forked from OSchip/llvm-project
2434 lines
86 KiB
C++
2434 lines
86 KiB
C++
//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief This is the parent TargetLowering class for hardware code gen
|
|
/// targets.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUISelLowering.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUFrameLowering.h"
|
|
#include "AMDGPUIntrinsicInfo.h"
|
|
#include "AMDGPURegisterInfo.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "R600MachineFunctionInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/DiagnosticPrinter.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
/// Diagnostic information for unimplemented or unsupported feature reporting.
|
|
class DiagnosticInfoUnsupported : public DiagnosticInfo {
|
|
private:
|
|
const Twine &Description;
|
|
const Function &Fn;
|
|
|
|
static int KindID;
|
|
|
|
static int getKindID() {
|
|
if (KindID == 0)
|
|
KindID = llvm::getNextAvailablePluginDiagnosticKind();
|
|
return KindID;
|
|
}
|
|
|
|
public:
|
|
DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
|
|
DiagnosticSeverity Severity = DS_Error)
|
|
: DiagnosticInfo(getKindID(), Severity),
|
|
Description(Desc),
|
|
Fn(Fn) { }
|
|
|
|
const Function &getFunction() const { return Fn; }
|
|
const Twine &getDescription() const { return Description; }
|
|
|
|
void print(DiagnosticPrinter &DP) const override {
|
|
DP << "unsupported " << getDescription() << " in " << Fn.getName();
|
|
}
|
|
|
|
static bool classof(const DiagnosticInfo *DI) {
|
|
return DI->getKind() == getKindID();
|
|
}
|
|
};
|
|
|
|
int DiagnosticInfoUnsupported::KindID = 0;
|
|
}
|
|
|
|
|
|
static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
|
|
ArgFlags.getOrigAlign());
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
|
|
|
|
return true;
|
|
}
|
|
|
|
#include "AMDGPUGenCallingConv.inc"
|
|
|
|
// Find a larger type to do a load / store of a vector with.
|
|
EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
|
|
unsigned StoreSize = VT.getStoreSizeInBits();
|
|
if (StoreSize <= 32)
|
|
return EVT::getIntegerVT(Ctx, StoreSize);
|
|
|
|
assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
|
|
return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
|
|
}
|
|
|
|
// Type for a vector that will be loaded to.
|
|
EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
|
|
unsigned StoreSize = VT.getStoreSizeInBits();
|
|
if (StoreSize <= 32)
|
|
return EVT::getIntegerVT(Ctx, 32);
|
|
|
|
return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
|
|
}
|
|
|
|
AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
|
|
TargetLowering(TM, new TargetLoweringObjectFileELF()) {
|
|
|
|
Subtarget = &TM.getSubtarget<AMDGPUSubtarget>();
|
|
|
|
setOperationAction(ISD::Constant, MVT::i32, Legal);
|
|
setOperationAction(ISD::Constant, MVT::i64, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
|
|
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::BRIND, MVT::Other, Expand);
|
|
|
|
// We need to custom lower some of the intrinsics
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
|
|
// Library functions. These default to Expand, but we have instructions
|
|
// for them.
|
|
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
|
|
setOperationAction(ISD::FEXP2, MVT::f32, Legal);
|
|
setOperationAction(ISD::FPOW, MVT::f32, Legal);
|
|
setOperationAction(ISD::FLOG2, MVT::f32, Legal);
|
|
setOperationAction(ISD::FABS, MVT::f32, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f32, Legal);
|
|
setOperationAction(ISD::FROUND, MVT::f32, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
|
|
|
|
// Lower floating point store/load to integer store/load to reduce the number
|
|
// of patterns in tablegen.
|
|
setOperationAction(ISD::STORE, MVT::f32, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
|
|
|
|
setOperationAction(ISD::STORE, MVT::v2f32, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
|
|
|
|
setOperationAction(ISD::STORE, MVT::i64, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
|
|
|
|
setOperationAction(ISD::STORE, MVT::v4f32, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
|
|
|
|
setOperationAction(ISD::STORE, MVT::v8f32, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
|
|
|
|
setOperationAction(ISD::STORE, MVT::v16f32, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
|
|
|
|
setOperationAction(ISD::STORE, MVT::f64, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
|
|
|
|
setOperationAction(ISD::STORE, MVT::v2f64, Promote);
|
|
AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
|
|
|
|
// Custom lowering of vector stores is required for local address space
|
|
// stores.
|
|
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
|
|
// XXX: Native v2i32 local address space stores are possible, but not
|
|
// currently implemented.
|
|
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
|
|
|
|
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
|
|
setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
|
|
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
|
|
|
|
// XXX: This can be change to Custom, once ExpandVectorStores can
|
|
// handle 64-bit stores.
|
|
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
|
|
|
|
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
|
|
setTruncStoreAction(MVT::i64, MVT::i8, Expand);
|
|
setTruncStoreAction(MVT::i64, MVT::i1, Expand);
|
|
setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
|
|
setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
|
|
|
|
|
|
setOperationAction(ISD::LOAD, MVT::f32, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::i64, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::f64, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
|
|
|
|
setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
|
|
AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
|
|
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
|
|
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2i8, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i8, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i8, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i8, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i8, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, Expand);
|
|
|
|
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
|
|
|
|
if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
|
|
setOperationAction(ISD::FCEIL, MVT::f64, Custom);
|
|
setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
|
|
setOperationAction(ISD::FRINT, MVT::f64, Custom);
|
|
setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
|
|
}
|
|
|
|
if (!Subtarget->hasBFI()) {
|
|
// fcopysign can be done in a single instruction with BFI.
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
|
|
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
|
|
|
|
const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
|
|
for (MVT VT : ScalarIntVTs) {
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::SDIV, VT, Custom);
|
|
|
|
// GPU does not have divrem function for signed or unsigned.
|
|
setOperationAction(ISD::SDIVREM, VT, Custom);
|
|
setOperationAction(ISD::UDIVREM, VT, Custom);
|
|
|
|
// GPU does not have [S|U]MUL_LOHI functions as a single instruction.
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
|
|
|
setOperationAction(ISD::BSWAP, VT, Expand);
|
|
setOperationAction(ISD::CTTZ, VT, Expand);
|
|
setOperationAction(ISD::CTLZ, VT, Expand);
|
|
}
|
|
|
|
if (!Subtarget->hasBCNT(32))
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
|
|
if (!Subtarget->hasBCNT(64))
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
|
|
|
|
// The hardware supports 32-bit ROTR, but not ROTL.
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i64, Expand);
|
|
setOperationAction(ISD::ROTR, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::MUL, MVT::i64, Expand);
|
|
setOperationAction(ISD::MULHU, MVT::i64, Expand);
|
|
setOperationAction(ISD::MULHS, MVT::i64, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
|
|
|
|
if (!Subtarget->hasFFBH())
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
|
|
|
|
if (!Subtarget->hasFFBL())
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
|
|
|
|
static const MVT::SimpleValueType VectorIntTypes[] = {
|
|
MVT::v2i32, MVT::v4i32
|
|
};
|
|
|
|
for (MVT VT : VectorIntTypes) {
|
|
// Expand the following operations for the current type by default.
|
|
setOperationAction(ISD::ADD, VT, Expand);
|
|
setOperationAction(ISD::AND, VT, Expand);
|
|
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
|
|
setOperationAction(ISD::MUL, VT, Expand);
|
|
setOperationAction(ISD::OR, VT, Expand);
|
|
setOperationAction(ISD::SHL, VT, Expand);
|
|
setOperationAction(ISD::SRA, VT, Expand);
|
|
setOperationAction(ISD::SRL, VT, Expand);
|
|
setOperationAction(ISD::ROTL, VT, Expand);
|
|
setOperationAction(ISD::ROTR, VT, Expand);
|
|
setOperationAction(ISD::SUB, VT, Expand);
|
|
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
|
|
// TODO: Implement custom UREM / SREM routines.
