forked from OSchip/llvm-project
1168 lines
44 KiB
C++
1168 lines
44 KiB
C++
//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Expr nodes with complex types as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include <algorithm>
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Complex Expression Emitter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
|
|
|
|
/// Return the complex type that we are meant to emit.
|
|
static const ComplexType *getComplexType(QualType type) {
|
|
type = type.getCanonicalType();
|
|
if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
|
|
return comp;
|
|
} else {
|
|
return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
class ComplexExprEmitter
|
|
: public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
|
|
CodeGenFunction &CGF;
|
|
CGBuilderTy &Builder;
|
|
bool IgnoreReal;
|
|
bool IgnoreImag;
|
|
public:
|
|
ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
|
|
: CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
|
|
}
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
bool TestAndClearIgnoreReal() {
|
|
bool I = IgnoreReal;
|
|
IgnoreReal = false;
|
|
return I;
|
|
}
|
|
bool TestAndClearIgnoreImag() {
|
|
bool I = IgnoreImag;
|
|
IgnoreImag = false;
|
|
return I;
|
|
}
|
|
|
|
/// EmitLoadOfLValue - Given an expression with complex type that represents a
|
|
/// value l-value, this method emits the address of the l-value, then loads
|
|
/// and returns the result.
|
|
ComplexPairTy EmitLoadOfLValue(const Expr *E) {
|
|
return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
|
|
}
|
|
|
|
ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
|
|
|
|
/// EmitStoreOfComplex - Store the specified real/imag parts into the
|
|
/// specified value pointer.
|
|
void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
|
|
|
|
/// Emit a cast from complex value Val to DestType.
|
|
ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
|
|
QualType DestType, SourceLocation Loc);
|
|
/// Emit a cast from scalar value Val to DestType.
|
|
ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
|
|
QualType DestType, SourceLocation Loc);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
ComplexPairTy Visit(Expr *E) {
|
|
ApplyDebugLocation DL(CGF, E);
|
|
return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
|
|
}
|
|
|
|
ComplexPairTy VisitStmt(Stmt *S) {
|
|
S->dump(CGF.getContext().getSourceManager());
|
|
llvm_unreachable("Stmt can't have complex result type!");
|
|
}
|
|
ComplexPairTy VisitExpr(Expr *S);
|
|
ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
|
|
ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
|
|
return Visit(GE->getResultExpr());
|
|
}
|
|
ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
|
|
ComplexPairTy
|
|
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
|
|
return Visit(PE->getReplacement());
|
|
}
|
|
ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
|
|
return CGF.EmitCoawaitExpr(*S).getComplexVal();
|
|
}
|
|
ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
|
|
return CGF.EmitCoyieldExpr(*S).getComplexVal();
|
|
}
|
|
ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
|
|
ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
|
|
Expr *E) {
|
|
assert(Constant && "not a constant");
|
|
if (Constant.isReference())
|
|
return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
|
|
E->getExprLoc());
|
|
|
|
llvm::Constant *pair = Constant.getValue();
|
|
return ComplexPairTy(pair->getAggregateElement(0U),
|
|
pair->getAggregateElement(1U));
|
|
}
|
|
|
|
// l-values.
|
|
ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
|
|
if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
|
|
return emitConstant(Constant, E);
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
|
|
return CGF.EmitObjCMessageExpr(E).getComplexVal();
|
|
}
|
|
ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
|
|
ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
|
|
if (CodeGenFunction::ConstantEmission Constant =
|
|
CGF.tryEmitAsConstant(ME)) {
|
|
CGF.EmitIgnoredExpr(ME->getBase());
|
|
return emitConstant(Constant, ME);
|
|
}
|
|
return EmitLoadOfLValue(ME);
|
|
}
|
|
ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
|
|
if (E->isGLValue())
|
|
return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
|
|
E->getExprLoc());
|
|
return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
|
|
}
|
|
|
|
ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
|
|
return CGF.EmitPseudoObjectRValue(E).getComplexVal();
|
|
}
|
|
|
|
// FIXME: CompoundLiteralExpr
|
|
|
|
ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
|
|
ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
|
|
// Unlike for scalars, we don't have to worry about function->ptr demotion
|
|
// here.
|
|
return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
|
|
}
|
|
ComplexPairTy VisitCastExpr(CastExpr *E) {
|
|
if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
|
|
CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
|
|
return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
|
|
}
|
|
ComplexPairTy VisitCallExpr(const CallExpr *E);
|
|
ComplexPairTy VisitStmtExpr(const StmtExpr *E);
|
|
|
|
// Operators.
