forked from OSchip/llvm-project
1366 lines
42 KiB
C++
1366 lines
42 KiB
C++
//===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// \file
|
|
//
|
|
// This file defines the interleaved-load-combine pass. The pass searches for
|
|
// ShuffleVectorInstruction that execute interleaving loads. If a matching
|
|
// pattern is found, it adds a combined load and further instructions in a
|
|
// pattern that is detectable by InterleavedAccesPass. The old instructions are
|
|
// left dead to be removed later. The pass is specifically designed to be
|
|
// executed just before InterleavedAccesPass to find any left-over instances
|
|
// that are not detected within former passes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <list>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "interleaved-load-combine"
|
|
|
|
namespace {
|
|
|
|
/// Statistic counter
|
|
STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
|
|
|
|
/// Option to disable the pass
|
|
static cl::opt<bool> DisableInterleavedLoadCombine(
|
|
"disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
|
|
cl::desc("Disable combining of interleaved loads"));
|
|
|
|
struct VectorInfo;
|
|
|
|
struct InterleavedLoadCombineImpl {
|
|
public:
|
|
InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
|
|
TargetMachine &TM)
|
|
: F(F), DT(DT), MSSA(MSSA),
|
|
TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
|
|
TTI(TM.getTargetTransformInfo(F)) {}
|
|
|
|
/// Scan the function for interleaved load candidates and execute the
|
|
/// replacement if applicable.
|
|
bool run();
|
|
|
|
private:
|
|
/// Function this pass is working on
|
|
Function &F;
|
|
|
|
/// Dominator Tree Analysis
|
|
DominatorTree &DT;
|
|
|
|
/// Memory Alias Analyses
|
|
MemorySSA &MSSA;
|
|
|
|
/// Target Lowering Information
|
|
const TargetLowering &TLI;
|
|
|
|
/// Target Transform Information
|
|
const TargetTransformInfo TTI;
|
|
|
|
/// Find the instruction in sets LIs that dominates all others, return nullptr
|
|
/// if there is none.
|
|
LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
|
|
|
|
/// Replace interleaved load candidates. It does additional
|
|
/// analyses if this makes sense. Returns true on success and false
|
|
/// of nothing has been changed.
|
|
bool combine(std::list<VectorInfo> &InterleavedLoad,
|
|
OptimizationRemarkEmitter &ORE);
|
|
|
|
/// Given a set of VectorInfo containing candidates for a given interleave
|
|
/// factor, find a set that represents a 'factor' interleaved load.
|
|
bool findPattern(std::list<VectorInfo> &Candidates,
|
|
std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
|
|
const DataLayout &DL);
|
|
}; // InterleavedLoadCombine
|
|
|
|
/// First Order Polynomial on an n-Bit Integer Value
|
|
///
|
|
/// Polynomial(Value) = Value * B + A + E*2^(n-e)
|
|
///
|
|
/// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
|
|
/// significant bits. It is introduced if an exact computation cannot be proven
|
|
/// (e.q. division by 2).
|
|
///
|
|
/// As part of this optimization multiple loads will be combined. It necessary
|
|
/// to prove that loads are within some relative offset to each other. This
|
|
/// class is used to prove relative offsets of values loaded from memory.
|
|
///
|
|
/// Representing an integer in this form is sound since addition in two's
|
|
/// complement is associative (trivial) and multiplication distributes over the
|
|
/// addition (see Proof(1) in Polynomial::mul). Further, both operations
|
|
/// commute.
|
|
//
|
|
// Example:
|
|
// declare @fn(i64 %IDX, <4 x float>* %PTR) {
|
|
// %Pa1 = add i64 %IDX, 2
|
|
// %Pa2 = lshr i64 %Pa1, 1
|
|
// %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
|
|
// %Va = load <4 x float>, <4 x float>* %Pa3
|
|
//
|
|
// %Pb1 = add i64 %IDX, 4
|
|
// %Pb2 = lshr i64 %Pb1, 1
|
|
// %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
|
|
// %Vb = load <4 x float>, <4 x float>* %Pb3
|
|
// ... }
|
|
//
|
|
// The goal is to prove that two loads load consecutive addresses.
|
|
//
|
|
// In this case the polynomials are constructed by the following
|
|
// steps.
|
|
//
|
|
// The number tag #e specifies the error bits.
|
|
//
|
|
// Pa_0 = %IDX #0
|
|
// Pa_1 = %IDX + 2 #0 | add 2
|
|
// Pa_2 = %IDX/2 + 1 #1 | lshr 1
|
|
// Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64
|
|
// Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats
|
|
// Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
|
|
//
|
|
// Pb_0 = %IDX #0
|
|
// Pb_1 = %IDX + 4 #0 | add 2
|
|
// Pb_2 = %IDX/2 + 2 #1 | lshr 1
|
|
// Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64
|
|
// Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats
|
|
// Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
|
|
//
|
|
// Pb_5 - Pa_5 = 16 #0 | subtract to get the offset
|
|
//
|
|
// Remark: %PTR is not maintained within this class. So in this instance the
|
|
// offset of 16 can only be assumed if the pointers are equal.
