCallee());
|
|
|
|
const FunctionType *FnType = CalleeType->castAs<FunctionType>();
|
|
return FnType->getResultType();
|
|
}
|
|
|
|
SourceRange CallExpr::getSourceRange() const {
|
|
if (isa<CXXOperatorCallExpr>(this))
|
|
return cast<CXXOperatorCallExpr>(this)->getSourceRange();
|
|
|
|
SourceLocation begin = getCallee()->getLocStart();
|
|
if (begin.isInvalid() && getNumArgs() > 0)
|
|
begin = getArg(0)->getLocStart();
|
|
SourceLocation end = getRParenLoc();
|
|
if (end.isInvalid() && getNumArgs() > 0)
|
|
end = getArg(getNumArgs() - 1)->getLocEnd();
|
|
return SourceRange(begin, end);
|
|
}
|
|
|
|
OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
|
|
SourceLocation OperatorLoc,
|
|
TypeSourceInfo *tsi,
|
|
OffsetOfNode* compsPtr, unsigned numComps,
|
|
Expr** exprsPtr, unsigned numExprs,
|
|
SourceLocation RParenLoc) {
|
|
void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
|
|
sizeof(OffsetOfNode) * numComps +
|
|
sizeof(Expr*) * numExprs);
|
|
|
|
return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
|
|
exprsPtr, numExprs, RParenLoc);
|
|
}
|
|
|
|
OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
|
|
unsigned numComps, unsigned numExprs) {
|
|
void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
|
|
sizeof(OffsetOfNode) * numComps +
|
|
sizeof(Expr*) * numExprs);
|
|
return new (Mem) OffsetOfExpr(numComps, numExprs);
|
|
}
|
|
|
|
OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
|
|
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
|
|
OffsetOfNode* compsPtr, unsigned numComps,
|
|
Expr** exprsPtr, unsigned numExprs,
|
|
SourceLocation RParenLoc)
|
|
: Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
|
|
/*TypeDependent=*/false,
|
|
/*ValueDependent=*/tsi->getType()->isDependentType(),
|
|
tsi->getType()->containsUnexpandedParameterPack()),
|
|
OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
|
|
NumComps(numComps), NumExprs(numExprs)
|
|
{
|
|
for(unsigned i = 0; i < numComps; ++i) {
|
|
setComponent(i, compsPtr[i]);
|
|
}
|
|
|
|
for(unsigned i = 0; i < numExprs; ++i) {
|
|
if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (exprsPtr[i]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
setIndexExpr(i, exprsPtr[i]);
|
|
}
|
|
}
|
|
|
|
IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
|
|
assert(getKind() == Field || getKind() == Identifier);
|
|
if (getKind() == Field)
|
|
return getField()->getIdentifier();
|
|
|
|
return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
|
|
}
|
|
|
|
MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
ValueDecl *memberdecl,
|
|
DeclAccessPair founddecl,
|
|
DeclarationNameInfo nameinfo,
|
|
const TemplateArgumentListInfo *targs,
|
|
QualType ty,
|
|
ExprValueKind vk,
|
|
ExprObjectKind ok) {
|
|
std::size_t Size = sizeof(MemberExpr);
|
|
|
|
bool hasQualOrFound = (QualifierLoc ||
|
|
founddecl.getDecl() != memberdecl ||
|
|
founddecl.getAccess() != memberdecl->getAccess());
|
|
if (hasQualOrFound)
|
|
Size += sizeof(MemberNameQualifier);
|
|
|
|
if (targs)
|
|
Size += ExplicitTemplateArgumentList::sizeFor(*targs);
|
|
|
|
void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
|
|
MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
|
|
ty, vk, ok);
|
|
|
|
if (hasQualOrFound) {
|
|
// FIXME: Wrong. We should be looking at the member declaration we found.
|
|
if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
|
|
E->setValueDependent(true);
|
|
E->setTypeDependent(true);
|
|
}
|
|
E->HasQualifierOrFoundDecl = true;
|
|
|
|
MemberNameQualifier *NQ = E->getMemberQualifier();
|
|
NQ->QualifierLoc = QualifierLoc;
|
|
NQ->FoundDecl = founddecl;
|
|
}
|
|
|
|
if (targs) {
|
|
E->HasExplicitTemplateArgumentList = true;
|
|
E->getExplicitTemplateArgs().initializeFrom(*targs);
|
|
}
|
|
|
|
return E;
|
|
}
|
|
|
|
SourceRange MemberExpr::getSourceRange() const {
|
|
SourceLocation StartLoc;
|
|
if (isImplicitAccess()) {
|
|
if (hasQualifier())
|
|
StartLoc = getQualifierLoc().getBeginLoc();
|
|
else
|
|
StartLoc = MemberLoc;
|
|
} else {
|
|
// FIXME: We don't want this to happen. Rather, we should be able to
|
|
// detect all kinds of implicit accesses more cleanly.
|
|
StartLoc = getBase()->getLocStart();
|
|
if (StartLoc.isInvalid())
|
|
StartLoc = MemberLoc;
|
|
}
|
|
|
|
SourceLocation EndLoc =
|
|
HasExplicitTemplateArgumentList? getRAngleLoc()
|
|
: getMemberNameInfo().getEndLoc();
|
|
|
|
return SourceRange(StartLoc, EndLoc);
|
|
}
|
|
|
|
const char *CastExpr::getCastKindName() const {
|
|
switch (getCastKind()) {
|
|
case CK_Dependent:
|
|
return "Dependent";
|
|
case CK_BitCast:
|
|
return "BitCast";
|
|
case CK_LValueBitCast:
|
|
return "LValueBitCast";
|
|
case CK_LValueToRValue:
|
|
return "LValueToRValue";
|
|
case CK_GetObjCProperty:
|
|
return "GetObjCProperty";
|
|
case CK_NoOp:
|
|
return "NoOp";
|
|
case CK_BaseToDerived:
|
|
return "BaseToDerived";
|
|
case CK_DerivedToBase:
|
|
return "DerivedToBase";
|
|
case CK_UncheckedDerivedToBase:
|
|
return "UncheckedDerivedToBase";
|
|
case CK_Dynamic:
|
|
return "Dynamic";
|
|
case CK_ToUnion:
|
|
return "ToUnion";
|
|
case CK_ArrayToPointerDecay:
|
|
return "ArrayToPointerDecay";
|
|
case CK_FunctionToPointerDecay:
|
|
return "FunctionToPointerDecay";
|
|
case CK_NullToMemberPointer:
|
|
return "NullToMemberPointer";
|
|
case CK_NullToPointer:
|
|
return "NullToPointer";
|
|
case CK_BaseToDerivedMemberPointer:
|
|
return "BaseToDerivedMemberPointer";
|
|
case CK_DerivedToBaseMemberPointer:
|
|
return "DerivedToBaseMemberPointer";
|
|
case CK_UserDefinedConversion:
|
|
return "UserDefinedConversion";
|
|
case CK_ConstructorConversion:
|
|
return "ConstructorConversion";
|
|
case CK_IntegralToPointer:
|
|
return "IntegralToPointer";
|
|
case CK_PointerToIntegral:
|
|
return "PointerToIntegral";
|
|
case CK_PointerToBoolean:
|
|
return "PointerToBoolean";
|
|
case CK_ToVoid:
|
|
return "ToVoid";
|
|
case CK_VectorSplat:
|
|
return "VectorSplat";
|
|
case CK_IntegralCast:
|
|
return "IntegralCast";
|
|
case CK_IntegralToBoolean:
|
|
return "IntegralToBoolean";
|
|
case CK_IntegralToFloating:
|
|
return "IntegralToFloating";
|
|
case CK_FloatingToIntegral:
|
|
return "FloatingToIntegral";
|
|
case CK_FloatingCast:
|
|
return "FloatingCast";
|
|
case CK_FloatingToBoolean:
|
|
return "FloatingToBoolean";
|
|
case CK_MemberPointerToBoolean:
|
|
return "MemberPointerToBoolean";
|
|
case CK_AnyPointerToObjCPointerCast:
|
|
return "AnyPointerToObjCPointerCast";
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
return "AnyPointerToBlockPointerCast";
|
|
case CK_ObjCObjectLValueCast:
|
|
return "ObjCObjectLValueCast";
|
|
case CK_FloatingRealToComplex:
|
|
return "FloatingRealToComplex";
|
|
case CK_FloatingComplexToReal:
|
|
return "FloatingComplexToReal";
|
|
case CK_FloatingComplexToBoolean:
|
|
return "FloatingComplexToBoolean";
|
|
case CK_FloatingComplexCast:
|
|
return "FloatingComplexCast";
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
return "FloatingComplexToIntegralComplex";
|
|
case CK_IntegralRealToComplex:
|
|
return "IntegralRealToComplex";
|
|
case CK_IntegralComplexToReal:
|
|
return "IntegralComplexToReal";
|
|
case CK_IntegralComplexToBoolean:
|
|
return "IntegralComplexToBoolean";
|
|
case CK_IntegralComplexCast:
|
|
return "IntegralComplexCast";
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
return "IntegralComplexToFloatingComplex";
|
|
}
|
|
|
|
llvm_unreachable("Unhandled cast kind!");
|
|
return 0;
|
|
}
|
|
|
|
Expr *CastExpr::getSubExprAsWritten() {
|
|
Expr *SubExpr = 0;
|
|
CastExpr *E = this;
|
|
do {
|
|
SubExpr = E->getSubExpr();
|
|
|
|
// Skip any temporary bindings; they're implicit.