|
|
ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
|
|
bool isInc, bool isPre) {
|
|
LValue LV = CGF.EmitLValue(E->getSubExpr());
|
|
return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
|
|
}
|
|
ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
|
|
return VisitPrePostIncDec(E, false, false);
|
|
}
|
|
ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
|
|
return VisitPrePostIncDec(E, true, false);
|
|
}
|
|
ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
|
|
return VisitPrePostIncDec(E, false, true);
|
|
}
|
|
ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
|
|
return VisitPrePostIncDec(E, true, true);
|
|
}
|
|
ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
|
|
ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
|
|
TestAndClearIgnoreReal();
|
|
TestAndClearIgnoreImag();
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
|
|
ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
|
|
// LNot,Real,Imag never return complex.
|
|
ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
|
|
CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
|
|
return Visit(DAE->getExpr());
|
|
}
|
|
ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
|
|
CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
|
|
return Visit(DIE->getExpr());
|
|
}
|
|
ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
|
|
CGF.enterFullExpression(E);
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
ComplexPairTy Vals = Visit(E->getSubExpr());
|
|
// Defend against dominance problems caused by jumps out of expression
|
|
// evaluation through the shared cleanup block.
|
|
Scope.ForceCleanup({&Vals.first, &Vals.second});
|
|
return Vals;
|
|
}
|
|
ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
|
|
assert(E->getType()->isAnyComplexType() && "Expected complex type!");
|
|
QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
|
|
llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
|
|
return ComplexPairTy(Null, Null);
|
|
}
|
|
ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
|
|
assert(E->getType()->isAnyComplexType() && "Expected complex type!");
|
|
QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
|
|
llvm::Constant *Null =
|
|
llvm::Constant::getNullValue(CGF.ConvertType(Elem));
|
|
return ComplexPairTy(Null, Null);
|
|
}
|
|
|
|
struct BinOpInfo {
|
|
ComplexPairTy LHS;
|
|
ComplexPairTy RHS;
|
|
QualType Ty; // Computation Type.
|
|
};
|
|
|
|
BinOpInfo EmitBinOps(const BinaryOperator *E);
|
|
LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
|
|
ComplexPairTy (ComplexExprEmitter::*Func)
|
|
(const BinOpInfo &),
|
|
RValue &Val);
|
|
ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
|
|
ComplexPairTy (ComplexExprEmitter::*Func)
|
|
(const BinOpInfo &));
|
|
|
|
ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
|
|
ComplexPairTy EmitBinSub(const BinOpInfo &Op);
|
|
ComplexPairTy EmitBinMul(const BinOpInfo &Op);
|
|
ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
|
|
|
|
ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
|
|
const BinOpInfo &Op);
|
|
|
|
ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
|
|
return EmitBinAdd(EmitBinOps(E));
|
|
}
|
|
ComplexPairTy VisitBinSub(const BinaryOperator *E) {
|
|
return EmitBinSub(EmitBinOps(E));
|
|
}
|
|
ComplexPairTy VisitBinMul(const BinaryOperator *E) {
|
|
return EmitBinMul(EmitBinOps(E));
|
|
}
|
|
ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
|
|
return EmitBinDiv(EmitBinOps(E));
|
|
}
|
|
|
|
// Compound assignments.
|
|
ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
|
|
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
|
|
}
|
|
ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
|
|
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
|
|
}
|
|
ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
|
|
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
|
|
}
|
|
ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
|
|
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
|
|
}
|
|
|
|
// GCC rejects rem/and/or/xor for integer complex.
|
|
// Logical and/or always return int, never complex.
|
|
|
|
// No comparisons produce a complex result.
|
|
|
|
LValue EmitBinAssignLValue(const BinaryOperator *E,
|
|
ComplexPairTy &Val);
|
|
ComplexPairTy VisitBinAssign (const BinaryOperator *E);
|
|
ComplexPairTy VisitBinComma (const BinaryOperator *E);
|
|
|
|
|
|
ComplexPairTy
|
|
VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
|
|
ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
|
|
|
|
ComplexPairTy VisitInitListExpr(InitListExpr *E);
|
|
|
|
ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
return EmitLoadOfLValue(E);
|
|
}
|
|
|
|
ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
|
|
|
|
ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
|
|
return CGF.EmitAtomicExpr(E).getComplexVal();
|
|
}
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
|
|
QualType complexType) {
|
|
return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
|
|
}
|
|
|
|
Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
|
|
QualType complexType) {
|
|
return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
|
|
}
|
|
|
|
/// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
|
|
/// load the real and imaginary pieces, returning them as Real/Imag.