|
|
//
|
|
class Polynomial {
|
|
/// Operations on B
|
|
enum BOps {
|
|
LShr,
|
|
Mul,
|
|
SExt,
|
|
Trunc,
|
|
};
|
|
|
|
/// Number of Error Bits e
|
|
unsigned ErrorMSBs;
|
|
|
|
/// Value
|
|
Value *V;
|
|
|
|
/// Coefficient B
|
|
SmallVector<std::pair<BOps, APInt>, 4> B;
|
|
|
|
/// Coefficient A
|
|
APInt A;
|
|
|
|
public:
|
|
Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V) {
|
|
IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
|
|
if (Ty) {
|
|
ErrorMSBs = 0;
|
|
this->V = V;
|
|
A = APInt(Ty->getBitWidth(), 0);
|
|
}
|
|
}
|
|
|
|
Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
|
|
: ErrorMSBs(ErrorMSBs), V(nullptr), A(A) {}
|
|
|
|
Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
|
|
: ErrorMSBs(ErrorMSBs), V(nullptr), A(BitWidth, A) {}
|
|
|
|
Polynomial() : ErrorMSBs((unsigned)-1), V(nullptr) {}
|
|
|
|
/// Increment and clamp the number of undefined bits.
|
|
void incErrorMSBs(unsigned amt) {
|
|
if (ErrorMSBs == (unsigned)-1)
|
|
return;
|
|
|
|
ErrorMSBs += amt;
|
|
if (ErrorMSBs > A.getBitWidth())
|
|
ErrorMSBs = A.getBitWidth();
|
|
}
|
|
|
|
/// Decrement and clamp the number of undefined bits.
|
|
void decErrorMSBs(unsigned amt) {
|
|
if (ErrorMSBs == (unsigned)-1)
|
|
return;
|
|
|
|
if (ErrorMSBs > amt)
|
|
ErrorMSBs -= amt;
|
|
else
|
|
ErrorMSBs = 0;
|
|
}
|
|
|
|
/// Apply an add on the polynomial
|
|
Polynomial &add(const APInt &C) {
|
|
// Note: Addition is associative in two's complement even when in case of
|
|
// signed overflow.
|
|
//
|
|
// Error bits can only propagate into higher significant bits. As these are
|
|
// already regarded as undefined, there is no change.
|
|
//
|
|
// Theorem: Adding a constant to a polynomial does not change the error
|
|
// term.
|
|
//
|
|
// Proof:
|
|
//
|
|
// Since the addition is associative and commutes:
|
|
//
|
|
// (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
|
|
// [qed]
|
|
|
|
if (C.getBitWidth() != A.getBitWidth()) {
|
|
ErrorMSBs = (unsigned)-1;
|
|
return *this;
|
|
}
|
|
|
|
A += C;
|
|
return *this;
|
|
}
|
|
|
|
/// Apply a multiplication onto the polynomial.
|
|
Polynomial &mul(const APInt &C) {
|
|
// Note: Multiplication distributes over the addition
|
|
//
|
|
// Theorem: Multiplication distributes over the addition
|
|
//
|
|
// Proof(1):
|
|
//
|
|
// (B+A)*C =-
|
|
// = (B + A) + (B + A) + .. {C Times}
|
|
// addition is associative and commutes, hence
|
|
// = B + B + .. {C Times} .. + A + A + .. {C times}
|
|
// = B*C + A*C
|
|
// (see (function add) for signed values and overflows)
|
|
// [qed]
|
|
//
|
|
// Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
|
|
// to the left.
|
|
//
|
|
// Proof(2):
|
|
//
|
|
// Let B' and A' be the n-Bit inputs with some unknown errors EA,
|
|
// EB at e leading bits. B' and A' can be written down as:
|
|
//
|
|
// B' = B + 2^(n-e)*EB
|
|
// A' = A + 2^(n-e)*EA
|
|
//
|
|
// Let C' be an input with c trailing zero bits. C' can be written as
|
|
//
|
|
// C' = C*2^c
|
|
//
|
|
// Therefore we can compute the result by using distributivity and
|
|
// commutativity.
|
|
//
|
|
// (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
|
|
// = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
|
|
// = (B'+A') * C' =
|
|
// = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
|
|
// = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
|
|
// = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
|
|
// = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
|
|
// = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
|
|
//
|
|
// Let EC be the final error with EC = C*(EB + EA)
|
|
//
|
|
// = (B + A)*C' + EC*2^(n-e)*2^c =
|
|
// = (B + A)*C' + EC*2^(n-(e-c))
|
|
//
|
|
// Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
|
|
// less error bits than the input. c bits are shifted out to the left.