|
|
if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
|
|
SubExpr = Binder->getSubExpr();
|
|
|
|
// Conversions by constructor and conversion functions have a
|
|
// subexpression describing the call; strip it off.
|
|
if (E->getCastKind() == CK_ConstructorConversion)
|
|
SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
|
|
else if (E->getCastKind() == CK_UserDefinedConversion)
|
|
SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
|
|
|
|
// If the subexpression we're left with is an implicit cast, look
|
|
// through that, too.
|
|
} while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
|
|
|
|
return SubExpr;
|
|
}
|
|
|
|
CXXBaseSpecifier **CastExpr::path_buffer() {
|
|
switch (getStmtClass()) {
|
|
#define ABSTRACT_STMT(x)
|
|
#define CASTEXPR(Type, Base) \
|
|
case Stmt::Type##Class: \
|
|
return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
|
|
#define STMT(Type, Base)
|
|
#include "clang/AST/StmtNodes.inc"
|
|
default:
|
|
llvm_unreachable("non-cast expressions not possible here");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void CastExpr::setCastPath(const CXXCastPath &Path) {
|
|
assert(Path.size() == path_size());
|
|
memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
|
|
}
|
|
|
|
ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
|
|
CastKind Kind, Expr *Operand,
|
|
const CXXCastPath *BasePath,
|
|
ExprValueKind VK) {
|
|
unsigned PathSize = (BasePath ? BasePath->size() : 0);
|
|
void *Buffer =
|
|
C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
|
|
ImplicitCastExpr *E =
|
|
new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
|
|
if (PathSize) E->setCastPath(*BasePath);
|
|
return E;
|
|
}
|
|
|
|
ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
|
|
unsigned PathSize) {
|
|
void *Buffer =
|
|
C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
|
|
return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
|
|
}
|
|
|
|
|
|
CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
|
|
ExprValueKind VK, CastKind K, Expr *Op,
|
|
const CXXCastPath *BasePath,
|
|
TypeSourceInfo *WrittenTy,
|
|
SourceLocation L, SourceLocation R) {
|
|
unsigned PathSize = (BasePath ? BasePath->size() : 0);
|
|
void *Buffer =
|
|
C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
|
|
CStyleCastExpr *E =
|
|
new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
|
|
if (PathSize) E->setCastPath(*BasePath);
|
|
return E;
|
|
}
|
|
|
|
CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
|
|
void *Buffer =
|
|
C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
|
|
return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
|
|
}
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "<<=".
|
|
const char *BinaryOperator::getOpcodeStr(Opcode Op) {
|
|
switch (Op) {
|
|
case BO_PtrMemD: return ".*";
|
|
case BO_PtrMemI: return "->*";
|
|
case BO_Mul: return "*";
|
|
case BO_Div: return "/";
|
|
case BO_Rem: return "%";
|
|
case BO_Add: return "+";
|
|
case BO_Sub: return "-";
|
|
case BO_Shl: return "<<";
|
|
case BO_Shr: return ">>";
|
|
case BO_LT: return "<";
|
|
case BO_GT: return ">";
|
|
case BO_LE: return "<=";
|
|
case BO_GE: return ">=";
|
|
case BO_EQ: return "==";
|
|
case BO_NE: return "!=";
|
|
case BO_And: return "&";
|
|
case BO_Xor: return "^";
|
|
case BO_Or: return "|";
|
|
case BO_LAnd: return "&&";
|
|
case BO_LOr: return "||";
|
|
case BO_Assign: return "=";
|
|
case BO_MulAssign: return "*=";
|
|
case BO_DivAssign: return "/=";
|
|
case BO_RemAssign: return "%=";
|
|
case BO_AddAssign: return "+=";
|
|
case BO_SubAssign: return "-=";
|
|
case BO_ShlAssign: return "<<=";
|
|
case BO_ShrAssign: return ">>=";
|
|
case BO_AndAssign: return "&=";
|
|
case BO_XorAssign: return "^=";
|
|
case BO_OrAssign: return "|=";
|
|
case BO_Comma: return ",";
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
BinaryOperatorKind
|
|
BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
|
|
switch (OO) {
|
|
default: assert(false && "Not an overloadable binary operator");
|
|
case OO_Plus: return BO_Add;
|
|
case OO_Minus: return BO_Sub;
|
|
case OO_Star: return BO_Mul;
|
|
case OO_Slash: return BO_Div;
|
|
case OO_Percent: return BO_Rem;
|
|
case OO_Caret: return BO_Xor;
|
|
case OO_Amp: return BO_And;
|
|
case OO_Pipe: return BO_Or;
|
|
case OO_Equal: return BO_Assign;
|
|
case OO_Less: return BO_LT;
|
|
case OO_Greater: return BO_GT;
|
|
case OO_PlusEqual: return BO_AddAssign;
|
|
case OO_MinusEqual: return BO_SubAssign;
|
|
case OO_StarEqual: return BO_MulAssign;
|
|
case OO_SlashEqual: return BO_DivAssign;
|
|
case OO_PercentEqual: return BO_RemAssign;
|
|
case OO_CaretEqual: return BO_XorAssign;
|
|
case OO_AmpEqual: return BO_AndAssign;
|
|
case OO_PipeEqual: return BO_OrAssign;
|
|
case OO_LessLess: return BO_Shl;
|
|
case OO_GreaterGreater: return BO_Shr;
|
|
case OO_LessLessEqual: return BO_ShlAssign;
|
|
case OO_GreaterGreaterEqual: return BO_ShrAssign;
|
|
case OO_EqualEqual: return BO_EQ;
|
|
case OO_ExclaimEqual: return BO_NE;
|
|
case OO_LessEqual: return BO_LE;
|
|
case OO_GreaterEqual: return BO_GE;
|
|
case OO_AmpAmp: return BO_LAnd;
|
|
case OO_PipePipe: return BO_LOr;
|
|
case OO_Comma: return BO_Comma;
|
|
case OO_ArrowStar: return BO_PtrMemI;
|
|
}
|
|
}
|
|
|
|
OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
|
|
static const OverloadedOperatorKind OverOps[] = {
|
|
/* .* Cannot be overloaded */OO_None, OO_ArrowStar,
|
|
OO_Star, OO_Slash, OO_Percent,
|
|
OO_Plus, OO_Minus,
|
|
OO_LessLess, OO_GreaterGreater,
|
|
OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
|
|
OO_EqualEqual, OO_ExclaimEqual,
|
|
OO_Amp,
|
|
OO_Caret,
|
|
OO_Pipe,
|
|
OO_AmpAmp,
|
|
OO_PipePipe,
|
|
OO_Equal, OO_StarEqual,
|
|
OO_SlashEqual, OO_PercentEqual,
|
|
OO_PlusEqual, OO_MinusEqual,
|
|
OO_LessLessEqual, OO_GreaterGreaterEqual,
|
|
OO_AmpEqual, OO_CaretEqual,
|
|
OO_PipeEqual,
|
|
OO_Comma
|
|
};
|
|
return OverOps[Opc];
|
|
}
|
|
|
|
InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
|
|
Expr **initExprs, unsigned numInits,
|
|
SourceLocation rbraceloc)
|
|
: Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
|
|
false),
|
|
InitExprs(C, numInits),
|
|
LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
|
|
HadArrayRangeDesignator(false)
|
|
{
|
|
for (unsigned I = 0; I != numInits; ++I) {
|
|
if (initExprs[I]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (initExprs[I]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (initExprs[I]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
}
|
|
|
|
InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
|
|
}
|
|
|
|
void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
|
|
if (NumInits > InitExprs.size())
|
|
InitExprs.reserve(C, NumInits);
|
|
}
|
|
|
|
void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
|
|
InitExprs.resize(C, NumInits, 0);
|
|
}
|
|
|
|
Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
|
|
if (Init >= InitExprs.size()) {
|
|
InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
|
|
InitExprs.back() = expr;
|
|
return 0;
|
|
}
|
|
|
|
Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
|
|
InitExprs[Init] = expr;
|
|
return Result;
|
|
}
|
|
|
|
void InitListExpr::setArrayFiller(Expr *filler) {
|
|
ArrayFillerOrUnionFieldInit = filler;
|
|
// Fill out any "holes" in the array due to designated initializers.
|
|
Expr **inits = getInits();
|
|
for (unsigned i = 0, e = getNumInits(); i != e; ++i)
|
|
if (inits[i] == 0)
|
|
inits[i] = filler;
|
|
}
|
|
|
|
SourceRange InitListExpr::getSourceRange() const {
|
|
if (SyntacticForm)
|
|
return SyntacticForm->getSourceRange();
|
|
SourceLocation Beg = LBraceLoc, End = RBraceLoc;
|
|
if (Beg.isInvalid()) {
|
|
// Find the first non-null initializer.