|
|
ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
|
|
SourceLocation loc) {
|
|
assert(lvalue.isSimple() && "non-simple complex l-value?");
|
|
if (lvalue.getType()->isAtomicType())
|
|
return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
|
|
|
|
Address SrcPtr = lvalue.getAddress();
|
|
bool isVolatile = lvalue.isVolatileQualified();
|
|
|
|
llvm::Value *Real = nullptr, *Imag = nullptr;
|
|
|
|
if (!IgnoreReal || isVolatile) {
|
|
Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
|
|
Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
|
|
}
|
|
|
|
if (!IgnoreImag || isVolatile) {
|
|
Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
|
|
Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
|
|
}
|
|
|
|
return ComplexPairTy(Real, Imag);
|
|
}
|
|
|
|
/// EmitStoreOfComplex - Store the specified real/imag parts into the
|
|
/// specified value pointer.
|
|
void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
|
|
bool isInit) {
|
|
if (lvalue.getType()->isAtomicType() ||
|
|
(!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
|
|
return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
|
|
|
|
Address Ptr = lvalue.getAddress();
|
|
Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
|
|
Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
|
|
|
|
Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
|
|
Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
|
|
CGF.ErrorUnsupported(E, "complex expression");
|
|
llvm::Type *EltTy =
|
|
CGF.ConvertType(getComplexType(E->getType())->getElementType());
|
|
llvm::Value *U = llvm::UndefValue::get(EltTy);
|
|
return ComplexPairTy(U, U);
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::
|
|
VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
|
|
llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
|
|
return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
|
|
}
|
|
|
|
|
|
ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
|
|
if (E->getCallReturnType(CGF.getContext())->isReferenceType())
|
|
return EmitLoadOfLValue(E);
|
|
|
|
return CGF.EmitCallExpr(E).getComplexVal();
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
|
|
CodeGenFunction::StmtExprEvaluation eval(CGF);
|
|
Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
|
|
assert(RetAlloca.isValid() && "Expected complex return value");
|
|
return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
|
|
E->getExprLoc());
|
|
}
|
|
|
|
/// Emit a cast from complex value Val to DestType.
|
|
ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
|
|
QualType SrcType,
|
|
QualType DestType,
|
|
SourceLocation Loc) {
|
|
// Get the src/dest element type.
|
|
SrcType = SrcType->castAs<ComplexType>()->getElementType();
|
|
DestType = DestType->castAs<ComplexType>()->getElementType();
|
|
|
|
// C99 6.3.1.6: When a value of complex type is converted to another
|
|
// complex type, both the real and imaginary parts follow the conversion
|
|
// rules for the corresponding real types.
|
|
Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
|
|
Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
|
|
return Val;
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
|
|
QualType SrcType,
|
|
QualType DestType,
|
|
SourceLocation Loc) {
|
|
// Convert the input element to the element type of the complex.
|
|
DestType = DestType->castAs<ComplexType>()->getElementType();
|
|
Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
|
|
|
|
// Return (realval, 0).
|
|
return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
|
|
QualType DestTy) {
|
|
switch (CK) {
|
|
case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
|
|
|
|
// Atomic to non-atomic casts may be more than a no-op for some platforms and
|
|
// for some types.
|
|
case CK_AtomicToNonAtomic:
|
|
case CK_NonAtomicToAtomic:
|
|
case CK_NoOp:
|
|
case CK_LValueToRValue:
|
|
case CK_UserDefinedConversion:
|
|
return Visit(Op);
|
|
|
|
case CK_LValueBitCast: {
|
|
LValue origLV = CGF.EmitLValue(Op);
|
|
Address V = origLV.getAddress();
|
|
V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
|
|
return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
|
|
}
|
|
|
|
case CK_LValueToRValueBitCast: {
|
|
LValue SourceLVal = CGF.EmitLValue(Op);
|
|
Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(),
|
|
CGF.ConvertTypeForMem(DestTy));
|
|
LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
|
|
DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
|
|
return EmitLoadOfLValue(DestLV, Op->getExprLoc());
|
|
}
|
|
|
|
case CK_BitCast:
|
|
case CK_BaseToDerived:
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_Dynamic:
|
|
case CK_ToUnion:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_FunctionToPointerDecay:
|
|
case CK_NullToPointer:
|
|