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::SDIVREM, VT, Custom);
|
|
setOperationAction(ISD::UDIVREM, VT, Custom);
|
|
setOperationAction(ISD::ADDC, VT, Expand);
|
|
setOperationAction(ISD::SUBC, VT, Expand);
|
|
setOperationAction(ISD::ADDE, VT, Expand);
|
|
setOperationAction(ISD::SUBE, VT, Expand);
|
|
setOperationAction(ISD::SELECT, VT, Expand);
|
|
setOperationAction(ISD::VSELECT, VT, Expand);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
setOperationAction(ISD::XOR, VT, Expand);
|
|
setOperationAction(ISD::BSWAP, VT, Expand);
|
|
setOperationAction(ISD::CTPOP, VT, Expand);
|
|
setOperationAction(ISD::CTTZ, VT, Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
|
|
setOperationAction(ISD::CTLZ, VT, Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
|
|
}
|
|
|
|
static const MVT::SimpleValueType FloatVectorTypes[] = {
|
|
MVT::v2f32, MVT::v4f32
|
|
};
|
|
|
|
for (MVT VT : FloatVectorTypes) {
|
|
setOperationAction(ISD::FABS, VT, Expand);
|
|
setOperationAction(ISD::FADD, VT, Expand);
|
|
setOperationAction(ISD::FCEIL, VT, Expand);
|
|
setOperationAction(ISD::FCOS, VT, Expand);
|
|
setOperationAction(ISD::FDIV, VT, Expand);
|
|
setOperationAction(ISD::FEXP2, VT, Expand);
|
|
setOperationAction(ISD::FLOG2, VT, Expand);
|
|
setOperationAction(ISD::FPOW, VT, Expand);
|
|
setOperationAction(ISD::FFLOOR, VT, Expand);
|
|
setOperationAction(ISD::FTRUNC, VT, Expand);
|
|
setOperationAction(ISD::FMUL, VT, Expand);
|
|
setOperationAction(ISD::FMA, VT, Expand);
|
|
setOperationAction(ISD::FRINT, VT, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, VT, Expand);
|
|
setOperationAction(ISD::FSQRT, VT, Expand);
|
|
setOperationAction(ISD::FSIN, VT, Expand);
|
|
setOperationAction(ISD::FSUB, VT, Expand);
|
|
setOperationAction(ISD::FNEG, VT, Expand);
|
|
setOperationAction(ISD::SELECT, VT, Expand);
|
|
setOperationAction(ISD::VSELECT, VT, Expand);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
|
|
|
|
setTargetDAGCombine(ISD::MUL);
|
|
setTargetDAGCombine(ISD::SELECT_CC);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
setJumpIsExpensive(true);
|
|
|
|
setSelectIsExpensive(false);
|
|
PredictableSelectIsExpensive = false;
|
|
|
|
// There are no integer divide instructions, and these expand to a pretty
|
|
// large sequence of instructions.
|
|
setIntDivIsCheap(false);
|
|
setPow2DivIsCheap(false);
|
|
|
|
// TODO: Investigate this when 64-bit divides are implemented.
|
|
addBypassSlowDiv(64, 32);
|
|
|
|
// FIXME: Need to really handle these.
|
|
MaxStoresPerMemcpy = 4096;
|
|
MaxStoresPerMemmove = 4096;
|
|
MaxStoresPerMemset = 4096;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Target Information
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MVT AMDGPUTargetLowering::getVectorIdxTy() const {
|
|
return MVT::i32;
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
|
|
return true;
|
|
}
|
|
|
|
// The backend supports 32 and 64 bit floating point immediates.
|
|
// FIXME: Why are we reporting vectors of FP immediates as legal?
|
|
bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
EVT ScalarVT = VT.getScalarType();
|
|
return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
|
|
}
|
|
|
|
// We don't want to shrink f64 / f32 constants.
|
|
bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
|
|
EVT ScalarVT = VT.getScalarType();
|
|
return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
|
|
EVT CastTy) const {
|
|
if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
|
|
return true;
|
|
|
|
unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
|
|
unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
|
|
|
|
return ((LScalarSize <= CastScalarSize) ||
|
|
(CastScalarSize >= 32) ||
|
|
(LScalarSize < 32));
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// Target Properties
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
|
|
assert(VT.isFloatingPoint());
|
|
return VT == MVT::f32;
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
|
|
assert(VT.isFloatingPoint());
|
|
return VT == MVT::f32;
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
|
|
// Truncate is just accessing a subregister.
|
|
return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
|
|
// Truncate is just accessing a subregister.
|
|
return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
|
|
(Dest->getPrimitiveSizeInBits() % 32 == 0);
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
|
|
const DataLayout *DL = getDataLayout();
|
|
unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
|
|
unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
|
|
|
|
return SrcSize == 32 && DestSize == 64;
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
|
|
// Any register load of a 64-bit value really requires 2 32-bit moves. For all
|
|
// practical purposes, the extra mov 0 to load a 64-bit is free. As used,
|
|
// this will enable reducing 64-bit operations the 32-bit, which is always
|
|
// good.
|
|
return Src == MVT::i32 && Dest == MVT::i64;
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
|
|
return isZExtFree(Val.getValueType(), VT2);
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
|
|
// There aren't really 64-bit registers, but pairs of 32-bit ones and only a
|
|
// limited number of native 64-bit operations. Shrinking an operation to fit
|
|
// in a single 32-bit register should always be helpful. As currently used,
|
|
// this is much less general than the name suggests, and is only used in
|
|
// places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
|
|
// not profitable, and may actually be harmful.
|
|
return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// TargetLowering Callbacks
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins) const {
|
|
|
|
State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerReturn(
|
|
SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc DL, SelectionDAG &DAG) const {
|
|
return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// Target specific lowering
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SDValue Callee = CLI.Callee;
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
|
|
const Function &Fn = *DAG.getMachineFunction().getFunction();
|
|
|
|
StringRef FuncName("<unknown>");
|
|
|
|
if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
|
|
FuncName = G->getSymbol();
|
|
else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
|
|
FuncName = G->getGlobal()->getName();
|
|
|
|
DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
|
|
DAG.getContext()->diagnose(NoCalls);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
Op.getNode()->dump();
|
|
llvm_unreachable("Custom lowering code for this"
|
|
"instruction is not implemented yet!");
|
|
break;
|
|
case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
|
|
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
|
|
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
|
|
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::SDIV: return LowerSDIV(Op, DAG);
|
|
case ISD::SREM: return LowerSREM(Op, DAG);
|
|
case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
|
|
case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
|
|
case ISD::FCEIL: return LowerFCEIL(Op, DAG);
|
|
case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
|
|
case ISD::FRINT: return LowerFRINT(Op, DAG);
|
|
case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
|
|
case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
|
|
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
switch (N->getOpcode()) {
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
// Different parts of legalization seem to interpret which type of
|
|
// sign_extend_inreg is the one to check for custom lowering. The extended
|
|
// from type is what really matters, but some places check for custom
|
|
// lowering of the result type. This results in trying to use
|
|
// ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
|
|
// nothing here and let the illegal result integer be handled normally.
|
|
return;
|
|
case ISD::LOAD: {
|
|
SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
|
|
if (!Node)
|
|
return;
|
|
|
|
Results.push_back(SDValue(Node, 0));
|
|
Results.push_back(SDValue(Node, 1));
|
|
// XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
|
|
// function
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
|
|
return;
|
|
}
|
|
case ISD::STORE: {
|
|
SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
|
|
if (Lowered.getNode())
|
|
Results.push_back(Lowered);
|
|
return;
|
|
}
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
|
|
// FIXME: This implements accesses to initialized globals in the constant
|
|
// address space by copying them to private and accessing that. It does not
|
|
// properly handle illegal types or vectors. The private vector loads are not
|
|
// scalarized, and the illegal scalars hit an assertion. This technique will not
|
|
// work well with large initializers, and this should eventually be
|
|
// removed. Initialized globals should be placed into a data section that the
|
|
// runtime will load into a buffer before the kernel is executed. Uses of the
|
|
// global need to be replaced with a pointer loaded from an implicit kernel
|
|
// argument into this buffer holding the copy of the data, which will remove the
|
|
// need for any of this.