|
|
for (InitExprsTy::const_iterator I = InitExprs.begin(),
|
|
E = InitExprs.end();
|
|
I != E; ++I) {
|
|
if (Stmt *S = *I) {
|
|
Beg = S->getLocStart();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (End.isInvalid()) {
|
|
// Find the first non-null initializer from the end.
|
|
for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
|
|
E = InitExprs.rend();
|
|
I != E; ++I) {
|
|
if (Stmt *S = *I) {
|
|
End = S->getSourceRange().getEnd();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return SourceRange(Beg, End);
|
|
}
|
|
|
|
/// getFunctionType - Return the underlying function type for this block.
|
|
///
|
|
const FunctionType *BlockExpr::getFunctionType() const {
|
|
return getType()->getAs<BlockPointerType>()->
|
|
getPointeeType()->getAs<FunctionType>();
|
|
}
|
|
|
|
SourceLocation BlockExpr::getCaretLocation() const {
|
|
return TheBlock->getCaretLocation();
|
|
}
|
|
const Stmt *BlockExpr::getBody() const {
|
|
return TheBlock->getBody();
|
|
}
|
|
Stmt *BlockExpr::getBody() {
|
|
return TheBlock->getBody();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic Expression Routines
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isUnusedResultAWarning - Return true if this immediate expression should
|
|
/// be warned about if the result is unused. If so, fill in Loc and Ranges
|
|
/// with location to warn on and the source range[s] to report with the
|
|
/// warning.
|
|
bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
|
|
SourceRange &R2, ASTContext &Ctx) const {
|
|
// Don't warn if the expr is type dependent. The type could end up
|
|
// instantiating to void.
|
|
if (isTypeDependent())
|
|
return false;
|
|
|
|
switch (getStmtClass()) {
|
|
default:
|
|
if (getType()->isVoidType())
|
|
return false;
|
|
Loc = getExprLoc();
|
|
R1 = getSourceRange();
|
|
return true;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()->
|
|
isUnusedResultAWarning(Loc, R1, R2, Ctx);
|
|
case GenericSelectionExprClass:
|
|
return cast<GenericSelectionExpr>(this)->getResultExpr()->
|
|
isUnusedResultAWarning(Loc, R1, R2, Ctx);
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(this);
|
|
|
|
switch (UO->getOpcode()) {
|
|
default: break;
|
|
case UO_PostInc:
|
|
case UO_PostDec:
|
|
case UO_PreInc:
|
|
case UO_PreDec: // ++/--
|
|
return false; // Not a warning.
|
|
case UO_Deref:
|
|
// Dereferencing a volatile pointer is a side-effect.
|
|
if (Ctx.getCanonicalType(getType()).isVolatileQualified())
|
|
return false;
|
|
break;
|
|
case UO_Real:
|
|
case UO_Imag:
|
|
// accessing a piece of a volatile complex is a side-effect.
|
|
if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
|
|
.isVolatileQualified())
|
|
return false;
|
|
break;
|
|
case UO_Extension:
|
|
return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
|
|
}
|
|
Loc = UO->getOperatorLoc();
|
|
R1 = UO->getSubExpr()->getSourceRange();
|
|
return true;
|
|
}
|
|
case BinaryOperatorClass: {
|
|
const BinaryOperator *BO = cast<BinaryOperator>(this);
|
|
switch (BO->getOpcode()) {
|
|
default:
|
|
break;
|
|
// Consider the RHS of comma for side effects. LHS was checked by
|
|
// Sema::CheckCommaOperands.
|
|
case BO_Comma:
|
|
// ((foo = <blah>), 0) is an idiom for hiding the result (and
|
|
// lvalue-ness) of an assignment written in a macro.
|
|
if (IntegerLiteral *IE =
|
|
dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
|
|
if (IE->getValue() == 0)
|
|
return false;
|
|
return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
|
|
// Consider '||', '&&' to have side effects if the LHS or RHS does.
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
|
|
!BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
|
|
return false;
|
|
break;
|
|
}
|
|
if (BO->isAssignmentOp())
|
|
return false;
|
|
Loc = BO->getOperatorLoc();
|
|
R1 = BO->getLHS()->getSourceRange();
|
|
R2 = BO->getRHS()->getSourceRange();
|
|
return true;
|
|
}
|
|
case CompoundAssignOperatorClass:
|
|
case VAArgExprClass:
|
|
return false;
|
|
|
|
case ConditionalOperatorClass: {
|
|
// If only one of the LHS or RHS is a warning, the operator might
|
|
// be being used for control flow. Only warn if both the LHS and
|
|
// RHS are warnings.
|
|
const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
|
|
if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
|
|
return false;
|
|
if (!Exp->getLHS())
|
|
return true;
|
|
return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
|
|
}
|
|
|
|
case MemberExprClass:
|
|
// If the base pointer or element is to a volatile pointer/field, accessing
|
|
// it is a side effect.
|
|
if (Ctx.getCanonicalType(getType()).isVolatileQualified())
|
|
return false;
|
|
Loc = cast<MemberExpr>(this)->getMemberLoc();
|
|
R1 = SourceRange(Loc, Loc);
|
|
R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
|
|
return true;
|
|
|
|
case ArraySubscriptExprClass:
|
|
// If the base pointer or element is to a volatile pointer/field, accessing
|
|
// it is a side effect.
|
|
if (Ctx.getCanonicalType(getType()).isVolatileQualified())
|
|
return false;
|
|
Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
|
|
R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
|
|
R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
|
|
return true;
|
|
|
|
case CallExprClass:
|
|
case CXXOperatorCallExprClass:
|
|
case CXXMemberCallExprClass: {
|
|
// If this is a direct call, get the callee.
|
|
const CallExpr *CE = cast<CallExpr>(this);
|
|
if (const Decl *FD = CE->getCalleeDecl()) {
|
|
// If the callee has attribute pure, const, or warn_unused_result, warn
|
|
// about it. void foo() { strlen("bar"); } should warn.
|
|
//
|
|
// Note: If new cases are added here, DiagnoseUnusedExprResult should be
|
|
// updated to match for QoI.
|
|
if (FD->getAttr<WarnUnusedResultAttr>() ||
|
|
FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
|
|
Loc = CE->getCallee()->getLocStart();
|
|
R1 = CE->getCallee()->getSourceRange();
|
|
|
|
if (unsigned NumArgs = CE->getNumArgs())
|
|
R2 = SourceRange(CE->getArg(0)->getLocStart(),
|
|
CE->getArg(NumArgs-1)->getLocEnd());
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case CXXTemporaryObjectExprClass:
|
|
case CXXConstructExprClass:
|
|
return false;
|
|
|
|
case ObjCMessageExprClass: {
|
|
const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
|
|
const ObjCMethodDecl *MD = ME->getMethodDecl();
|
|
if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
|
|
Loc = getExprLoc();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case ObjCPropertyRefExprClass:
|
|
Loc = getExprLoc();
|
|
R1 = getSourceRange();
|
|
return true;
|
|
|
|
case StmtExprClass: {
|
|
// Statement exprs don't logically have side effects themselves, but are
|
|
// sometimes used in macros in ways that give them a type that is unused.
|
|
// For example ({ blah; foo(); }) will end up with a type if foo has a type.
|
|
// however, if the result of the stmt expr is dead, we don't want to emit a
|
|
// warning.
|
|
const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
|
|
if (!CS->body_empty()) {
|
|
if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
|
|
return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
|
|
if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
|
|
if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
|
|
return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
|
|
}
|
|
|
|
if (getType()->isVoidType())
|
|
return false;
|
|
Loc = cast<StmtExpr>(this)->getLParenLoc();
|
|
R1 = getSourceRange();
|
|
return true;
|
|
}
|
|
case CStyleCastExprClass:
|
|
// If this is an explicit cast to void, allow it. People do this when they
|
|
// think they know what they're doing :).
|
|
if (getType()->isVoidType())
|
|
return false;
|
|
Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
|
|
R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
|
|
return true;
|
|
case CXXFunctionalCastExprClass: {
|
|
if (getType()->isVoidType())
|
|
return false;
|
|
const CastExpr *CE = cast<CastExpr>(this);
|
|
|
|
// If this is a cast to void or a constructor conversion, check the operand.
|
|
// Otherwise, the result of the cast is unused.
|
|
if (CE->getCastKind() == CK_ToVoid ||
|
|
CE->getCastKind() == CK_ConstructorConversion)
|
|
return (cast<CastExpr>(this)->getSubExpr()
|
|
->isUnusedResultAWarning(Loc, R1, R2, Ctx));
|
|
Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
|
|
R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
case ImplicitCastExprClass:
|
|
// Check the operand, since implicit casts are inserted by Sema
|
|
return (cast<ImplicitCastExpr>(this)
|
|
->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
|
|
|
|
case CXXDefaultArgExprClass:
|
|
return (cast<CXXDefaultArgExpr>(this)
|
|
->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
|
|
|
|
case CXXNewExprClass:
|
|
// FIXME: In theory, there might be new expressions that don't have side
|
|
// effects (e.g. a placement new with an uninitialized POD).