case CK_NullToMemberPointer:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_DerivedToBaseMemberPointer:
|
|
case CK_MemberPointerToBoolean:
|
|
case CK_ReinterpretMemberPointer:
|
|
case CK_ConstructorConversion:
|
|
case CK_IntegralToPointer:
|
|
case CK_PointerToIntegral:
|
|
case CK_PointerToBoolean:
|
|
case CK_ToVoid:
|
|
case CK_VectorSplat:
|
|
case CK_IntegralCast:
|
|
case CK_BooleanToSignedIntegral:
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingCast:
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_ObjCObjectLValueCast:
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_IntegralComplexToReal:
|
|
case CK_IntegralComplexToBoolean:
|
|
case CK_ARCProduceObject:
|
|
case CK_ARCConsumeObject:
|
|
case CK_ARCReclaimReturnedObject:
|
|
case CK_ARCExtendBlockObject:
|
|
case CK_CopyAndAutoreleaseBlockObject:
|
|
case CK_BuiltinFnToFnPtr:
|
|
case CK_ZeroToOCLOpaqueType:
|
|
case CK_AddressSpaceConversion:
|
|
case CK_IntToOCLSampler:
|
|
case CK_FixedPointCast:
|
|
case CK_FixedPointToBoolean:
|
|
case CK_FixedPointToIntegral:
|
|
case CK_IntegralToFixedPoint:
|
|
llvm_unreachable("invalid cast kind for complex value");
|
|
|
|
case CK_FloatingRealToComplex:
|
|
case CK_IntegralRealToComplex:
|
|
return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
|
|
DestTy, Op->getExprLoc());
|
|
|
|
case CK_FloatingComplexCast:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_IntegralComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
|
|
Op->getExprLoc());
|
|
}
|
|
|
|
llvm_unreachable("unknown cast resulting in complex value");
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
|
|
TestAndClearIgnoreReal();
|
|
TestAndClearIgnoreImag();
|
|
ComplexPairTy Op = Visit(E->getSubExpr());
|
|
|
|
llvm::Value *ResR, *ResI;
|
|
if (Op.first->getType()->isFloatingPointTy()) {
|
|
ResR = Builder.CreateFNeg(Op.first, "neg.r");
|
|
ResI = Builder.CreateFNeg(Op.second, "neg.i");
|
|
} else {
|
|
ResR = Builder.CreateNeg(Op.first, "neg.r");
|
|
ResI = Builder.CreateNeg(Op.second, "neg.i");
|
|
}
|
|
return ComplexPairTy(ResR, ResI);
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
|
|
TestAndClearIgnoreReal();
|
|
TestAndClearIgnoreImag();
|
|
// ~(a+ib) = a + i*-b
|
|
ComplexPairTy Op = Visit(E->getSubExpr());
|
|
llvm::Value *ResI;
|
|
if (Op.second->getType()->isFloatingPointTy())
|
|
ResI = Builder.CreateFNeg(Op.second, "conj.i");
|
|
else
|
|
ResI = Builder.CreateNeg(Op.second, "conj.i");
|
|
|
|
return ComplexPairTy(Op.first, ResI);
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
|
|
llvm::Value *ResR, *ResI;
|
|
|
|
if (Op.LHS.first->getType()->isFloatingPointTy()) {
|
|
ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
|
|
if (Op.LHS.second && Op.RHS.second)
|
|
ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
|
|
else
|
|
ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
|
|
assert(ResI && "Only one operand may be real!");
|
|
} else {
|
|
ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
|
|
assert(Op.LHS.second && Op.RHS.second &&
|
|
"Both operands of integer complex operators must be complex!");
|
|
ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
|
|
}
|
|
return ComplexPairTy(ResR, ResI);
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
|
|
llvm::Value *ResR, *ResI;
|
|
if (Op.LHS.first->getType()->isFloatingPointTy()) {
|
|
ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
|
|
if (Op.LHS.second && Op.RHS.second)
|
|
ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
|
|
else
|
|
ResI = Op.LHS.second ? Op.LHS.second
|
|
: Builder.CreateFNeg(Op.RHS.second, "sub.i");
|
|
assert(ResI && "Only one operand may be real!");
|
|
} else {
|
|
ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
|
|
assert(Op.LHS.second && Op.RHS.second &&
|
|
"Both operands of integer complex operators must be complex!");
|
|
ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
|
|
}
|
|
return ComplexPairTy(ResR, ResI);
|
|
}
|
|
|
|
/// Emit a libcall for a binary operation on complex types.
|
|
ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
|
|
const BinOpInfo &Op) {
|
|
CallArgList Args;
|
|
Args.add(RValue::get(Op.LHS.first),
|
|
Op.Ty->castAs<ComplexType>()->getElementType());
|
|
Args.add(RValue::get(Op.LHS.second),
|
|
Op.Ty->castAs<ComplexType>()->getElementType());
|
|
Args.add(RValue::get(Op.RHS.first),
|
|
Op.Ty->castAs<ComplexType>()->getElementType());
|
|
Args.add(RValue::get(Op.RHS.second),
|
|
Op.Ty->castAs<ComplexType>()->getElementType());
|
|
|
|
// We *must* use the full CG function call building logic here because the
|
|
// complex type has special ABI handling. We also should not forget about
|
|
// special calling convention which may be used for compiler builtins.
|
|
|
|
// We create a function qualified type to state that this call does not have
|
|
// any exceptions.