|
|
SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
|
|
const GlobalValue *GV,
|
|
const SDValue &InitPtr,
|
|
SDValue Chain,
|
|
SelectionDAG &DAG) const {
|
|
const DataLayout *TD = getTargetMachine().getSubtargetImpl()->getDataLayout();
|
|
SDLoc DL(InitPtr);
|
|
Type *InitTy = Init->getType();
|
|
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
|
|
EVT VT = EVT::getEVT(InitTy);
|
|
PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
|
|
return DAG.getStore(Chain, DL, DAG.getConstant(*CI, VT), InitPtr,
|
|
MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
|
|
TD->getPrefTypeAlignment(InitTy));
|
|
}
|
|
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
|
|
EVT VT = EVT::getEVT(CFP->getType());
|
|
PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
|
|
return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, VT), InitPtr,
|
|
MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
|
|
TD->getPrefTypeAlignment(CFP->getType()));
|
|
}
|
|
|
|
if (StructType *ST = dyn_cast<StructType>(InitTy)) {
|
|
const StructLayout *SL = TD->getStructLayout(ST);
|
|
|
|
EVT PtrVT = InitPtr.getValueType();
|
|
SmallVector<SDValue, 8> Chains;
|
|
|
|
for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
|
|
SDValue Offset = DAG.getConstant(SL->getElementOffset(I), PtrVT);
|
|
SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
|
|
|
|
Constant *Elt = Init->getAggregateElement(I);
|
|
Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
|
|
}
|
|
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
|
|
}
|
|
|
|
if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
|
|
EVT PtrVT = InitPtr.getValueType();
|
|
|
|
unsigned NumElements;
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
|
|
NumElements = AT->getNumElements();
|
|
else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
|
|
NumElements = VT->getNumElements();
|
|
else
|
|
llvm_unreachable("Unexpected type");
|
|
|
|
unsigned EltSize = TD->getTypeAllocSize(SeqTy->getElementType());
|
|
SmallVector<SDValue, 8> Chains;
|
|
for (unsigned i = 0; i < NumElements; ++i) {
|
|
SDValue Offset = DAG.getConstant(i * EltSize, PtrVT);
|
|
SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
|
|
|
|
Constant *Elt = Init->getAggregateElement(i);
|
|
Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
|
|
}
|
|
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
|
|
}
|
|
|
|
if (isa<UndefValue>(Init)) {
|
|
EVT VT = EVT::getEVT(InitTy);
|
|
PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
|
|
return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
|
|
MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
|
|
TD->getPrefTypeAlignment(InitTy));
|
|
}
|
|
|
|
Init->dump();
|
|
llvm_unreachable("Unhandled constant initializer");
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
|
|
SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
|
|
const DataLayout *TD = getTargetMachine().getSubtargetImpl()->getDataLayout();
|
|
GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = G->getGlobal();
|
|
|
|
switch (G->getAddressSpace()) {
|
|
default: llvm_unreachable("Global Address lowering not implemented for this "
|
|
"address space");
|
|
case AMDGPUAS::LOCAL_ADDRESS: {
|
|
// XXX: What does the value of G->getOffset() mean?
|
|
assert(G->getOffset() == 0 &&
|
|
"Do not know what to do with an non-zero offset");
|
|
|
|
unsigned Offset;
|
|
if (MFI->LocalMemoryObjects.count(GV) == 0) {
|
|
uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
|
|
Offset = MFI->LDSSize;
|
|
MFI->LocalMemoryObjects[GV] = Offset;
|
|
// XXX: Account for alignment?
|
|
MFI->LDSSize += Size;
|
|
} else {
|
|
Offset = MFI->LocalMemoryObjects[GV];
|
|
}
|
|
|
|
return DAG.getConstant(Offset, getPointerTy(AMDGPUAS::LOCAL_ADDRESS));
|
|
}
|
|
case AMDGPUAS::CONSTANT_ADDRESS: {
|
|
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
|
|
Type *EltType = GV->getType()->getElementType();
|
|
unsigned Size = TD->getTypeAllocSize(EltType);
|
|
unsigned Alignment = TD->getPrefTypeAlignment(EltType);
|
|
|
|
MVT PrivPtrVT = getPointerTy(AMDGPUAS::PRIVATE_ADDRESS);
|
|
MVT ConstPtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS);
|
|
|
|
int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
|
|
SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
|
|
|
|
const GlobalVariable *Var = cast<GlobalVariable>(GV);
|
|
if (!Var->hasInitializer()) {
|
|
// This has no use, but bugpoint will hit it.
|
|
return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
|
|
}
|
|
|
|
const Constant *Init = Var->getInitializer();
|
|
SmallVector<SDNode*, 8> WorkList;
|
|
|
|
for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
|
|
E = DAG.getEntryNode()->use_end(); I != E; ++I) {
|
|
if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
|
|
continue;
|
|
WorkList.push_back(*I);
|
|
}
|
|
SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
|
|
for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
|
|
E = WorkList.end(); I != E; ++I) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
|
|
Ops.push_back((*I)->getOperand(i));
|
|
}
|
|
DAG.UpdateNodeOperands(*I, Ops);
|
|
}
|
|
return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SmallVector<SDValue, 8> Args;
|
|
SDValue A = Op.getOperand(0);
|
|
SDValue B = Op.getOperand(1);
|
|
|
|
DAG.ExtractVectorElements(A, Args);
|
|
DAG.ExtractVectorElements(B, Args);
|
|
|
|
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
|
|
SmallVector<SDValue, 8> Args;
|
|
unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
EVT VT = Op.getValueType();
|
|
DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
|
|
VT.getVectorNumElements());
|
|
|
|
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>(
|
|
getTargetMachine().getSubtargetImpl()->getFrameLowering());
|
|
|
|
FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
|
|
|
|
unsigned FrameIndex = FIN->getIndex();
|
|
unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
|
|
return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF),
|
|
Op.getValueType());
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
switch (IntrinsicID) {
|
|
default: return Op;
|
|
case AMDGPUIntrinsic::AMDGPU_abs:
|
|
case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
|
|
return LowerIntrinsicIABS(Op, DAG);
|
|
case AMDGPUIntrinsic::AMDGPU_lrp:
|
|
return LowerIntrinsicLRP(Op, DAG);
|
|
case AMDGPUIntrinsic::AMDGPU_fract:
|
|
case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
|
|
return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_clamp:
|
|
case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
|
|
return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
|
|
case Intrinsic::AMDGPU_div_scale: {
|
|
// 3rd parameter required to be a constant.
|
|
const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
|
|
if (!Param)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// Translate to the operands expected by the machine instruction. The
|
|
// first parameter must be the same as the first instruction.
|
|
SDValue Numerator = Op.getOperand(1);
|
|
SDValue Denominator = Op.getOperand(2);
|
|
SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
|
|
|
|
return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
|
|
Denominator, Numerator);
|
|
}
|
|
|
|
case Intrinsic::AMDGPU_div_fmas:
|
|
return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
|
|
case Intrinsic::AMDGPU_div_fixup:
|
|
return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
|
|
case Intrinsic::AMDGPU_trig_preop:
|
|
return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::AMDGPU_rcp:
|
|
return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
|
|
|
|
case Intrinsic::AMDGPU_rsq:
|
|
return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
|
|
return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
|
|
|
|
case Intrinsic::AMDGPU_rsq_clamped:
|
|
return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_imax:
|
|
return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
case AMDGPUIntrinsic::AMDGPU_umax:
|
|
return DAG.getNode(AMDGPUISD::UMAX, DL, VT, Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
case AMDGPUIntrinsic::AMDGPU_imin:
|
|
return DAG.getNode(AMDGPUISD::SMIN, DL, VT, Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
case AMDGPUIntrinsic::AMDGPU_umin:
|
|
return DAG.getNode(AMDGPUISD::UMIN, DL, VT, Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_umul24:
|
|
return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_imul24:
|
|
return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_umad24:
|
|
return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_imad24:
|
|
return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
|
|
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
|
|
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
|
|
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
|
|
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
|
|
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_bfe_i32:
|
|
return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
|
|
Op.getOperand(1),
|
|
Op.getOperand(2),
|
|
Op.getOperand(3));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_bfe_u32:
|
|
return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
|
|
Op.getOperand(1),
|
|
Op.getOperand(2),
|
|
Op.getOperand(3));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_bfi:
|
|
return DAG.getNode(AMDGPUISD::BFI, DL, VT,
|
|
Op.getOperand(1),
|
|
Op.getOperand(2),
|
|
Op.getOperand(3));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_bfm:
|
|
return DAG.getNode(AMDGPUISD::BFM, DL, VT,
|
|
Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
|
|
case AMDGPUIntrinsic::AMDGPU_brev:
|
|
return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
|
|
|
|
case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
|
|
return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
|
|
|
|
case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
|
|
return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