|
|
case CXXDeleteExprClass:
|
|
return false;
|
|
case CXXBindTemporaryExprClass:
|
|
return (cast<CXXBindTemporaryExpr>(this)
|
|
->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
|
|
case ExprWithCleanupsClass:
|
|
return (cast<ExprWithCleanups>(this)
|
|
->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
|
|
}
|
|
}
|
|
|
|
/// isOBJCGCCandidate - Check if an expression is objc gc'able.
|
|
/// returns true, if it is; false otherwise.
|
|
bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
|
|
const Expr *E = IgnoreParens();
|
|
switch (E->getStmtClass()) {
|
|
default:
|
|
return false;
|
|
case ObjCIvarRefExprClass:
|
|
return true;
|
|
case Expr::UnaryOperatorClass:
|
|
return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
|
|
case ImplicitCastExprClass:
|
|
return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
|
|
case CStyleCastExprClass:
|
|
return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
|
|
case DeclRefExprClass: {
|
|
const Decl *D = cast<DeclRefExpr>(E)->getDecl();
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
if (VD->hasGlobalStorage())
|
|
return true;
|
|
QualType T = VD->getType();
|
|
// dereferencing to a pointer is always a gc'able candidate,
|
|
// unless it is __weak.
|
|
return T->isPointerType() &&
|
|
(Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
|
|
}
|
|
return false;
|
|
}
|
|
case MemberExprClass: {
|
|
const MemberExpr *M = cast<MemberExpr>(E);
|
|
return M->getBase()->isOBJCGCCandidate(Ctx);
|
|
}
|
|
case ArraySubscriptExprClass:
|
|
return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
|
|
}
|
|
}
|
|
|
|
bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
|
|
if (isTypeDependent())
|
|
return false;
|
|
return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
|
|
}
|
|
|
|
QualType Expr::findBoundMemberType(const Expr *expr) {
|
|
assert(expr->getType()->isSpecificPlaceholderType(BuiltinType::BoundMember));
|
|
|
|
// Bound member expressions are always one of these possibilities:
|
|
// x->m x.m x->*y x.*y
|
|
// (possibly parenthesized)
|
|
|
|
expr = expr->IgnoreParens();
|
|
if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
|
|
assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
|
|
return mem->getMemberDecl()->getType();
|
|
}
|
|
|
|
if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
|
|
QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
|
|
->getPointeeType();
|
|
assert(type->isFunctionType());
|
|
return type;
|
|
}
|
|
|
|
assert(isa<UnresolvedMemberExpr>(expr));
|
|
return QualType();
|
|
}
|
|
|
|
static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
|
|
Expr::CanThrowResult CT2) {
|
|
// CanThrowResult constants are ordered so that the maximum is the correct
|
|
// merge result.
|
|
return CT1 > CT2 ? CT1 : CT2;
|
|
}
|
|
|
|
static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
|
|
Expr *E = const_cast<Expr*>(CE);
|
|
Expr::CanThrowResult R = Expr::CT_Cannot;
|
|
for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
|
|
R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
|
|
}
|
|
return R;
|
|
}
|
|
|
|
static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Decl *D,
|
|
bool NullThrows = true) {
|
|
if (!D)
|
|
return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
|
|
|
|
// See if we can get a function type from the decl somehow.
|
|
const ValueDecl *VD = dyn_cast<ValueDecl>(D);
|
|
if (!VD) // If we have no clue what we're calling, assume the worst.
|
|
return Expr::CT_Can;
|
|
|
|
// As an extension, we assume that __attribute__((nothrow)) functions don't
|
|
// throw.
|
|
if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
|
|
return Expr::CT_Cannot;
|
|
|
|
QualType T = VD->getType();
|
|
const FunctionProtoType *FT;
|
|
if ((FT = T->getAs<FunctionProtoType>())) {
|
|
} else if (const PointerType *PT = T->getAs<PointerType>())
|
|
FT = PT->getPointeeType()->getAs<FunctionProtoType>();
|
|
else if (const ReferenceType *RT = T->getAs<ReferenceType>())
|
|
FT = RT->getPointeeType()->getAs<FunctionProtoType>();
|
|
else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
|
|
FT = MT->getPointeeType()->getAs<FunctionProtoType>();
|
|
else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
|
|
FT = BT->getPointeeType()->getAs<FunctionProtoType>();
|
|
|
|
if (!FT)
|
|
return Expr::CT_Can;
|
|
|
|
return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can;
|
|
}
|
|
|
|
static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
|
|
if (DC->isTypeDependent())
|
|
return Expr::CT_Dependent;
|
|
|
|
if (!DC->getTypeAsWritten()->isReferenceType())
|
|
return Expr::CT_Cannot;
|
|
|
|
return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
|
|
}
|
|
|
|
static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
|
|
const CXXTypeidExpr *DC) {
|
|
if (DC->isTypeOperand())
|
|
return Expr::CT_Cannot;
|
|
|
|
Expr *Op = DC->getExprOperand();
|
|
if (Op->isTypeDependent())
|
|
return Expr::CT_Dependent;
|
|
|
|
const RecordType *RT = Op->getType()->getAs<RecordType>();
|
|
if (!RT)
|
|
return Expr::CT_Cannot;
|
|
|
|
if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
|
|
return Expr::CT_Cannot;
|
|
|
|
if (Op->Classify(C).isPRValue())
|
|
return Expr::CT_Cannot;
|
|
|
|
return Expr::CT_Can;
|
|
}
|
|
|
|
Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
|
|
// C++ [expr.unary.noexcept]p3:
|
|
// [Can throw] if in a potentially-evaluated context the expression would
|
|
// contain:
|
|
switch (getStmtClass()) {
|
|
case CXXThrowExprClass:
|
|
// - a potentially evaluated throw-expression
|
|
return CT_Can;
|
|
|
|
case CXXDynamicCastExprClass: {
|
|
// - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
|
|
// where T is a reference type, that requires a run-time check
|
|
CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
return MergeCanThrow(CT, CanSubExprsThrow(C, this));
|
|
}
|
|
|
|
case CXXTypeidExprClass:
|
|
// - a potentially evaluated typeid expression applied to a glvalue
|
|
// expression whose type is a polymorphic class type
|
|
return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
|
|
|
|
// - a potentially evaluated call to a function, member function, function
|
|
// pointer, or member function pointer that does not have a non-throwing
|
|
// exception-specification
|
|
case CallExprClass:
|
|
case CXXOperatorCallExprClass:
|
|
case CXXMemberCallExprClass: {
|
|
CanThrowResult CT = CanCalleeThrow(C,cast<CallExpr>(this)->getCalleeDecl());
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
return MergeCanThrow(CT, CanSubExprsThrow(C, this));
|
|
}
|
|
|
|
case CXXConstructExprClass:
|
|
case CXXTemporaryObjectExprClass: {
|
|
CanThrowResult CT = CanCalleeThrow(C,
|
|
cast<CXXConstructExpr>(this)->getConstructor());
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
return MergeCanThrow(CT, CanSubExprsThrow(C, this));
|
|
}
|
|
|
|
case CXXNewExprClass: {
|
|
CanThrowResult CT = MergeCanThrow(
|
|
CanCalleeThrow(C, cast<CXXNewExpr>(this)->getOperatorNew()),
|
|
CanCalleeThrow(C, cast<CXXNewExpr>(this)->getConstructor(),
|
|
/*NullThrows*/false));
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
return MergeCanThrow(CT, CanSubExprsThrow(C, this));
|
|
}
|
|
|
|
case CXXDeleteExprClass: {
|
|
CanThrowResult CT = CanCalleeThrow(C,
|
|
cast<CXXDeleteExpr>(this)->getOperatorDelete());
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
const Expr *Arg = cast<CXXDeleteExpr>(this)->getArgument();
|
|
// Unwrap exactly one implicit cast, which converts all pointers to void*.
|
|
if (const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
|
|
Arg = Cast->getSubExpr();
|
|
if (const PointerType *PT = Arg->getType()->getAs<PointerType>()) {
|
|
if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>()) {
|
|
CanThrowResult CT2 = CanCalleeThrow(C,
|
|
cast<CXXRecordDecl>(RT->getDecl())->getDestructor());
|
|
if (CT2 == CT_Can)
|
|
return CT2;
|
|
CT = MergeCanThrow(CT, CT2);
|
|
}
|
|
}
|
|
return MergeCanThrow(CT, CanSubExprsThrow(C, this));
|
|
}
|
|
|
|
case CXXBindTemporaryExprClass: {
|
|
// The bound temporary has to be destroyed again, which might throw.
|
|
CanThrowResult CT = CanCalleeThrow(C,
|
|
cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
|
|
if (CT == CT_Can)
|
|
return CT;
|
|
return MergeCanThrow(CT, CanSubExprsThrow(C, this));
|
|
}
|
|
|
|
// ObjC message sends are like function calls, but never have exception
|
|
// specs.
|
|
case ObjCMessageExprClass:
|
|
case ObjCPropertyRefExprClass:
|
|
return CT_Can;
|
|
|
|
// Many other things have subexpressions, so we have to test those.