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI = EPI.withExceptionSpec(
|
|
FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
|
|
SmallVector<QualType, 4> ArgsQTys(
|
|
4, Op.Ty->castAs<ComplexType>()->getElementType());
|
|
QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
|
|
const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
|
|
Args, cast<FunctionType>(FQTy.getTypePtr()), false);
|
|
|
|
llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
|
|
llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
|
|
FTy, LibCallName, llvm::AttributeList(), true);
|
|
CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
|
|
|
|
llvm::CallBase *Call;
|
|
RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
|
|
Call->setCallingConv(CGF.CGM.getRuntimeCC());
|
|
return Res.getComplexVal();
|
|
}
|
|
|
|
/// Lookup the libcall name for a given floating point type complex
|
|
/// multiply.
|
|
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
default:
|
|
llvm_unreachable("Unsupported floating point type!");
|
|
case llvm::Type::HalfTyID:
|
|
return "__mulhc3";
|
|
case llvm::Type::FloatTyID:
|
|
return "__mulsc3";
|
|
case llvm::Type::DoubleTyID:
|
|
return "__muldc3";
|
|
case llvm::Type::PPC_FP128TyID:
|
|
return "__multc3";
|
|
case llvm::Type::X86_FP80TyID:
|
|
return "__mulxc3";
|
|
case llvm::Type::FP128TyID:
|
|
return "__multc3";
|
|
}
|
|
}
|
|
|
|
// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
|
|
// typed values.
|
|
ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
|
|
using llvm::Value;
|
|
Value *ResR, *ResI;
|
|
llvm::MDBuilder MDHelper(CGF.getLLVMContext());
|
|
|
|
if (Op.LHS.first->getType()->isFloatingPointTy()) {
|
|
// The general formulation is:
|
|
// (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
|
|
//
|
|
// But we can fold away components which would be zero due to a real
|
|
// operand according to C11 Annex G.5.1p2.
|
|
// FIXME: C11 also provides for imaginary types which would allow folding
|
|
// still more of this within the type system.
|
|
|
|
if (Op.LHS.second && Op.RHS.second) {
|
|
// If both operands are complex, emit the core math directly, and then
|
|
// test for NaNs. If we find NaNs in the result, we delegate to a libcall
|
|
// to carefully re-compute the correct infinity representation if
|
|
// possible. The expectation is that the presence of NaNs here is
|
|
// *extremely* rare, and so the cost of the libcall is almost irrelevant.
|
|
// This is good, because the libcall re-computes the core multiplication
|
|
// exactly the same as we do here and re-tests for NaNs in order to be
|
|
// a generic complex*complex libcall.
|
|
|
|
// First compute the four products.
|
|
Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
|
|
Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
|
|
Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
|
|
Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
|
|
|
|
// The real part is the difference of the first two, the imaginary part is
|
|
// the sum of the second.
|
|
ResR = Builder.CreateFSub(AC, BD, "mul_r");
|
|
ResI = Builder.CreateFAdd(AD, BC, "mul_i");
|
|
|
|
// Emit the test for the real part becoming NaN and create a branch to
|
|
// handle it. We test for NaN by comparing the number to itself.
|
|
Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
|
|
llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
|
|
llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
|
|
llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
|
|
llvm::BasicBlock *OrigBB = Branch->getParent();
|
|
|
|
// Give hint that we very much don't expect to see NaNs.
|
|
// Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
|
|
llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
|
|
Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
|
|
|
|
// Now test the imaginary part and create its branch.
|
|
CGF.EmitBlock(INaNBB);
|
|
Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
|
|
llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
|
|
Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
|
|
Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
|
|
|
|
// Now emit the libcall on this slowest of the slow paths.
|
|
CGF.EmitBlock(LibCallBB);
|
|
Value *LibCallR, *LibCallI;
|
|
std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
|
|
getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
|
|
Builder.CreateBr(ContBB);
|
|
|
|
// Finally continue execution by phi-ing together the different
|
|
// computation paths.