|
|
case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
|
|
return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
|
|
}
|
|
}
|
|
|
|
///IABS(a) = SMAX(sub(0, a), a)
|
|
SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
|
|
Op.getOperand(1));
|
|
|
|
return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Neg, Op.getOperand(1));
|
|
}
|
|
|
|
/// Linear Interpolation
|
|
/// LRP(a, b, c) = muladd(a, b, (1 - a) * c)
|
|
SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
|
|
DAG.getConstantFP(1.0f, MVT::f32),
|
|
Op.getOperand(1));
|
|
SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
|
|
Op.getOperand(3));
|
|
return DAG.getNode(ISD::FADD, DL, VT,
|
|
DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
|
|
OneSubAC);
|
|
}
|
|
|
|
/// \brief Generate Min/Max node
|
|
SDValue AMDGPUTargetLowering::CombineMinMax(SDNode *N,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
SDValue True = N->getOperand(2);
|
|
SDValue False = N->getOperand(3);
|
|
SDValue CC = N->getOperand(4);
|
|
|
|
if (VT != MVT::f32 ||
|
|
!((LHS == True && RHS == False) || (LHS == False && RHS == True))) {
|
|
return SDValue();
|
|
}
|
|
|
|
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
switch (CCOpcode) {
|
|
case ISD::SETOEQ:
|
|
case ISD::SETONE:
|
|
case ISD::SETUNE:
|
|
case ISD::SETNE:
|
|
case ISD::SETUEQ:
|
|
case ISD::SETEQ:
|
|
case ISD::SETFALSE:
|
|
case ISD::SETFALSE2:
|
|
case ISD::SETTRUE:
|
|
case ISD::SETTRUE2:
|
|
case ISD::SETUO:
|
|
case ISD::SETO:
|
|
llvm_unreachable("Operation should already be optimised!");
|
|
case ISD::SETULE:
|
|
case ISD::SETULT:
|
|
case ISD::SETOLE:
|
|
case ISD::SETOLT:
|
|
case ISD::SETLE:
|
|
case ISD::SETLT: {
|
|
unsigned Opc = (LHS == True) ? AMDGPUISD::FMIN : AMDGPUISD::FMAX;
|
|
return DAG.getNode(Opc, DL, VT, LHS, RHS);
|
|
}
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
case ISD::SETUGE:
|
|
case ISD::SETOGE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETOGT: {
|
|
unsigned Opc = (LHS == True) ? AMDGPUISD::FMAX : AMDGPUISD::FMIN;
|
|
return DAG.getNode(Opc, DL, VT, LHS, RHS);
|
|
}
|
|
case ISD::SETCC_INVALID:
|
|
llvm_unreachable("Invalid setcc condcode!");
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
LoadSDNode *Load = cast<LoadSDNode>(Op);
|
|
EVT MemVT = Load->getMemoryVT();
|
|
EVT MemEltVT = MemVT.getVectorElementType();
|
|
|
|
EVT LoadVT = Op.getValueType();
|
|
EVT EltVT = LoadVT.getVectorElementType();
|
|
EVT PtrVT = Load->getBasePtr().getValueType();
|
|
|
|
unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
|
|
SmallVector<SDValue, 8> Loads;
|
|
SmallVector<SDValue, 8> Chains;
|
|
|
|
SDLoc SL(Op);
|
|
unsigned MemEltSize = MemEltVT.getStoreSize();
|
|
MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
|
|
DAG.getConstant(i * MemEltSize, PtrVT));
|
|
|
|
SDValue NewLoad
|
|
= DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
|
|
Load->getChain(), Ptr,
|
|
SrcValue.getWithOffset(i * MemEltSize),
|
|
MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
|
|
Load->isInvariant(), Load->getAlignment());
|
|
Loads.push_back(NewLoad.getValue(0));
|
|
Chains.push_back(NewLoad.getValue(1));
|
|
}
|
|
|
|
SDValue Ops[] = {
|
|
DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
|
|
DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
|
|
};
|
|
|
|
return DAG.getMergeValues(Ops, SL);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// If this is a 2 element vector, we really want to scalarize and not create
|
|
// weird 1 element vectors.
|
|
if (VT.getVectorNumElements() == 2)
|
|
return ScalarizeVectorLoad(Op, DAG);
|
|
|
|
LoadSDNode *Load = cast<LoadSDNode>(Op);
|
|
SDValue BasePtr = Load->getBasePtr();
|
|
EVT PtrVT = BasePtr.getValueType();
|
|
EVT MemVT = Load->getMemoryVT();
|
|
SDLoc SL(Op);
|
|
MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
|
|
|
|
EVT LoVT, HiVT;
|
|
EVT LoMemVT, HiMemVT;
|
|
SDValue Lo, Hi;
|
|
|
|
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
|
|
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
|
|
std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
|
|
SDValue LoLoad
|
|
= DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
|
|
Load->getChain(), BasePtr,
|
|
SrcValue,
|
|
LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
|
|
Load->isInvariant(), Load->getAlignment());
|
|
|
|
SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
|
|
DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
|
|
|
|
SDValue HiLoad
|
|
= DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
|
|
Load->getChain(), HiPtr,
|
|
SrcValue.getWithOffset(LoMemVT.getStoreSize()),
|
|
HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
|
|
Load->isInvariant(), Load->getAlignment());
|
|
|
|
SDValue Ops[] = {
|
|
DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
|
|
DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
|
|
LoLoad.getValue(1), HiLoad.getValue(1))
|
|
};
|
|
|
|
return DAG.getMergeValues(Ops, SL);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
|
|
SelectionDAG &DAG) const {
|
|
StoreSDNode *Store = cast<StoreSDNode>(Op);
|
|
EVT MemVT = Store->getMemoryVT();
|
|
unsigned MemBits = MemVT.getSizeInBits();
|
|
|
|
// Byte stores are really expensive, so if possible, try to pack 32-bit vector
|
|
// truncating store into an i32 store.
|
|
// XXX: We could also handle optimize other vector bitwidths.
|
|
if (!MemVT.isVector() || MemBits > 32) {
|
|
return SDValue();
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
SDValue Value = Store->getValue();
|
|
EVT VT = Value.getValueType();
|
|
EVT ElemVT = VT.getVectorElementType();
|
|
SDValue Ptr = Store->getBasePtr();
|
|
EVT MemEltVT = MemVT.getVectorElementType();
|
|
unsigned MemEltBits = MemEltVT.getSizeInBits();
|
|
unsigned MemNumElements = MemVT.getVectorNumElements();
|
|
unsigned PackedSize = MemVT.getStoreSizeInBits();
|
|
SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, MVT::i32);
|
|
|
|
assert(Value.getValueType().getScalarSizeInBits() >= 32);
|
|
|
|
SDValue PackedValue;
|
|
for (unsigned i = 0; i < MemNumElements; ++i) {
|
|
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
|
|
DAG.getConstant(i, MVT::i32));
|
|
Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
|
|
Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
|
|
|
|
SDValue Shift = DAG.getConstant(MemEltBits * i, MVT::i32);
|
|
Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
|
|
|
|
if (i == 0) {
|
|
PackedValue = Elt;
|
|
} else {
|
|
PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
|
|
}
|
|
}
|
|
|
|
if (PackedSize < 32) {
|
|
EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
|
|
return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
|
|
Store->getMemOperand()->getPointerInfo(),
|
|
PackedVT,
|
|
Store->isNonTemporal(), Store->isVolatile(),
|
|
Store->getAlignment());
|
|
}
|
|
|
|
return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
|
|
Store->getMemOperand()->getPointerInfo(),
|
|
Store->isVolatile(), Store->isNonTemporal(),
|
|
Store->getAlignment());
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
StoreSDNode *Store = cast<StoreSDNode>(Op);
|
|
EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
|
|
EVT EltVT = Store->getValue().getValueType().getVectorElementType();
|
|
EVT PtrVT = Store->getBasePtr().getValueType();
|
|
unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
|
|
SDLoc SL(Op);
|
|
|
|
SmallVector<SDValue, 8> Chains;
|
|
|
|
unsigned EltSize = MemEltVT.getStoreSize();
|
|
MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
|
|
|
|
for (unsigned i = 0, e = NumElts; i != e; ++i) {
|
|
SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
|
|
Store->getValue(),
|
|
DAG.getConstant(i, MVT::i32));
|
|
|
|
SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), PtrVT);
|
|
SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
|
|
SDValue NewStore =
|
|
DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
|
|
SrcValue.getWithOffset(i * EltSize),
|
|
MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
|
|
Store->getAlignment());
|
|
Chains.push_back(NewStore);
|
|
}
|
|
|
|
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
StoreSDNode *Store = cast<StoreSDNode>(Op);
|
|
SDValue Val = Store->getValue();
|
|
EVT VT = Val.getValueType();
|
|
|
|
// If this is a 2 element vector, we really want to scalarize and not create
|
|
// weird 1 element vectors.
|
|
if (VT.getVectorNumElements() == 2)
|
|
return ScalarizeVectorStore(Op, DAG);
|
|
|
|
EVT MemVT = Store->getMemoryVT();
|
|
SDValue Chain = Store->getChain();
|
|
SDValue BasePtr = Store->getBasePtr();
|
|
SDLoc SL(Op);
|
|
|
|
EVT LoVT, HiVT;
|
|
EVT LoMemVT, HiMemVT;
|
|
SDValue Lo, Hi;
|
|
|
|
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
|
|
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
|
|
std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
|
|
|
|
EVT PtrVT = BasePtr.getValueType();
|
|
SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
|
|
DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
|
|
|
|
MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
|
|
SDValue LoStore
|
|
= DAG.getTruncStore(Chain, SL, Lo,
|
|
BasePtr,
|
|
SrcValue,
|
|
LoMemVT,
|
|
Store->isNonTemporal(),
|
|
Store->isVolatile(),
|
|
Store->getAlignment());
|
|
SDValue HiStore
|
|
= DAG.getTruncStore(Chain, SL, Hi,
|
|
HiPtr,
|
|
SrcValue.getWithOffset(LoMemVT.getStoreSize()),
|
|
HiMemVT,
|
|
Store->isNonTemporal(),
|
|
Store->isVolatile(),
|
|
Store->getAlignment());
|
|
|
|
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
|
|
}
|
|
|
|
|
|
SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
LoadSDNode *Load = cast<LoadSDNode>(Op);
|
|
ISD::LoadExtType ExtType = Load->getExtensionType();
|
|
EVT VT = Op.getValueType();
|
|
EVT MemVT = Load->getMemoryVT();
|
|
|
|
if (ExtType != ISD::NON_EXTLOAD && !VT.isVector() && VT.getSizeInBits() > 32) {
|
|
// We can do the extload to 32-bits, and then need to separately extend to
|
|
// 64-bits.