|
|
// Some are simple:
|
|
case ParenExprClass:
|
|
case MemberExprClass:
|
|
case CXXReinterpretCastExprClass:
|
|
case CXXConstCastExprClass:
|
|
case ConditionalOperatorClass:
|
|
case CompoundLiteralExprClass:
|
|
case ExtVectorElementExprClass:
|
|
case InitListExprClass:
|
|
case DesignatedInitExprClass:
|
|
case ParenListExprClass:
|
|
case VAArgExprClass:
|
|
case CXXDefaultArgExprClass:
|
|
case ExprWithCleanupsClass:
|
|
case ObjCIvarRefExprClass:
|
|
case ObjCIsaExprClass:
|
|
case ShuffleVectorExprClass:
|
|
return CanSubExprsThrow(C, this);
|
|
|
|
// Some might be dependent for other reasons.
|
|
case UnaryOperatorClass:
|
|
case ArraySubscriptExprClass:
|
|
case ImplicitCastExprClass:
|
|
case CStyleCastExprClass:
|
|
case CXXStaticCastExprClass:
|
|
case CXXFunctionalCastExprClass:
|
|
case BinaryOperatorClass:
|
|
case CompoundAssignOperatorClass: {
|
|
CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
|
|
return MergeCanThrow(CT, CanSubExprsThrow(C, this));
|
|
}
|
|
|
|
// FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
|
|
case StmtExprClass:
|
|
return CT_Can;
|
|
|
|
case ChooseExprClass:
|
|
if (isTypeDependent() || isValueDependent())
|
|
return CT_Dependent;
|
|
return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
|
|
|
|
case GenericSelectionExprClass:
|
|
if (cast<GenericSelectionExpr>(this)->isResultDependent())
|
|
return CT_Dependent;
|
|
return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C);
|
|
|
|
// Some expressions are always dependent.
|
|
case DependentScopeDeclRefExprClass:
|
|
case CXXUnresolvedConstructExprClass:
|
|
case CXXDependentScopeMemberExprClass:
|
|
return CT_Dependent;
|
|
|
|
default:
|
|
// All other expressions don't have subexpressions, or else they are
|
|
// unevaluated.
|
|
return CT_Cannot;
|
|
}
|
|
}
|
|
|
|
Expr* Expr::IgnoreParens() {
|
|
Expr* E = this;
|
|
while (true) {
|
|
if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
|
|
if (P->getOpcode() == UO_Extension) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
|
|
if (!P->isResultDependent()) {
|
|
E = P->getResultExpr();
|
|
continue;
|
|
}
|
|
}
|
|
return E;
|
|
}
|
|
}
|
|
|
|
/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
|
|
/// or CastExprs or ImplicitCastExprs, returning their operand.
|
|
Expr *Expr::IgnoreParenCasts() {
|
|
Expr *E = this;
|
|
while (true) {
|
|
if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
if (CastExpr *P = dyn_cast<CastExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
|
|
if (P->getOpcode() == UO_Extension) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
|
|
if (!P->isResultDependent()) {
|
|
E = P->getResultExpr();
|
|
continue;
|
|
}
|
|
}
|
|
return E;
|
|
}
|
|
}
|
|
|
|
/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
|
|
/// casts. This is intended purely as a temporary workaround for code
|
|
/// that hasn't yet been rewritten to do the right thing about those
|
|
/// casts, and may disappear along with the last internal use.
|
|
Expr *Expr::IgnoreParenLValueCasts() {
|
|
Expr *E = this;
|
|
while (true) {
|
|
if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
} else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
|
|
if (P->getCastKind() == CK_LValueToRValue) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
} else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
|
|
if (P->getOpcode() == UO_Extension) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
} else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
|
|
if (!P->isResultDependent()) {
|
|
E = P->getResultExpr();
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return E;
|
|
}
|
|
|
|
Expr *Expr::IgnoreParenImpCasts() {
|
|
Expr *E = this;
|
|
while (true) {
|
|
if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
|
|
if (P->getOpcode() == UO_Extension) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
|
|
if (!P->isResultDependent()) {
|
|
E = P->getResultExpr();
|
|
continue;
|
|
}
|
|
}
|
|
return E;
|
|
}
|
|
}
|
|
|
|
/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
|
|
/// value (including ptr->int casts of the same size). Strip off any
|
|
/// ParenExpr or CastExprs, returning their operand.
|
|
Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
|
|
Expr *E = this;
|
|
while (true) {
|
|
if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (CastExpr *P = dyn_cast<CastExpr>(E)) {
|
|
// We ignore integer <-> casts that are of the same width, ptr<->ptr and
|
|
// ptr<->int casts of the same width. We also ignore all identity casts.
|
|
Expr *SE = P->getSubExpr();
|
|
|
|
if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
|
|
E = SE;
|
|
continue;
|
|
}
|
|
|
|
if ((E->getType()->isPointerType() ||
|
|
E->getType()->isIntegralType(Ctx)) &&
|
|
(SE->getType()->isPointerType() ||
|
|
SE->getType()->isIntegralType(Ctx)) &&
|
|
Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
|
|
E = SE;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
|
|
if (P->getOpcode() == UO_Extension) {
|
|
E = P->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
|
|
if (!P->isResultDependent()) {
|
|
E = P->getResultExpr();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return E;
|
|
}
|
|
}
|
|
|
|
bool Expr::isDefaultArgument() const {
|
|
const Expr *E = this;
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
|
|
E = ICE->getSubExprAsWritten();
|
|
|
|
return isa<CXXDefaultArgExpr>(E);
|
|
}
|
|
|
|
/// \brief Skip over any no-op casts and any temporary-binding
|
|
/// expressions.
|
|
static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() == CK_NoOp)
|
|
E = ICE->getSubExpr();
|
|
else
|
|
break;
|
|
}
|
|
|
|
while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
|
|
E = BE->getSubExpr();
|
|
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() == CK_NoOp)
|
|
E = ICE->getSubExpr();
|
|
else
|
|
break;
|
|
}
|
|
|
|
return E->IgnoreParens();
|
|
}
|
|
|
|
/// isTemporaryObject - Determines if this expression produces a
|
|
/// temporary of the given class type.
|
|
bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
|
|
if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
|
|
return false;
|
|
|
|
const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
|
|
|
|
// Temporaries are by definition pr-values of class type.
|
|
if (!E->Classify(C).isPRValue()) {
|
|
// In this context, property reference is a message call and is pr-value.
|
|
if (!isa<ObjCPropertyRefExpr>(E))
|
|
return false;
|
|
}
|
|
|
|
// Black-list a few cases which yield pr-values of class type that don't
|
|
// refer to temporaries of that type:
|
|
|
|
// - implicit derived-to-base conversions
|
|
if (isa<ImplicitCastExpr>(E)) {
|
|
switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// - member expressions (all)
|
|
if (isa<MemberExpr>(E))
|
|
return false;
|
|
|
|
// - opaque values (all)
|
|
if (isa<OpaqueValueExpr>(E))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Expr::isImplicitCXXThis() const {
|
|
const Expr *E = this;
|
|
|
|
// Strip away parentheses and casts we don't care about.
|
|
while (true) {
|
|
if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
|
|
E = Paren->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() == CK_NoOp ||
|
|
ICE->getCastKind() == CK_LValueToRValue ||
|
|
ICE->getCastKind() == CK_DerivedToBase ||
|
|
ICE->getCastKind() == CK_UncheckedDerivedToBase) {
|
|
E = ICE->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
|
|
if (UnOp->getOpcode() == UO_Extension) {
|
|
E = UnOp->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
|
|
return This->isImplicit();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// hasAnyTypeDependentArguments - Determines if any of the expressions
|
|
/// in Exprs is type-dependent.
|
|
bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
|
|
for (unsigned I = 0; I < NumExprs; ++I)
|
|
if (Exprs[I]->isTypeDependent())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// hasAnyValueDependentArguments - Determines if any of the expressions
|
|
/// in Exprs is value-dependent.
|
|
bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
|
|
for (unsigned I = 0; I < NumExprs; ++I)
|
|
if (Exprs[I]->isValueDependent())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
|
|
// This function is attempting whether an expression is an initializer
|
|
// which can be evaluated at compile-time. isEvaluatable handles most
|
|
// of the cases, but it can't deal with some initializer-specific
|
|
// expressions, and it can't deal with aggregates; we deal with those here,
|
|
// and fall back to isEvaluatable for the other cases.
|
|
|
|
// If we ever capture reference-binding directly in the AST, we can
|
|
// kill the second parameter.
|
|
|
|
if (IsForRef) {
|
|
EvalResult Result;
|
|
return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
|
|
}
|
|
|
|
switch (getStmtClass()) {
|
|
default: break;
|
|
case StringLiteralClass:
|
|
case ObjCStringLiteralClass:
|
|
case ObjCEncodeExprClass:
|
|
return true;
|
|
case CXXTemporaryObjectExprClass:
|
|
case CXXConstructExprClass: {
|
|
const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
|
|
|
|
// Only if it's
|
|
// 1) an application of the trivial default constructor or
|
|
if (!CE->getConstructor()->isTrivial()) return false;
|
|
if (!CE->getNumArgs()) return true;
|
|
|
|
// 2) an elidable trivial copy construction of an operand which is
|
|
// itself a constant initializer. Note that we consider the
|
|
// operand on its own, *not* as a reference binding.