|
|
CGF.EmitBlock(ContBB);
|
|
llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
|
|
RealPHI->addIncoming(ResR, OrigBB);
|
|
RealPHI->addIncoming(ResR, INaNBB);
|
|
RealPHI->addIncoming(LibCallR, LibCallBB);
|
|
llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
|
|
ImagPHI->addIncoming(ResI, OrigBB);
|
|
ImagPHI->addIncoming(ResI, INaNBB);
|
|
ImagPHI->addIncoming(LibCallI, LibCallBB);
|
|
return ComplexPairTy(RealPHI, ImagPHI);
|
|
}
|
|
assert((Op.LHS.second || Op.RHS.second) &&
|
|
"At least one operand must be complex!");
|
|
|
|
// If either of the operands is a real rather than a complex, the
|
|
// imaginary component is ignored when computing the real component of the
|
|
// result.
|
|
ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
|
|
|
|
ResI = Op.LHS.second
|
|
? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
|
|
: Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
|
|
} else {
|
|
assert(Op.LHS.second && Op.RHS.second &&
|
|
"Both operands of integer complex operators must be complex!");
|
|
Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
|
|
Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
|
|
ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
|
|
|
|
Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
|
|
Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
|
|
ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
|
|
}
|
|
return ComplexPairTy(ResR, ResI);
|
|
}
|
|
|
|
// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
|
|
// typed values.
|
|
ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
|
|
llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
|
|
llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
|
|
|
|
llvm::Value *DSTr, *DSTi;
|
|
if (LHSr->getType()->isFloatingPointTy()) {
|
|
// If we have a complex operand on the RHS and FastMath is not allowed, we
|
|
// delegate to a libcall to handle all of the complexities and minimize
|
|
// underflow/overflow cases. When FastMath is allowed we construct the
|
|
// divide inline using the same algorithm as for integer operands.
|
|
//
|
|
// FIXME: We would be able to avoid the libcall in many places if we
|
|
// supported imaginary types in addition to complex types.
|
|
if (RHSi && !CGF.getLangOpts().FastMath) {
|
|
BinOpInfo LibCallOp = Op;
|
|
// If LHS was a real, supply a null imaginary part.
|
|
if (!LHSi)
|
|
LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
|
|
|
|
switch (LHSr->getType()->getTypeID()) {
|
|
default:
|
|
llvm_unreachable("Unsupported floating point type!");
|
|
case llvm::Type::HalfTyID:
|
|
return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
|
|
case llvm::Type::FloatTyID:
|
|
return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
|
|
case llvm::Type::DoubleTyID:
|
|
return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
|
|
case llvm::Type::PPC_FP128TyID:
|
|
return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
|
|
case llvm::Type::X86_FP80TyID:
|
|
return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
|
|
case llvm::Type::FP128TyID:
|
|
return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
|
|
}
|
|
} else if (RHSi) {
|
|
if (!LHSi)
|
|
LHSi = llvm::Constant::getNullValue(RHSi->getType());
|
|
|
|
// (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
|
|
llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
|
|
llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
|
|
llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
|
|
|
|
llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
|
|
llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
|
|
llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
|
|
|
|
llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
|
|
llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
|
|
llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
|
|
|
|
DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
|
|
DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
|
|
} else {
|
|
assert(LHSi && "Can have at most one non-complex operand!");
|
|
|
|
DSTr = Builder.CreateFDiv(LHSr, RHSr);
|
|
DSTi = Builder.CreateFDiv(LHSi, RHSr);
|
|
}
|
|
} else {
|
|
assert(Op.LHS.second && Op.RHS.second &&
|
|
"Both operands of integer complex operators must be complex!");
|
|
// (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
|
|
llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
|
|
llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
|
|
llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
|
|
|
|
llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
|
|
llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
|
|
llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
|
|
|
|
llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
|
|
llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
|
|
llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
|
|
|
|
if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
|
|
DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
|
|
DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
|
|
} else {
|
|
DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
|
|
DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
|
|
}
|
|
}
|
|
|
|
return ComplexPairTy(DSTr, DSTi);
|
|
}
|
|
|
|
ComplexExprEmitter::BinOpInfo
|
|
ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
|
|
TestAndClearIgnoreReal();
|
|
TestAndClearIgnoreImag();
|
|
BinOpInfo Ops;
|
|
if (E->getLHS()->getType()->isRealFloatingType())
|
|
Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
|
|
else
|
|
Ops.LHS = Visit(E->getLHS());
|
|
if (E->getRHS()->getType()->isRealFloatingType())
|
|
Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
|
|
else
|
|
Ops.RHS = Visit(E->getRHS());
|
|
|
|
Ops.Ty = E->getType();
|
|
return Ops;
|
|
}
|
|
|
|
|
|
LValue ComplexExprEmitter::
|
|
EmitCompoundAssignLValue(const CompoundAssignOperator *E,
|
|
ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
|
|
RValue &Val) {
|
|
TestAndClearIgnoreReal();
|
|
TestAndClearIgnoreImag();
|
|
QualType LHSTy = E->getLHS()->getType();
|
|
if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
|
|
LHSTy = AT->getValueType();
|
|
|
|
BinOpInfo OpInfo;
|
|
|
|
// Load the RHS and LHS operands.