|
|
|
|
SDValue ExtLoad32 = DAG.getExtLoad(ExtType, DL, MVT::i32,
|
|
Load->getChain(),
|
|
Load->getBasePtr(),
|
|
MemVT,
|
|
Load->getMemOperand());
|
|
|
|
SDValue Ops[] = {
|
|
DAG.getNode(ISD::getExtForLoadExtType(ExtType), DL, VT, ExtLoad32),
|
|
ExtLoad32.getValue(1)
|
|
};
|
|
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
|
|
assert(VT == MVT::i1 && "Only i1 non-extloads expected");
|
|
// FIXME: Copied from PPC
|
|
// First, load into 32 bits, then truncate to 1 bit.
|
|
|
|
SDValue Chain = Load->getChain();
|
|
SDValue BasePtr = Load->getBasePtr();
|
|
MachineMemOperand *MMO = Load->getMemOperand();
|
|
|
|
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
|
|
BasePtr, MVT::i8, MMO);
|
|
|
|
SDValue Ops[] = {
|
|
DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
|
|
NewLD.getValue(1)
|
|
};
|
|
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
|
|
Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
|
|
ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
|
|
return SDValue();
|
|
|
|
|
|
SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
|
|
DAG.getConstant(2, MVT::i32));
|
|
SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
|
|
Load->getChain(), Ptr,
|
|
DAG.getTargetConstant(0, MVT::i32),
|
|
Op.getOperand(2));
|
|
SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
|
|
Load->getBasePtr(),
|
|
DAG.getConstant(0x3, MVT::i32));
|
|
SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
|
|
DAG.getConstant(3, MVT::i32));
|
|
|
|
Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
|
|
|
|
EVT MemEltVT = MemVT.getScalarType();
|
|
if (ExtType == ISD::SEXTLOAD) {
|
|
SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
|
|
|
|
SDValue Ops[] = {
|
|
DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
|
|
Load->getChain()
|
|
};
|
|
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue Ops[] = {
|
|
DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
|
|
Load->getChain()
|
|
};
|
|
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
|
|
if (Result.getNode()) {
|
|
return Result;
|
|
}
|
|
|
|
StoreSDNode *Store = cast<StoreSDNode>(Op);
|
|
SDValue Chain = Store->getChain();
|
|
if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
|
|
Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
|
|
Store->getValue().getValueType().isVector()) {
|
|
return ScalarizeVectorStore(Op, DAG);
|
|
}
|
|
|
|
EVT MemVT = Store->getMemoryVT();
|
|
if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
|
|
MemVT.bitsLT(MVT::i32)) {
|
|
unsigned Mask = 0;
|
|
if (Store->getMemoryVT() == MVT::i8) {
|
|
Mask = 0xff;
|
|
} else if (Store->getMemoryVT() == MVT::i16) {
|
|
Mask = 0xffff;
|
|
}
|
|
SDValue BasePtr = Store->getBasePtr();
|
|
SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
|
|
DAG.getConstant(2, MVT::i32));
|
|
SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
|
|
Chain, Ptr, DAG.getTargetConstant(0, MVT::i32));
|
|
|
|
SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
|
|
DAG.getConstant(0x3, MVT::i32));
|
|
|
|
SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
|
|
DAG.getConstant(3, MVT::i32));
|
|
|
|
SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
|
|
Store->getValue());
|
|
|
|
SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
|
|
|
|
SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
|
|
MaskedValue, ShiftAmt);
|
|
|
|
SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, DAG.getConstant(Mask, MVT::i32),
|
|
ShiftAmt);
|
|
DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
|
|
DAG.getConstant(0xffffffff, MVT::i32));
|
|
Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
|
|
|
|
SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
|
|
return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
|
|
Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// This is a shortcut for integer division because we have fast i32<->f32
|
|
// conversions, and fast f32 reciprocal instructions. The fractional part of a
|
|
// float is enough to accurately represent up to a 24-bit integer.
|
|
SDValue AMDGPUTargetLowering::LowerSDIV24(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
MVT IntVT = MVT::i32;
|
|
MVT FltVT = MVT::f32;
|
|
|
|
if (VT.isVector()) {
|
|
unsigned NElts = VT.getVectorNumElements();
|
|
IntVT = MVT::getVectorVT(MVT::i32, NElts);
|
|
FltVT = MVT::getVectorVT(MVT::f32, NElts);
|
|
}
|
|
|
|
unsigned BitSize = VT.getScalarType().getSizeInBits();
|
|
|
|
// char|short jq = ia ^ ib;
|
|
SDValue jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
|
|
|
|
// jq = jq >> (bitsize - 2)
|
|
jq = DAG.getNode(ISD::SRA, DL, VT, jq, DAG.getConstant(BitSize - 2, VT));
|
|
|
|
// jq = jq | 0x1
|
|
jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, VT));
|
|
|
|
// jq = (int)jq
|
|
jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
|
|
|
|
// int ia = (int)LHS;
|
|
SDValue ia = DAG.getSExtOrTrunc(LHS, DL, IntVT);
|
|
|
|
// int ib, (int)RHS;
|
|
SDValue ib = DAG.getSExtOrTrunc(RHS, DL, IntVT);
|
|
|
|
// float fa = (float)ia;
|
|
SDValue fa = DAG.getNode(ISD::SINT_TO_FP, DL, FltVT, ia);
|
|
|
|
// float fb = (float)ib;
|
|
SDValue fb = DAG.getNode(ISD::SINT_TO_FP, DL, FltVT, ib);
|
|
|
|
// float fq = native_divide(fa, fb);
|
|
SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
|
|
fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
|
|
|
|
// fq = trunc(fq);
|
|
fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
|
|
|
|
// float fqneg = -fq;
|
|
SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
|
|
|
|
// float fr = mad(fqneg, fb, fa);
|
|
SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
|
|
DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
|
|
|
|
// int iq = (int)fq;
|
|
SDValue iq = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, fq);
|
|
|
|
// fr = fabs(fr);
|
|
fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
|
|
|
|
// fb = fabs(fb);
|
|
fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
|
|
|
|
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), VT);
|
|
|
|
// int cv = fr >= fb;
|
|
SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
|
|
|
|
// jq = (cv ? jq : 0);
|
|
jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, VT));
|
|
|
|
// dst = iq + jq;
|
|
iq = DAG.getSExtOrTrunc(iq, DL, VT);
|
|
return DAG.getNode(ISD::ADD, DL, VT, iq, jq);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerSDIV32(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT OVT = Op.getValueType();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
// The LowerSDIV32 function generates equivalent to the following IL.
|
|
// mov r0, LHS
|
|
// mov r1, RHS
|
|
// ilt r10, r0, 0
|
|
// ilt r11, r1, 0
|
|
// iadd r0, r0, r10
|
|
// iadd r1, r1, r11
|
|
// ixor r0, r0, r10
|
|
// ixor r1, r1, r11
|
|
// udiv r0, r0, r1
|
|
// ixor r10, r10, r11
|
|
// iadd r0, r0, r10
|
|
// ixor DST, r0, r10
|
|
|
|
// mov r0, LHS
|
|
SDValue r0 = LHS;
|
|
|
|
// mov r1, RHS
|
|
SDValue r1 = RHS;
|
|
|
|
// ilt r10, r0, 0
|
|
SDValue r10 = DAG.getSelectCC(DL,
|
|
r0, DAG.getConstant(0, OVT),
|
|
DAG.getConstant(-1, OVT),
|
|
DAG.getConstant(0, OVT),
|
|
ISD::SETLT);
|
|
|
|
// ilt r11, r1, 0
|
|
SDValue r11 = DAG.getSelectCC(DL,
|
|
r1, DAG.getConstant(0, OVT),
|
|
DAG.getConstant(-1, OVT),
|
|
DAG.getConstant(0, OVT),
|
|
ISD::SETLT);
|
|
|
|
// iadd r0, r0, r10
|
|
r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
|
|
|
|
// iadd r1, r1, r11
|
|
r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11);
|
|
|
|
// ixor r0, r0, r10
|
|
r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
|
|
|
|
// ixor r1, r1, r11
|
|
r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11);
|
|
|
|
// udiv r0, r0, r1
|
|
r0 = DAG.getNode(ISD::UDIV, DL, OVT, r0, r1);
|
|
|
|
// ixor r10, r10, r11
|
|
r10 = DAG.getNode(ISD::XOR, DL, OVT, r10, r11);
|
|
|
|
// iadd r0, r0, r10
|
|
r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
|
|
|
|
// ixor DST, r0, r10
|
|
SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
|
|
return DST;
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerSDIV64(SDValue Op, SelectionDAG &DAG) const {
|
|
return SDValue(Op.getNode(), 0);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT OVT = Op.getValueType().getScalarType();
|
|
|
|
if (OVT == MVT::i32) {
|
|
if (DAG.ComputeNumSignBits(Op.getOperand(0)) > 8 &&
|
|
DAG.ComputeNumSignBits(Op.getOperand(1)) > 8) {
|
|
// TODO: We technically could do this for i64, but shouldn't that just be
|
|
// handled by something generally reducing 64-bit division on 32-bit
|
|
// values to 32-bit?