|
|
return CE->isElidable() &&
|
|
CE->getArg(0)->isConstantInitializer(Ctx, false);
|
|
}
|
|
case CompoundLiteralExprClass: {
|
|
// This handles gcc's extension that allows global initializers like
|
|
// "struct x {int x;} x = (struct x) {};".
|
|
// FIXME: This accepts other cases it shouldn't!
|
|
const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
|
|
return Exp->isConstantInitializer(Ctx, false);
|
|
}
|
|
case InitListExprClass: {
|
|
// FIXME: This doesn't deal with fields with reference types correctly.
|
|
// FIXME: This incorrectly allows pointers cast to integers to be assigned
|
|
// to bitfields.
|
|
const InitListExpr *Exp = cast<InitListExpr>(this);
|
|
unsigned numInits = Exp->getNumInits();
|
|
for (unsigned i = 0; i < numInits; i++) {
|
|
if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
case ImplicitValueInitExprClass:
|
|
return true;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()
|
|
->isConstantInitializer(Ctx, IsForRef);
|
|
case GenericSelectionExprClass:
|
|
if (cast<GenericSelectionExpr>(this)->isResultDependent())
|
|
return false;
|
|
return cast<GenericSelectionExpr>(this)->getResultExpr()
|
|
->isConstantInitializer(Ctx, IsForRef);
|
|
case ChooseExprClass:
|
|
return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
|
|
->isConstantInitializer(Ctx, IsForRef);
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator* Exp = cast<UnaryOperator>(this);
|
|
if (Exp->getOpcode() == UO_Extension)
|
|
return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
|
|
break;
|
|
}
|
|
case BinaryOperatorClass: {
|
|
// Special case &&foo - &&bar. It would be nice to generalize this somehow
|
|
// but this handles the common case.
|
|
const BinaryOperator *Exp = cast<BinaryOperator>(this);
|
|
if (Exp->getOpcode() == BO_Sub &&
|
|
isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
|
|
isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
|
|
return true;
|
|
break;
|
|
}
|
|
case CXXFunctionalCastExprClass:
|
|
case CXXStaticCastExprClass:
|
|
case ImplicitCastExprClass:
|
|
case CStyleCastExprClass:
|
|
// Handle casts with a destination that's a struct or union; this
|
|
// deals with both the gcc no-op struct cast extension and the
|
|
// cast-to-union extension.
|
|
if (getType()->isRecordType())
|
|
return cast<CastExpr>(this)->getSubExpr()
|
|
->isConstantInitializer(Ctx, false);
|
|
|
|
// Integer->integer casts can be handled here, which is important for
|
|
// things like (int)(&&x-&&y). Scary but true.
|
|
if (getType()->isIntegerType() &&
|
|
cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
|
|
return cast<CastExpr>(this)->getSubExpr()
|
|
->isConstantInitializer(Ctx, false);
|
|
|
|
break;
|
|
}
|
|
return isEvaluatable(Ctx);
|
|
}
|
|
|
|
/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
|
|
/// pointer constant or not, as well as the specific kind of constant detected.
|
|
/// Null pointer constants can be integer constant expressions with the
|
|
/// value zero, casts of zero to void*, nullptr (C++0X), or __null
|
|
/// (a GNU extension).
|
|
Expr::NullPointerConstantKind
|
|
Expr::isNullPointerConstant(ASTContext &Ctx,
|
|
NullPointerConstantValueDependence NPC) const {
|
|
if (isValueDependent()) {
|
|
switch (NPC) {
|
|
case NPC_NeverValueDependent:
|
|
assert(false && "Unexpected value dependent expression!");
|
|
// If the unthinkable happens, fall through to the safest alternative.
|
|
|
|
case NPC_ValueDependentIsNull:
|
|
if (isTypeDependent() || getType()->isIntegralType(Ctx))
|
|
return NPCK_ZeroInteger;
|
|
else
|
|
return NPCK_NotNull;
|
|
|
|
case NPC_ValueDependentIsNotNull:
|
|
return NPCK_NotNull;
|
|
}
|
|
}
|
|
|
|
// Strip off a cast to void*, if it exists. Except in C++.
|
|
if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
|
|
if (!Ctx.getLangOptions().CPlusPlus) {
|
|
// Check that it is a cast to void*.
|
|
if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
|
|
QualType Pointee = PT->getPointeeType();
|
|
if (!Pointee.hasQualifiers() &&
|
|
Pointee->isVoidType() && // to void*
|
|
CE->getSubExpr()->getType()->isIntegerType()) // from int.
|
|
return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
|
|
}
|
|
}
|
|
} else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
|
|
// Ignore the ImplicitCastExpr type entirely.
|
|
return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
|
|
// Accept ((void*)0) as a null pointer constant, as many other
|
|
// implementations do.
|
|
return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (const GenericSelectionExpr *GE =
|
|
dyn_cast<GenericSelectionExpr>(this)) {
|
|
return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (const CXXDefaultArgExpr *DefaultArg
|
|
= dyn_cast<CXXDefaultArgExpr>(this)) {
|
|
// See through default argument expressions
|
|
return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
|
|
} else if (isa<GNUNullExpr>(this)) {
|
|
// The GNU __null extension is always a null pointer constant.
|
|
return NPCK_GNUNull;
|
|
}
|
|
|
|
// C++0x nullptr_t is always a null pointer constant.
|
|
if (getType()->isNullPtrType())
|
|
return NPCK_CXX0X_nullptr;
|
|
|
|
if (const RecordType *UT = getType()->getAsUnionType())
|
|
if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
|
|
if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
|
|
const Expr *InitExpr = CLE->getInitializer();
|
|
if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
|
|
return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
|
|
}
|
|
// This expression must be an integer type.
|
|
if (!getType()->isIntegerType() ||
|
|
(Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
|
|
return NPCK_NotNull;
|
|
|
|
// If we have an integer constant expression, we need to *evaluate* it and
|
|
// test for the value 0.
|
|
llvm::APSInt Result;
|
|
bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0;
|
|
|
|
return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull);
|
|
}
|
|
|
|
/// \brief If this expression is an l-value for an Objective C
|
|
/// property, find the underlying property reference expression.
|
|
const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
|
|
const Expr *E = this;
|
|
while (true) {
|
|
assert((E->getValueKind() == VK_LValue &&
|
|
E->getObjectKind() == OK_ObjCProperty) &&
|
|
"expression is not a property reference");
|
|
E = E->IgnoreParenCasts();
|
|
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->getOpcode() == BO_Comma) {
|
|
E = BO->getRHS();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return cast<ObjCPropertyRefExpr>(E);
|
|
}
|
|
|
|
FieldDecl *Expr::getBitField() {
|
|
Expr *E = this->IgnoreParens();
|
|
|
|
while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() == CK_LValueToRValue ||
|
|
(ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
|
|
E = ICE->getSubExpr()->IgnoreParens();
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
|
|
if (Field->isBitField())
|
|
return Field;
|
|
|
|
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
|
|
if (Field->isBitField())
|
|
return Field;
|
|
|
|
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
|
|
if (BinOp->isAssignmentOp() && BinOp->getLHS())
|
|
return BinOp->getLHS()->getBitField();
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool Expr::refersToVectorElement() const {
|
|
const Expr *E = this->IgnoreParens();
|
|
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getValueKind() != VK_RValue &&
|
|
ICE->getCastKind() == CK_NoOp)
|
|
E = ICE->getSubExpr()->IgnoreParens();
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
|
|
return ASE->getBase()->getType()->isVectorType();
|
|
|
|
if (isa<ExtVectorElementExpr>(E))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isArrow - Return true if the base expression is a pointer to vector,
|
|
/// return false if the base expression is a vector.
|
|
bool ExtVectorElementExpr::isArrow() const {
|
|
return getBase()->getType()->isPointerType();
|
|
}
|
|
|
|
unsigned ExtVectorElementExpr::getNumElements() const {
|
|
if (const VectorType *VT = getType()->getAs<VectorType>())
|
|
return VT->getNumElements();
|
|
return 1;
|
|
}
|
|
|
|
/// containsDuplicateElements - Return true if any element access is repeated.
|
|
bool ExtVectorElementExpr::containsDuplicateElements() const {
|
|
// FIXME: Refactor this code to an accessor on the AST node which returns the
|
|
// "type" of component access, and share with code below and in Sema.
|
|
llvm::StringRef Comp = Accessor->getName();
|
|
|
|
// Halving swizzles do not contain duplicate elements.
|
|
if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
|
|
return false;
|
|
|
|
// Advance past s-char prefix on hex swizzles.