|
|
// __block variables need to have the rhs evaluated first, plus this should
|
|
// improve codegen a little.
|
|
OpInfo.Ty = E->getComputationResultType();
|
|
QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
|
|
|
|
// The RHS should have been converted to the computation type.
|
|
if (E->getRHS()->getType()->isRealFloatingType()) {
|
|
assert(
|
|
CGF.getContext()
|
|
.hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
|
|
OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
|
|
} else {
|
|
assert(CGF.getContext()
|
|
.hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
|
|
OpInfo.RHS = Visit(E->getRHS());
|
|
}
|
|
|
|
LValue LHS = CGF.EmitLValue(E->getLHS());
|
|
|
|
// Load from the l-value and convert it.
|
|
SourceLocation Loc = E->getExprLoc();
|
|
if (LHSTy->isAnyComplexType()) {
|
|
ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
|
|
OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
|
|
} else {
|
|
llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
|
|
// For floating point real operands we can directly pass the scalar form
|
|
// to the binary operator emission and potentially get more efficient code.
|
|
if (LHSTy->isRealFloatingType()) {
|
|
if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
|
|
LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
|
|
OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
|
|
} else {
|
|
OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
|
|
}
|
|
}
|
|
|
|
// Expand the binary operator.
|
|
ComplexPairTy Result = (this->*Func)(OpInfo);
|
|
|
|
// Truncate the result and store it into the LHS lvalue.
|
|
if (LHSTy->isAnyComplexType()) {
|
|
ComplexPairTy ResVal =
|
|
EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
|
|
EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
|
|
Val = RValue::getComplex(ResVal);
|
|
} else {
|
|
llvm::Value *ResVal =
|
|
CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
|
|
CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
|
|
Val = RValue::get(ResVal);
|
|
}
|
|
|
|
return LHS;
|
|
}
|
|
|
|
// Compound assignments.
|
|
ComplexPairTy ComplexExprEmitter::
|
|
EmitCompoundAssign(const CompoundAssignOperator *E,
|
|
ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
|
|
RValue Val;
|
|
LValue LV = EmitCompoundAssignLValue(E, Func, Val);
|
|
|
|
// The result of an assignment in C is the assigned r-value.
|
|
if (!CGF.getLangOpts().CPlusPlus)
|
|
return Val.getComplexVal();
|
|
|
|
// If the lvalue is non-volatile, return the computed value of the assignment.
|
|
if (!LV.isVolatileQualified())
|
|
return Val.getComplexVal();
|
|
|
|
return EmitLoadOfLValue(LV, E->getExprLoc());
|
|
}
|
|
|
|
LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
|
|
ComplexPairTy &Val) {
|
|
assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
|
|
E->getRHS()->getType()) &&
|
|
"Invalid assignment");
|
|
TestAndClearIgnoreReal();
|
|
TestAndClearIgnoreImag();
|
|
|
|
// Emit the RHS. __block variables need the RHS evaluated first.
|
|
Val = Visit(E->getRHS());
|
|
|
|
// Compute the address to store into.
|
|
LValue LHS = CGF.EmitLValue(E->getLHS());
|
|
|
|
// Store the result value into the LHS lvalue.
|
|
EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
|
|
|
|
return LHS;
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
|
|
ComplexPairTy Val;
|
|
LValue LV = EmitBinAssignLValue(E, Val);
|
|
|
|
// The result of an assignment in C is the assigned r-value.
|
|
if (!CGF.getLangOpts().CPlusPlus)
|
|
return Val;
|
|
|
|
// If the lvalue is non-volatile, return the computed value of the assignment.
|
|
if (!LV.isVolatileQualified())
|
|
return Val;
|
|
|
|
return EmitLoadOfLValue(LV, E->getExprLoc());
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
|
|
CGF.EmitIgnoredExpr(E->getLHS());
|
|
return Visit(E->getRHS());
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::
|
|
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
|
|
TestAndClearIgnoreReal();
|
|
TestAndClearIgnoreImag();
|
|
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
|
|
|
|
// Bind the common expression if necessary.