|
|
return LowerSDIV24(Op, DAG);
|
|
}
|
|
|
|
return LowerSDIV32(Op, DAG);
|
|
}
|
|
|
|
assert(OVT == MVT::i64);
|
|
return LowerSDIV64(Op, DAG);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerSREM32(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT OVT = Op.getValueType();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
// The LowerSREM32 function generates equivalent to the following IL.
|
|
// mov r0, LHS
|
|
// mov r1, RHS
|
|
// ilt r10, r0, 0
|
|
// ilt r11, r1, 0
|
|
// iadd r0, r0, r10
|
|
// iadd r1, r1, r11
|
|
// ixor r0, r0, r10
|
|
// ixor r1, r1, r11
|
|
// udiv r20, r0, r1
|
|
// umul r20, r20, r1
|
|
// sub r0, r0, r20
|
|
// iadd r0, r0, r10
|
|
// ixor DST, r0, r10
|
|
|
|
// mov r0, LHS
|
|
SDValue r0 = LHS;
|
|
|
|
// mov r1, RHS
|
|
SDValue r1 = RHS;
|
|
|
|
// ilt r10, r0, 0
|
|
SDValue r10 = DAG.getSetCC(DL, OVT, r0, DAG.getConstant(0, OVT), ISD::SETLT);
|
|
|
|
// ilt r11, r1, 0
|
|
SDValue r11 = DAG.getSetCC(DL, OVT, r1, DAG.getConstant(0, OVT), ISD::SETLT);
|
|
|
|
// iadd r0, r0, r10
|
|
r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
|
|
|
|
// iadd r1, r1, r11
|
|
r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11);
|
|
|
|
// ixor r0, r0, r10
|
|
r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
|
|
|
|
// ixor r1, r1, r11
|
|
r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11);
|
|
|
|
// udiv r20, r0, r1
|
|
SDValue r20 = DAG.getNode(ISD::UREM, DL, OVT, r0, r1);
|
|
|
|
// umul r20, r20, r1
|
|
r20 = DAG.getNode(AMDGPUISD::UMUL, DL, OVT, r20, r1);
|
|
|
|
// sub r0, r0, r20
|
|
r0 = DAG.getNode(ISD::SUB, DL, OVT, r0, r20);
|
|
|
|
// iadd r0, r0, r10
|
|
r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10);
|
|
|
|
// ixor DST, r0, r10
|
|
SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10);
|
|
return DST;
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerSREM64(SDValue Op, SelectionDAG &DAG) const {
|
|
return SDValue(Op.getNode(), 0);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerSREM(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT OVT = Op.getValueType();
|
|
|
|
if (OVT.getScalarType() == MVT::i64)
|
|
return LowerSREM64(Op, DAG);
|
|
|
|
if (OVT.getScalarType() == MVT::i32)
|
|
return LowerSREM32(Op, DAG);
|
|
|
|
return SDValue(Op.getNode(), 0);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
SDValue Num = Op.getOperand(0);
|
|
SDValue Den = Op.getOperand(1);
|
|
|
|
// RCP = URECIP(Den) = 2^32 / Den + e
|
|
// e is rounding error.
|
|
SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
|
|
|
|
// RCP_LO = umulo(RCP, Den) */
|
|
SDValue RCP_LO = DAG.getNode(ISD::UMULO, DL, VT, RCP, Den);
|
|
|
|
// RCP_HI = mulhu (RCP, Den) */
|
|
SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
|
|
|
|
// NEG_RCP_LO = -RCP_LO
|
|
SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
|
|
RCP_LO);
|
|
|
|
// ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
|
|
SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
|
|
NEG_RCP_LO, RCP_LO,
|
|
ISD::SETEQ);
|
|
// Calculate the rounding error from the URECIP instruction
|
|
// E = mulhu(ABS_RCP_LO, RCP)
|
|
SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
|
|
|
|
// RCP_A_E = RCP + E
|
|
SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
|
|
|
|
// RCP_S_E = RCP - E
|
|
SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
|
|
|
|
// Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
|
|
SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
|
|
RCP_A_E, RCP_S_E,
|
|
ISD::SETEQ);
|
|
// Quotient = mulhu(Tmp0, Num)
|
|
SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
|
|
|
|
// Num_S_Remainder = Quotient * Den
|
|
SDValue Num_S_Remainder = DAG.getNode(ISD::UMULO, DL, VT, Quotient, Den);
|
|
|
|
// Remainder = Num - Num_S_Remainder
|
|
SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
|
|
|
|
// Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
|
|
SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
|
|
DAG.getConstant(-1, VT),
|
|
DAG.getConstant(0, VT),
|
|
ISD::SETUGE);
|
|
// Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
|
|
SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
|
|
Num_S_Remainder,
|
|
DAG.getConstant(-1, VT),
|
|
DAG.getConstant(0, VT),
|
|
ISD::SETUGE);
|
|
// Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
|
|
SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
|
|
Remainder_GE_Zero);
|
|
|
|
// Calculate Division result:
|
|
|
|
// Quotient_A_One = Quotient + 1
|
|
SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
|
|
DAG.getConstant(1, VT));
|
|
|
|
// Quotient_S_One = Quotient - 1
|
|
SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
|
|
DAG.getConstant(1, VT));
|
|
|
|
// Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
|
|
SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
|
|
Quotient, Quotient_A_One, ISD::SETEQ);
|
|
|
|
// Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
|
|
Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
|
|
Quotient_S_One, Div, ISD::SETEQ);
|
|
|
|
// Calculate Rem result:
|
|
|
|
// Remainder_S_Den = Remainder - Den
|
|
SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
|
|
|
|
// Remainder_A_Den = Remainder + Den
|
|
SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
|
|
|
|
// Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
|
|
SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
|
|
Remainder, Remainder_S_Den, ISD::SETEQ);
|
|
|
|
// Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
|
|
Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
|
|
Remainder_A_Den, Rem, ISD::SETEQ);
|
|
SDValue Ops[2] = {
|
|
Div,
|
|
Rem
|
|
};
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
SDValue Zero = DAG.getConstant(0, VT);
|
|
SDValue NegOne = DAG.getConstant(-1, VT);
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
|
|
SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
|
|
SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
|
|
SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
|
|
SDValue RSign = LHSign; // Remainder sign is the same as LHS
|
|
|
|
LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
|
|
RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
|
|
|
|
LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
|
|
RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
|
|
|
|
SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
|
|
SDValue Rem = Div.getValue(1);
|
|
|
|
Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
|
|
Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
|
|
|
|
Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
|
|
Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
|
|
|
|
SDValue Res[2] = {
|
|
Div,
|
|
Rem
|
|
};
|
|
return DAG.getMergeValues(Res, DL);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
// result = trunc(src)
|
|
// if (src > 0.0 && src != result)
|
|
// result += 1.0
|
|
|
|
SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
|
|
|
|
const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
|
|
const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
|
|
|
|
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
|
|
|
|
SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
|
|
SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
|
|
SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
|
|
|
|
SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
|
|
return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
assert(Op.getValueType() == MVT::f64);
|
|
|
|
const SDValue Zero = DAG.getConstant(0, MVT::i32);
|
|
const SDValue One = DAG.getConstant(1, MVT::i32);
|
|
|
|
SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
|
|
|
|
// Extract the upper half, since this is where we will find the sign and
|
|
// exponent.