|
|
if (Comp[0] == 's' || Comp[0] == 'S')
|
|
Comp = Comp.substr(1);
|
|
|
|
for (unsigned i = 0, e = Comp.size(); i != e; ++i)
|
|
if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
|
|
void ExtVectorElementExpr::getEncodedElementAccess(
|
|
llvm::SmallVectorImpl<unsigned> &Elts) const {
|
|
llvm::StringRef Comp = Accessor->getName();
|
|
if (Comp[0] == 's' || Comp[0] == 'S')
|
|
Comp = Comp.substr(1);
|
|
|
|
bool isHi = Comp == "hi";
|
|
bool isLo = Comp == "lo";
|
|
bool isEven = Comp == "even";
|
|
bool isOdd = Comp == "odd";
|
|
|
|
for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
|
|
uint64_t Index;
|
|
|
|
if (isHi)
|
|
Index = e + i;
|
|
else if (isLo)
|
|
Index = i;
|
|
else if (isEven)
|
|
Index = 2 * i;
|
|
else if (isOdd)
|
|
Index = 2 * i + 1;
|
|
else
|
|
Index = ExtVectorType::getAccessorIdx(Comp[i]);
|
|
|
|
Elts.push_back(Index);
|
|
}
|
|
}
|
|
|
|
ObjCMessageExpr::ObjCMessageExpr(QualType T,
|
|
ExprValueKind VK,
|
|
SourceLocation LBracLoc,
|
|
SourceLocation SuperLoc,
|
|
bool IsInstanceSuper,
|
|
QualType SuperType,
|
|
Selector Sel,
|
|
SourceLocation SelLoc,
|
|
ObjCMethodDecl *Method,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RBracLoc)
|
|
: Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
|
|
/*TypeDependent=*/false, /*ValueDependent=*/false,
|
|
/*ContainsUnexpandedParameterPack=*/false),
|
|
NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
|
|
HasMethod(Method != 0), SuperLoc(SuperLoc),
|
|
SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
|
|
: Sel.getAsOpaquePtr())),
|
|
SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
|
|
{
|
|
setReceiverPointer(SuperType.getAsOpaquePtr());
|
|
if (NumArgs)
|
|
memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
|
|
}
|
|
|
|
ObjCMessageExpr::ObjCMessageExpr(QualType T,
|
|
ExprValueKind VK,
|
|
SourceLocation LBracLoc,
|
|
TypeSourceInfo *Receiver,
|
|
Selector Sel,
|
|
SourceLocation SelLoc,
|
|
ObjCMethodDecl *Method,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RBracLoc)
|
|
: Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
|
|
T->isDependentType(), T->containsUnexpandedParameterPack()),
|
|
NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
|
|
SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
|
|
: Sel.getAsOpaquePtr())),
|
|
SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
|
|
{
|
|
setReceiverPointer(Receiver);
|
|
Expr **MyArgs = getArgs();
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
if (Args[I]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (Args[I]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (Args[I]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
MyArgs[I] = Args[I];
|
|
}
|
|
}
|
|
|
|
ObjCMessageExpr::ObjCMessageExpr(QualType T,
|
|
ExprValueKind VK,
|
|
SourceLocation LBracLoc,
|
|
Expr *Receiver,
|
|
Selector Sel,
|
|
SourceLocation SelLoc,
|
|
ObjCMethodDecl *Method,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RBracLoc)
|
|
: Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
|
|
Receiver->isTypeDependent(),
|
|
Receiver->containsUnexpandedParameterPack()),
|
|
NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
|
|
SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
|
|
: Sel.getAsOpaquePtr())),
|
|
SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
|
|
{
|
|
setReceiverPointer(Receiver);
|
|
Expr **MyArgs = getArgs();
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
if (Args[I]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (Args[I]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (Args[I]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
MyArgs[I] = Args[I];
|
|
}
|
|
}
|
|
|
|
ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
|
|
ExprValueKind VK,
|
|
SourceLocation LBracLoc,
|
|
SourceLocation SuperLoc,
|
|
bool IsInstanceSuper,
|
|
QualType SuperType,
|
|
Selector Sel,
|
|
SourceLocation SelLoc,
|
|
ObjCMethodDecl *Method,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RBracLoc) {
|
|
unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
|
|
NumArgs * sizeof(Expr *);
|
|
void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
|
|
return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
|
|
SuperType, Sel, SelLoc, Method, Args,NumArgs,
|
|
RBracLoc);
|
|
}
|
|
|
|
ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
|
|
ExprValueKind VK,
|
|
SourceLocation LBracLoc,
|
|
TypeSourceInfo *Receiver,
|
|
Selector Sel,
|
|
SourceLocation SelLoc,
|
|
ObjCMethodDecl *Method,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RBracLoc) {
|
|
unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
|
|
NumArgs * sizeof(Expr *);
|
|
void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
|
|
return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
|
|
Method, Args, NumArgs, RBracLoc);
|
|
}
|
|
|
|
ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
|
|
ExprValueKind VK,
|
|
SourceLocation LBracLoc,
|
|
Expr *Receiver,
|
|
Selector Sel,
|
|
SourceLocation SelLoc,
|
|
ObjCMethodDecl *Method,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RBracLoc) {
|
|
unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
|
|
NumArgs * sizeof(Expr *);
|
|
void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
|
|
return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
|
|
Method, Args, NumArgs, RBracLoc);
|
|
}
|
|
|
|
ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
|
|
unsigned NumArgs) {
|
|
unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
|
|
NumArgs * sizeof(Expr *);
|
|
void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
|
|
return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
|
|
}
|
|
|
|
SourceRange ObjCMessageExpr::getReceiverRange() const {
|
|
switch (getReceiverKind()) {
|
|
case Instance:
|
|
return getInstanceReceiver()->getSourceRange();
|
|
|
|
case Class:
|
|
return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
|
|
|
|
case SuperInstance:
|
|
case SuperClass:
|
|
return getSuperLoc();
|
|
}
|
|
|
|
return SourceLocation();
|
|
}
|
|
|
|
Selector ObjCMessageExpr::getSelector() const {
|
|
if (HasMethod)
|
|
return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
|
|
->getSelector();
|
|
return Selector(SelectorOrMethod);
|
|
}
|
|
|
|
ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
|
|
switch (getReceiverKind()) {
|
|
case Instance:
|
|
if (const ObjCObjectPointerType *Ptr
|
|
= getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
|
|
return Ptr->getInterfaceDecl();
|
|
break;
|
|
|
|
case Class:
|
|
if (const ObjCObjectType *Ty
|
|
= getClassReceiver()->getAs<ObjCObjectType>())
|
|
return Ty->getInterface();
|
|
break;
|
|
|
|
case SuperInstance:
|
|
if (const ObjCObjectPointerType *Ptr
|
|
= getSuperType()->getAs<ObjCObjectPointerType>())
|
|
return Ptr->getInterfaceDecl();
|
|
break;
|
|
|
|
case SuperClass:
|
|
if (const ObjCObjectType *Iface
|
|
= getSuperType()->getAs<ObjCObjectType>())
|
|
return Iface->getInterface();
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
|
|
return getCond()->EvaluateAsInt(C) != 0;
|
|
}
|
|
|
|
ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
|
|
QualType Type, SourceLocation BLoc,
|
|
SourceLocation RP)
|
|
: Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
|
|
Type->isDependentType(), Type->isDependentType(),
|
|
Type->containsUnexpandedParameterPack()),
|
|
BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
|
|
{
|
|
SubExprs = new (C) Stmt*[nexpr];
|
|
for (unsigned i = 0; i < nexpr; i++) {
|
|
if (args[i]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (args[i]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (args[i]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
SubExprs[i] = args[i];
|
|
}
|
|
}
|
|
|
|
void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
|
|
unsigned NumExprs) {
|
|
if (SubExprs) C.Deallocate(SubExprs);
|
|
|
|
SubExprs = new (C) Stmt* [NumExprs];
|
|
this->NumExprs = NumExprs;
|
|
memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
|
|
}
|
|
|
|
GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
|
|
SourceLocation GenericLoc, Expr *ControllingExpr,
|
|
TypeSourceInfo **AssocTypes, Expr **AssocExprs,
|
|
unsigned NumAssocs, SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
bool ContainsUnexpandedParameterPack,
|
|
unsigned ResultIndex)
|
|
: Expr(GenericSelectionExprClass,
|
|
AssocExprs[ResultIndex]->getType(),
|
|
AssocExprs[ResultIndex]->getValueKind(),
|
|
AssocExprs[ResultIndex]->getObjectKind(),
|
|
AssocExprs[ResultIndex]->isTypeDependent(),
|
|
AssocExprs[ResultIndex]->isValueDependent(),
|
|
ContainsUnexpandedParameterPack),
|
|
AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
|
|
SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
|
|
ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
|
|
RParenLoc(RParenLoc) {
|
|
SubExprs[CONTROLLING] = ControllingExpr;
|
|
std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
|
|
std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
|
|
}
|
|
|
|
GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
|
|
SourceLocation GenericLoc, Expr *ControllingExpr,
|
|
TypeSourceInfo **AssocTypes, Expr **AssocExprs,
|
|
unsigned NumAssocs, SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
bool ContainsUnexpandedParameterPack)
|
|
: Expr(GenericSelectionExprClass,
|
|
Context.DependentTy,
|
|
VK_RValue,
|
|
OK_Ordinary,
|
|
/*isTypeDependent=*/ true,
|
|
/*isValueDependent=*/ true,
|
|
ContainsUnexpandedParameterPack),
|
|
AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
|
|
SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
|
|
ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
|
|
RParenLoc(RParenLoc) {
|
|
SubExprs[CONTROLLING] = ControllingExpr;
|
|
std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
|
|
std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DesignatedInitExpr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
|
|
assert(Kind == FieldDesignator && "Only valid on a field designator");
|
|
if (Field.NameOrField & 0x01)
|
|
return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
|
|
else
|
|
return getField()->getIdentifier();
|
|
}
|
|
|
|
DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
|
|
unsigned NumDesignators,
|
|
const Designator *Designators,
|
|
SourceLocation EqualOrColonLoc,
|
|
bool GNUSyntax,
|
|
Expr **IndexExprs,
|
|
unsigned NumIndexExprs,
|
|
Expr *Init)
|
|
: Expr(DesignatedInitExprClass, Ty,
|
|
Init->getValueKind(), Init->getObjectKind(),
|
|
Init->isTypeDependent(), Init->isValueDependent(),
|
|
Init->containsUnexpandedParameterPack()),
|
|
EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
|
|
NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
|
|
this->Designators = new (C) Designator[NumDesignators];
|
|
|
|
// Record the initializer itself.