|
|
CodeGenFunction::OpaqueValueMapping binding(CGF, E);
|
|
|
|
|
|
CodeGenFunction::ConditionalEvaluation eval(CGF);
|
|
CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
|
|
CGF.getProfileCount(E));
|
|
|
|
eval.begin(CGF);
|
|
CGF.EmitBlock(LHSBlock);
|
|
CGF.incrementProfileCounter(E);
|
|
ComplexPairTy LHS = Visit(E->getTrueExpr());
|
|
LHSBlock = Builder.GetInsertBlock();
|
|
CGF.EmitBranch(ContBlock);
|
|
eval.end(CGF);
|
|
|
|
eval.begin(CGF);
|
|
CGF.EmitBlock(RHSBlock);
|
|
ComplexPairTy RHS = Visit(E->getFalseExpr());
|
|
RHSBlock = Builder.GetInsertBlock();
|
|
CGF.EmitBlock(ContBlock);
|
|
eval.end(CGF);
|
|
|
|
// Create a PHI node for the real part.
|
|
llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
|
|
RealPN->addIncoming(LHS.first, LHSBlock);
|
|
RealPN->addIncoming(RHS.first, RHSBlock);
|
|
|
|
// Create a PHI node for the imaginary part.
|
|
llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
|
|
ImagPN->addIncoming(LHS.second, LHSBlock);
|
|
ImagPN->addIncoming(RHS.second, RHSBlock);
|
|
|
|
return ComplexPairTy(RealPN, ImagPN);
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
|
|
return Visit(E->getChosenSubExpr());
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
|
|
bool Ignore = TestAndClearIgnoreReal();
|
|
(void)Ignore;
|
|
assert (Ignore == false && "init list ignored");
|
|
Ignore = TestAndClearIgnoreImag();
|
|
(void)Ignore;
|
|
assert (Ignore == false && "init list ignored");
|
|
|
|
if (E->getNumInits() == 2) {
|
|
llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
|
|
llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
|
|
return ComplexPairTy(Real, Imag);
|
|
} else if (E->getNumInits() == 1) {
|
|
return Visit(E->getInit(0));
|
|
}
|
|
|
|
// Empty init list initializes to null
|
|
assert(E->getNumInits() == 0 && "Unexpected number of inits");
|
|
QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
|
|
llvm::Type* LTy = CGF.ConvertType(Ty);
|
|
llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
|
|
return ComplexPairTy(zeroConstant, zeroConstant);
|
|
}
|
|
|
|
ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
|
|
Address ArgValue = Address::invalid();
|
|
Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
|
|
|
|
if (!ArgPtr.isValid()) {
|
|
CGF.ErrorUnsupported(E, "complex va_arg expression");
|
|
llvm::Type *EltTy =
|
|
CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
|
|
llvm::Value *U = llvm::UndefValue::get(EltTy);
|
|
return ComplexPairTy(U, U);
|
|
}
|
|
|
|
return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
|
|
E->getExprLoc());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entry Point into this File
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitComplexExpr - Emit the computation of the specified expression of
|
|
/// complex type, ignoring the result.
|
|
ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
|
|
bool IgnoreImag) {
|
|
assert(E && getComplexType(E->getType()) &&
|
|
"Invalid complex expression to emit");
|
|
|
|
return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
|
|
.Visit(const_cast<Expr *>(E));
|
|
}
|
|
|
|
void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
|
|
bool isInit) {
|
|
assert(E && getComplexType(E->getType()) &&
|
|
"Invalid complex expression to emit");
|
|
ComplexExprEmitter Emitter(*this);
|
|
ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
|
|
Emitter.EmitStoreOfComplex(Val, dest, isInit);
|
|
}
|
|
|
|
/// EmitStoreOfComplex - Store a complex number into the specified l-value.
|
|
void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
|
|
bool isInit) {
|
|
ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
|
|
}
|
|
|
|
/// EmitLoadOfComplex - Load a complex number from the specified address.
|
|
ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
|
|
SourceLocation loc) {
|
|
return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
|
|
assert(E->getOpcode() == BO_Assign);
|
|
ComplexPairTy Val; // ignored
|
|
return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
|
|
}
|
|
|
|
typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
|
|
const ComplexExprEmitter::BinOpInfo &);
|
|
|
|
static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
|
|
switch (Op) {
|
|
case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
|
|
case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
|
|
case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
|
|
case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
|
|
default:
|
|
llvm_unreachable("unexpected complex compound assignment");
|
|
}
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
|
|
CompoundFunc Op = getComplexOp(E->getOpcode());
|
|
RValue Val;
|
|
return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
|
|
llvm::Value *&Result) {
|
|
CompoundFunc Op = getComplexOp(E->getOpcode());
|
|
RValue Val;
|
|
LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
|
|
Result = Val.getScalarVal();
|
|
return Ret;
|
|
}
|