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
|
|
|
|
const unsigned FractBits = 52;
|
|
const unsigned ExpBits = 11;
|
|
|
|
// Extract the exponent.
|
|
SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_I32, SL, MVT::i32,
|
|
Hi,
|
|
DAG.getConstant(FractBits - 32, MVT::i32),
|
|
DAG.getConstant(ExpBits, MVT::i32));
|
|
SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
|
|
DAG.getConstant(1023, MVT::i32));
|
|
|
|
// Extract the sign bit.
|
|
const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, MVT::i32);
|
|
SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
|
|
|
|
// Extend back to to 64-bits.
|
|
SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
|
|
Zero, SignBit);
|
|
SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
|
|
|
|
SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
|
|
const SDValue FractMask
|
|
= DAG.getConstant((UINT64_C(1) << FractBits) - 1, MVT::i64);
|
|
|
|
SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
|
|
SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
|
|
SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
|
|
|
|
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
|
|
|
|
const SDValue FiftyOne = DAG.getConstant(FractBits - 1, MVT::i32);
|
|
|
|
SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
|
|
SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
|
|
|
|
SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
|
|
SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
|
|
|
|
return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
assert(Op.getValueType() == MVT::f64);
|
|
|
|
APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
|
|
SDValue C1 = DAG.getConstantFP(C1Val, MVT::f64);
|
|
SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
|
|
|
|
SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
|
|
SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
|
|
|
|
SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
|
|
|
|
APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
|
|
SDValue C2 = DAG.getConstantFP(C2Val, MVT::f64);
|
|
|
|
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
|
|
SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
|
|
|
|
return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
|
|
// FNEARBYINT and FRINT are the same, except in their handling of FP
|
|
// exceptions. Those aren't really meaningful for us, and OpenCL only has
|
|
// rint, so just treat them as equivalent.
|
|
return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc SL(Op);
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
// result = trunc(src);
|
|
// if (src < 0.0 && src != result)
|
|
// result += -1.0.
|
|
|
|
SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
|
|
|
|
const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
|
|
const SDValue NegOne = DAG.getConstantFP(-1.0, MVT::f64);
|
|
|
|
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
|
|
|
|
SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
|
|
SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
|
|
SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
|
|
|
|
SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
|
|
return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue S0 = Op.getOperand(0);
|
|
SDLoc DL(Op);
|
|
if (Op.getValueType() != MVT::f32 || S0.getValueType() != MVT::i64)
|
|
return SDValue();
|
|
|
|
// f32 uint_to_fp i64
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
|
|
DAG.getConstant(1, MVT::i32));
|
|
SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
|
|
FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
|
|
DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
|
|
return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::ExpandSIGN_EXTEND_INREG(SDValue Op,
|
|
unsigned BitsDiff,
|
|
SelectionDAG &DAG) const {
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDLoc DL(Op);
|
|
SDValue Shift = DAG.getConstant(BitsDiff, VT);
|
|
// Shift left by 'Shift' bits.
|
|
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Op.getOperand(0), Shift);
|
|
// Signed shift Right by 'Shift' bits.
|
|
return DAG.getNode(ISD::SRA, DL, VT, Shl, Shift);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
MVT VT = Op.getSimpleValueType();
|
|
MVT ScalarVT = VT.getScalarType();
|
|
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
SDValue Src = Op.getOperand(0);
|
|
SDLoc DL(Op);
|
|
|
|
// TODO: Don't scalarize on Evergreen?
|
|
unsigned NElts = VT.getVectorNumElements();
|
|
SmallVector<SDValue, 8> Args;
|
|
DAG.ExtractVectorElements(Src, Args, 0, NElts);
|
|
|
|
SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
|
|
for (unsigned I = 0; I < NElts; ++I)
|
|
Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
|
|
|
|
return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom DAG optimizations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isU24(SDValue Op, SelectionDAG &DAG) {
|
|
APInt KnownZero, KnownOne;
|
|
EVT VT = Op.getValueType();
|
|
DAG.computeKnownBits(Op, KnownZero, KnownOne);
|
|
|
|
return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
|
|
}
|
|
|
|
static bool isI24(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// In order for this to be a signed 24-bit value, bit 23, must
|
|
// be a sign bit.
|
|
return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
|
|
// as unsigned 24-bit values.
|
|
(VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
|
|
}
|
|
|
|
static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT VT = Op.getValueType();
|
|
|
|
APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
|
|
APInt KnownZero, KnownOne;
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
|
|
if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
|
|
DCI.CommitTargetLoweringOpt(TLO);
|
|
}
|
|
|
|
template <typename IntTy>
|
|
static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
|
|
uint32_t Offset, uint32_t Width) {
|
|
if (Width + Offset < 32) {
|
|
IntTy Result = (Src0 << (32 - Offset - Width)) >> (32 - Width);
|
|
return DAG.getConstant(Result, MVT::i32);
|
|
}
|
|
|
|
return DAG.getConstant(Src0 >> Offset, MVT::i32);
|
|
}
|
|
|
|
static bool usesAllNormalStores(SDNode *LoadVal) {
|
|
for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
|
|
if (!ISD::isNormalStore(*I))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// If we have a copy of an illegal type, replace it with a load / store of an
|
|
// equivalently sized legal type. This avoids intermediate bit pack / unpack
|
|
// instructions emitted when handling extloads and truncstores. Ideally we could
|
|
// recognize the pack / unpack pattern to eliminate it.
|
|
SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
if (!DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
StoreSDNode *SN = cast<StoreSDNode>(N);
|
|
SDValue Value = SN->getValue();
|
|
EVT VT = Value.getValueType();
|
|
|
|
if (isTypeLegal(VT) || SN->isVolatile() || !ISD::isNormalLoad(Value.getNode()))
|
|
return SDValue();
|
|
|
|
LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
|
|
if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
|
|
return SDValue();
|
|
|
|
EVT MemVT = LoadVal->getMemoryVT();
|
|
|
|
SDLoc SL(N);
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
|
|
|
|
SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
|
|
LoadVT, SL,
|
|
LoadVal->getChain(),
|
|
LoadVal->getBasePtr(),
|
|
LoadVal->getOffset(),
|
|
LoadVT,
|
|
LoadVal->getMemOperand());
|
|
|
|
SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
|
|
DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
|
|
|
|
return DAG.getStore(SN->getChain(), SL, NewLoad,
|
|
SN->getBasePtr(), SN->getMemOperand());
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (VT.isVector() || VT.getSizeInBits() > 32)
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue Mul;
|
|
|
|
if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
|
|
N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
|
|
N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
|
|
Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
|
|
} else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
|
|
N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
|
|
N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
|
|
Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
// We need to use sext even for MUL_U24, because MUL_U24 is used
|
|
// for signed multiply of 8 and 16-bit types.
|
|
return DAG.getSExtOrTrunc(Mul, DL, VT);
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
|
|
switch(N->getOpcode()) {
|
|
default: break;
|
|
case ISD::MUL:
|
|
return performMulCombine(N, DCI);
|
|
case AMDGPUISD::MUL_I24:
|
|
case AMDGPUISD::MUL_U24: {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
simplifyI24(N0, DCI);
|
|
simplifyI24(N1, DCI);
|
|
return SDValue();
|
|
}
|
|
case ISD::SELECT_CC: {
|
|
return CombineMinMax(N, DAG);
|
|
}
|
|
case AMDGPUISD::BFE_I32:
|
|
case AMDGPUISD::BFE_U32: {
|
|
assert(!N->getValueType(0).isVector() &&
|
|
"Vector handling of BFE not implemented");
|
|
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
|
|
if (!Width)
|
|
break;
|
|
|
|
uint32_t WidthVal = Width->getZExtValue() & 0x1f;
|
|
if (WidthVal == 0)
|
|
return DAG.getConstant(0, MVT::i32);
|
|
|
|
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!Offset)
|
|
break;
|
|
|
|
SDValue BitsFrom = N->getOperand(0);
|
|
uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
|
|
|
|
bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
|
|
|
|
if (OffsetVal == 0) {
|
|
// This is already sign / zero extended, so try to fold away extra BFEs.
|
|
unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
|
|
|
|
unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
|
|
if (OpSignBits >= SignBits)
|
|
return BitsFrom;
|
|
|
|
EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
|
|
if (Signed) {
|
|
// This is a sign_extend_inreg. Replace it to take advantage of existing
|
|
// DAG Combines. If not eliminated, we will match back to BFE during
|
|
// selection.
|
|
|
|
// TODO: The sext_inreg of extended types ends, although we can could
|
|
// handle them in a single BFE.