|
|
child_range Child = children();
|
|
*Child++ = Init;
|
|
|
|
// Copy the designators and their subexpressions, computing
|
|
// value-dependence along the way.
|
|
unsigned IndexIdx = 0;
|
|
for (unsigned I = 0; I != NumDesignators; ++I) {
|
|
this->Designators[I] = Designators[I];
|
|
|
|
if (this->Designators[I].isArrayDesignator()) {
|
|
// Compute type- and value-dependence.
|
|
Expr *Index = IndexExprs[IndexIdx];
|
|
if (Index->isTypeDependent() || Index->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
|
|
// Propagate unexpanded parameter packs.
|
|
if (Index->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
// Copy the index expressions into permanent storage.
|
|
*Child++ = IndexExprs[IndexIdx++];
|
|
} else if (this->Designators[I].isArrayRangeDesignator()) {
|
|
// Compute type- and value-dependence.
|
|
Expr *Start = IndexExprs[IndexIdx];
|
|
Expr *End = IndexExprs[IndexIdx + 1];
|
|
if (Start->isTypeDependent() || Start->isValueDependent() ||
|
|
End->isTypeDependent() || End->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
|
|
// Propagate unexpanded parameter packs.
|
|
if (Start->containsUnexpandedParameterPack() ||
|
|
End->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
// Copy the start/end expressions into permanent storage.
|
|
*Child++ = IndexExprs[IndexIdx++];
|
|
*Child++ = IndexExprs[IndexIdx++];
|
|
}
|
|
}
|
|
|
|
assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
|
|
}
|
|
|
|
DesignatedInitExpr *
|
|
DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
|
|
unsigned NumDesignators,
|
|
Expr **IndexExprs, unsigned NumIndexExprs,
|
|
SourceLocation ColonOrEqualLoc,
|
|
bool UsesColonSyntax, Expr *Init) {
|
|
void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
|
|
sizeof(Stmt *) * (NumIndexExprs + 1), 8);
|
|
return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
|
|
ColonOrEqualLoc, UsesColonSyntax,
|
|
IndexExprs, NumIndexExprs, Init);
|
|
}
|
|
|
|
DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
|
|
unsigned NumIndexExprs) {
|
|
void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
|
|
sizeof(Stmt *) * (NumIndexExprs + 1), 8);
|
|
return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
|
|
}
|
|
|
|
void DesignatedInitExpr::setDesignators(ASTContext &C,
|
|
const Designator *Desigs,
|
|
unsigned NumDesigs) {
|
|
Designators = new (C) Designator[NumDesigs];
|
|
NumDesignators = NumDesigs;
|
|
for (unsigned I = 0; I != NumDesigs; ++I)
|
|
Designators[I] = Desigs[I];
|
|
}
|
|
|
|
SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
|
|
DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
|
|
if (size() == 1)
|
|
return DIE->getDesignator(0)->getSourceRange();
|
|
return SourceRange(DIE->getDesignator(0)->getStartLocation(),
|
|
DIE->getDesignator(size()-1)->getEndLocation());
|
|
}
|
|
|
|
SourceRange DesignatedInitExpr::getSourceRange() const {
|
|
SourceLocation StartLoc;
|
|
Designator &First =
|
|
*const_cast<DesignatedInitExpr*>(this)->designators_begin();
|
|
if (First.isFieldDesignator()) {
|
|
if (GNUSyntax)
|
|
StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
|
|
else
|
|
StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
|
|
} else
|
|
StartLoc =
|
|
SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
|
|
return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
|
|
}
|
|
|
|
Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
|
|
assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
|
|
char* Ptr = static_cast<char*>(static_cast<void *>(this));
|
|
Ptr += sizeof(DesignatedInitExpr);
|
|
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
|
|
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
|
|
}
|
|
|
|
Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
|
|
assert(D.Kind == Designator::ArrayRangeDesignator &&
|
|
"Requires array range designator");
|
|
char* Ptr = static_cast<char*>(static_cast<void *>(this));
|
|
Ptr += sizeof(DesignatedInitExpr);
|
|
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
|
|
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
|
|
}
|
|
|
|
Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
|
|
assert(D.Kind == Designator::ArrayRangeDesignator &&
|
|
"Requires array range designator");
|
|
char* Ptr = static_cast<char*>(static_cast<void *>(this));
|
|
Ptr += sizeof(DesignatedInitExpr);
|
|
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
|
|
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
|
|
}
|
|
|
|
/// \brief Replaces the designator at index @p Idx with the series
|
|
/// of designators in [First, Last).
|
|
void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
|
|
const Designator *First,
|
|
const Designator *Last) {
|
|
unsigned NumNewDesignators = Last - First;
|
|
if (NumNewDesignators == 0) {
|
|
std::copy_backward(Designators + Idx + 1,
|
|
Designators + NumDesignators,
|
|
Designators + Idx);
|
|
--NumNewDesignators;
|
|
return;
|
|
} else if (NumNewDesignators == 1) {
|
|
Designators[Idx] = *First;
|
|
return;
|
|
}
|
|
|
|
Designator *NewDesignators
|
|
= new (C) Designator[NumDesignators - 1 + NumNewDesignators];
|
|
std::copy(Designators, Designators + Idx, NewDesignators);
|
|
std::copy(First, Last, NewDesignators + Idx);
|
|
std::copy(Designators + Idx + 1, Designators + NumDesignators,
|
|
NewDesignators + Idx + NumNewDesignators);
|
|
Designators = NewDesignators;
|
|
NumDesignators = NumDesignators - 1 + NumNewDesignators;
|
|
}
|
|
|
|
ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
|
|
Expr **exprs, unsigned nexprs,
|
|
SourceLocation rparenloc)
|
|
: Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
|
|
false, false, false),
|
|
NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
|
|
|
|
Exprs = new (C) Stmt*[nexprs];
|
|
for (unsigned i = 0; i != nexprs; ++i) {
|
|
if (exprs[i]->isTypeDependent())
|
|
ExprBits.TypeDependent = true;
|
|
if (exprs[i]->isValueDependent())
|
|
ExprBits.ValueDependent = true;
|
|
if (exprs[i]->containsUnexpandedParameterPack())
|
|
ExprBits.ContainsUnexpandedParameterPack = true;
|
|
|
|
Exprs[i] = exprs[i];
|
|
}
|
|
}
|
|
|
|
const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
|
|
if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
|
|
e = ewc->getSubExpr();
|
|
e = cast<CXXConstructExpr>(e)->getArg(0);
|
|
while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
|
|
e = ice->getSubExpr();
|
|
return cast<OpaqueValueExpr>(e);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExprIterator.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
|
|
Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
|
|
Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
|
|
const Expr* ConstExprIterator::operator[](size_t idx) const {
|
|
return cast<Expr>(I[idx]);
|
|
}
|
|
const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
|
|
const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Child Iterators for iterating over subexpressions/substatements
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// UnaryExprOrTypeTraitExpr
|
|
Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
|
|
// If this is of a type and the type is a VLA type (and not a typedef), the
|
|
// size expression of the VLA needs to be treated as an executable expression.
|
|
// Why isn't this weirdness documented better in StmtIterator?
|
|
if (isArgumentType()) {
|
|
if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
|
|
getArgumentType().getTypePtr()))
|
|
return child_range(child_iterator(T), child_iterator());
|
|
return child_range();
|
|
}
|
|
return child_range(&Argument.Ex, &Argument.Ex + 1);
|
|
}
|
|
|
|
// ObjCMessageExpr
|
|
Stmt::child_range ObjCMessageExpr::children() {
|
|
Stmt **begin;
|
|
if (getReceiverKind() == Instance)
|
|
begin = reinterpret_cast<Stmt **>(this + 1);
|
|
else
|
|
begin = reinterpret_cast<Stmt **>(getArgs());
|
|
return child_range(begin,
|
|
reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
|
|
}
|
|
|
|
// Blocks
|
|
BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
|
|
SourceLocation l, bool ByRef,
|
|
bool constAdded)
|
|
: Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false,
|
|
d->isParameterPack()),
|
|
D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
|
|
{
|
|
bool TypeDependent = false;
|
|
bool ValueDependent = false;
|
|
computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent);
|
|
ExprBits.TypeDependent = TypeDependent;
|
|
ExprBits.ValueDependent = ValueDependent;
|
|
}
|
|
|