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
|
|
DAG.getValueType(SmallVT));
|
|
}
|
|
|
|
return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
|
|
}
|
|
|
|
if (ConstantSDNode *Val = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
|
|
if (Signed) {
|
|
return constantFoldBFE<int32_t>(DAG,
|
|
Val->getSExtValue(),
|
|
OffsetVal,
|
|
WidthVal);
|
|
}
|
|
|
|
return constantFoldBFE<uint32_t>(DAG,
|
|
Val->getZExtValue(),
|
|
OffsetVal,
|
|
WidthVal);
|
|
}
|
|
|
|
APInt Demanded = APInt::getBitsSet(32,
|
|
OffsetVal,
|
|
OffsetVal + WidthVal);
|
|
|
|
if ((OffsetVal + WidthVal) >= 32) {
|
|
SDValue ShiftVal = DAG.getConstant(OffsetVal, MVT::i32);
|
|
return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
|
|
BitsFrom, ShiftVal);
|
|
}
|
|
|
|
APInt KnownZero, KnownOne;
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
|
|
!DCI.isBeforeLegalizeOps());
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
|
|
TLI.SimplifyDemandedBits(BitsFrom, Demanded, KnownZero, KnownOne, TLO)) {
|
|
DCI.CommitTargetLoweringOpt(TLO);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case ISD::STORE:
|
|
return performStoreCombine(N, DCI);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AMDGPUTargetLowering::getOriginalFunctionArgs(
|
|
SelectionDAG &DAG,
|
|
const Function *F,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SmallVectorImpl<ISD::InputArg> &OrigIns) const {
|
|
|
|
for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
|
|
if (Ins[i].ArgVT == Ins[i].VT) {
|
|
OrigIns.push_back(Ins[i]);
|
|
continue;
|
|
}
|
|
|
|
EVT VT;
|
|
if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
|
|
// Vector has been split into scalars.
|
|
VT = Ins[i].ArgVT.getVectorElementType();
|
|
} else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
|
|
Ins[i].ArgVT.getVectorElementType() !=
|
|
Ins[i].VT.getVectorElementType()) {
|
|
// Vector elements have been promoted
|
|
VT = Ins[i].ArgVT;
|
|
} else {
|
|
// Vector has been spilt into smaller vectors.
|
|
VT = Ins[i].VT;
|
|
}
|
|
|
|
ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
|
|
Ins[i].OrigArgIndex, Ins[i].PartOffset);
|
|
OrigIns.push_back(Arg);
|
|
}
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
|
|
if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
|
|
return CFP->isExactlyValue(1.0);
|
|
}
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
return C->isAllOnesValue();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
|
|
if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
|
|
return CFP->getValueAPF().isZero();
|
|
}
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
return C->isNullValue();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Reg, EVT VT) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
unsigned VirtualRegister;
|
|
if (!MRI.isLiveIn(Reg)) {
|
|
VirtualRegister = MRI.createVirtualRegister(RC);
|
|
MRI.addLiveIn(Reg, VirtualRegister);
|
|
} else {
|
|
VirtualRegister = MRI.getLiveInVirtReg(Reg);
|
|
}
|
|
return DAG.getRegister(VirtualRegister, VT);
|
|
}
|
|
|
|
#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
|
|
|
|
const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return nullptr;
|
|
// AMDIL DAG nodes
|
|
NODE_NAME_CASE(CALL);
|
|
NODE_NAME_CASE(UMUL);
|
|
NODE_NAME_CASE(RET_FLAG);
|
|
NODE_NAME_CASE(BRANCH_COND);
|
|
|
|
// AMDGPU DAG nodes
|
|
NODE_NAME_CASE(DWORDADDR)
|
|
NODE_NAME_CASE(FRACT)
|
|
NODE_NAME_CASE(CLAMP)
|
|
NODE_NAME_CASE(FMAX)
|
|
NODE_NAME_CASE(SMAX)
|
|
NODE_NAME_CASE(UMAX)
|
|
NODE_NAME_CASE(FMIN)
|
|
NODE_NAME_CASE(SMIN)
|
|
NODE_NAME_CASE(UMIN)
|
|
NODE_NAME_CASE(URECIP)
|
|
NODE_NAME_CASE(DIV_SCALE)
|
|
NODE_NAME_CASE(DIV_FMAS)
|
|
NODE_NAME_CASE(DIV_FIXUP)
|
|
NODE_NAME_CASE(TRIG_PREOP)
|
|
NODE_NAME_CASE(RCP)
|
|
NODE_NAME_CASE(RSQ)
|
|
NODE_NAME_CASE(RSQ_LEGACY)
|
|
NODE_NAME_CASE(RSQ_CLAMPED)
|
|
NODE_NAME_CASE(DOT4)
|
|
NODE_NAME_CASE(BFE_U32)
|
|
NODE_NAME_CASE(BFE_I32)
|
|
NODE_NAME_CASE(BFI)
|
|
NODE_NAME_CASE(BFM)
|
|
NODE_NAME_CASE(BREV)
|
|
NODE_NAME_CASE(MUL_U24)
|
|
NODE_NAME_CASE(MUL_I24)
|
|
NODE_NAME_CASE(MAD_U24)
|
|
NODE_NAME_CASE(MAD_I24)
|
|
NODE_NAME_CASE(EXPORT)
|
|
NODE_NAME_CASE(CONST_ADDRESS)
|
|
NODE_NAME_CASE(REGISTER_LOAD)
|
|
NODE_NAME_CASE(REGISTER_STORE)
|
|
NODE_NAME_CASE(LOAD_CONSTANT)
|
|
NODE_NAME_CASE(LOAD_INPUT)
|
|
NODE_NAME_CASE(SAMPLE)
|
|
NODE_NAME_CASE(SAMPLEB)
|
|
NODE_NAME_CASE(SAMPLED)
|
|
NODE_NAME_CASE(SAMPLEL)
|
|
NODE_NAME_CASE(CVT_F32_UBYTE0)
|
|
NODE_NAME_CASE(CVT_F32_UBYTE1)
|
|
NODE_NAME_CASE(CVT_F32_UBYTE2)
|
|
NODE_NAME_CASE(CVT_F32_UBYTE3)
|
|
NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
|
|
NODE_NAME_CASE(CONST_DATA_PTR)
|
|
NODE_NAME_CASE(STORE_MSKOR)
|
|
NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
|
|
}
|
|
}
|
|
|
|
static void computeKnownBitsForMinMax(const SDValue Op0,
|
|
const SDValue Op1,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) {
|
|
APInt Op0Zero, Op0One;
|
|
APInt Op1Zero, Op1One;
|
|
DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
|
|
DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
|
|
|
|
KnownZero = Op0Zero & Op1Zero;
|
|
KnownOne = Op0One & Op1One;
|
|
}
|
|
|
|
void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
|
|
const SDValue Op,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
|
|
KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
|
|
|
|
APInt KnownZero2;
|
|
APInt KnownOne2;
|
|
unsigned Opc = Op.getOpcode();
|
|
|
|
switch (Opc) {
|
|
default:
|
|
break;
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
// FIXME: The intrinsic should just use the node.
|
|
switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
|
|
case AMDGPUIntrinsic::AMDGPU_imax:
|
|
case AMDGPUIntrinsic::AMDGPU_umax:
|
|
case AMDGPUIntrinsic::AMDGPU_imin:
|
|
case AMDGPUIntrinsic::AMDGPU_umin:
|
|
computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
|
|
KnownZero, KnownOne, DAG, Depth);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case AMDGPUISD::SMAX:
|
|
case AMDGPUISD::UMAX:
|
|
case AMDGPUISD::SMIN:
|
|
case AMDGPUISD::UMIN:
|
|
computeKnownBitsForMinMax(Op.getOperand(0), Op.getOperand(1),
|
|
KnownZero, KnownOne, DAG, Depth);
|
|
break;
|
|
|
|
case AMDGPUISD::BFE_I32:
|
|
case AMDGPUISD::BFE_U32: {
|
|
ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
|
|
if (!CWidth)
|
|
return;
|
|
|
|
unsigned BitWidth = 32;
|
|
uint32_t Width = CWidth->getZExtValue() & 0x1f;
|
|
if (Width == 0) {
|
|
KnownZero = APInt::getAllOnesValue(BitWidth);
|
|
KnownOne = APInt::getNullValue(BitWidth);
|
|
return;
|
|
}
|
|
|
|
// FIXME: This could do a lot more. If offset is 0, should be the same as
|
|
// sign_extend_inreg implementation, but that involves duplicating it.
|
|
if (Opc == AMDGPUISD::BFE_I32)
|
|
KnownOne = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
|
|
else
|
|
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
|
|
SDValue Op,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
switch (Op.getOpcode()) {
|
|
case AMDGPUISD::BFE_I32: {
|
|
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
|
|
if (!Width)
|
|
return 1;
|
|
|
|
unsigned SignBits = 32 - Width->getZExtValue() + 1;
|
|
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (!Offset || !Offset->isNullValue())
|
|
return SignBits;
|
|
|
|
// TODO: Could probably figure something out with non-0 offsets.
|
|
unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
|
|
return std::max(SignBits, Op0SignBits);
|
|
}
|
|
|
|
case AMDGPUISD::BFE_U32: {
|
|
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
|
|
return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
|
|
}
|
|
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|