|
|
// [qed]
|
|
|
|
if (C.getBitWidth() != A.getBitWidth()) {
|
|
ErrorMSBs = (unsigned)-1;
|
|
return *this;
|
|
}
|
|
|
|
// Multiplying by one is a no-op.
|
|
if (C.isOne()) {
|
|
return *this;
|
|
}
|
|
|
|
// Multiplying by zero removes the coefficient B and defines all bits.
|
|
if (C.isZero()) {
|
|
ErrorMSBs = 0;
|
|
deleteB();
|
|
}
|
|
|
|
// See Proof(2): Trailing zero bits indicate a left shift. This removes
|
|
// leading bits from the result even if they are undefined.
|
|
decErrorMSBs(C.countTrailingZeros());
|
|
|
|
A *= C;
|
|
pushBOperation(Mul, C);
|
|
return *this;
|
|
}
|
|
|
|
/// Apply a logical shift right on the polynomial
|
|
Polynomial &lshr(const APInt &C) {
|
|
// Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
|
|
// where
|
|
// e' = e + 1,
|
|
// E is a e-bit number,
|
|
// E' is a e'-bit number,
|
|
// holds under the following precondition:
|
|
// pre(1): A % 2 = 0
|
|
// pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
|
|
// where >> expresses a logical shift to the right, with adding zeros.
|
|
//
|
|
// We need to show that for every, E there is a E'
|
|
//
|
|
// B = b_h * 2^(n-1) + b_m * 2 + b_l
|
|
// A = a_h * 2^(n-1) + a_m * 2 (pre(1))
|
|
//
|
|
// where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
|
|
//
|
|
// Let X = (B + A + E*2^(n-e)) >> 1
|
|
// Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
|
|
//
|
|
// X = [B + A + E*2^(n-e)] >> 1 =
|
|
// = [ b_h * 2^(n-1) + b_m * 2 + b_l +
|
|
// + a_h * 2^(n-1) + a_m * 2 +
|
|
// + E * 2^(n-e) ] >> 1 =
|
|
//
|
|
// The sum is built by putting the overflow of [a_m + b+n] into the term
|
|
// 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
|
|
// this bit is discarded. This is expressed by % 2.
|
|
//
|
|
// The bit in position 0 cannot overflow into the term (b_m + a_m).
|
|
//
|
|
// = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
|
|
// + ((b_m + a_m) % 2^(n-2)) * 2 +
|
|
// + b_l + E * 2^(n-e) ] >> 1 =
|
|
//
|
|
// The shift is computed by dividing the terms by 2 and by cutting off
|
|
// b_l.
|
|
//
|
|
// = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
|
|
// + ((b_m + a_m) % 2^(n-2)) +
|
|
// + E * 2^(n-(e+1)) =
|
|
//
|
|
// by the definition in the Theorem e+1 = e'
|
|
//
|
|
// = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
|
|
// + ((b_m + a_m) % 2^(n-2)) +
|
|
// + E * 2^(n-e') =
|
|
//
|
|
// Compute Y by applying distributivity first
|
|
//
|
|
// Y = (B >> 1) + (A >> 1) + E*2^(n-e') =
|
|
// = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
|
|
// + (a_h * 2^(n-1) + a_m * 2) >> 1 +
|
|
// + E * 2^(n-e) >> 1 =
|
|
//
|
|
// Again, the shift is computed by dividing the terms by 2 and by cutting
|
|
// off b_l.
|
|
//
|
|
// = b_h * 2^(n-2) + b_m +
|
|
// + a_h * 2^(n-2) + a_m +
|
|
// + E * 2^(n-(e+1)) =
|
|
//
|
|
// Again, the sum is built by putting the overflow of [a_m + b+n] into
|
|
// the term 2^(n-1). But this time there is room for a second bit in the
|
|
// term 2^(n-2) we add this bit to a new term and denote it o_h in a
|
|
// second step.
|
|
//
|
|
// = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
|
|
// + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
|
|
// + ((b_m + a_m) % 2^(n-2)) +
|
|
// + E * 2^(n-(e+1)) =
|
|
//
|
|
// Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
|
|
// Further replace e+1 by e'.
|
|
//
|
|
// = o_h * 2^(n-1) +
|
|
// + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
|
|
// + ((b_m + a_m) % 2^(n-2)) +
|
|
// + E * 2^(n-e') =
|
|
//
|
|
// Move o_h into the error term and construct E'. To ensure that there is
|
|
// no 2^x with negative x, this step requires pre(2) (e < n).
|
|
//
|
|
// = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
|
|
// + ((b_m + a_m) % 2^(n-2)) +
|
|
// + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1)
|
|
// | out of the old exponent
|
|
// + E * 2^(n-e') =
|
|
// = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
|
|
// + ((b_m + a_m) % 2^(n-2)) +
|
|
// + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of
|
|
// | the old exponent
|
|
//
|
|
// Let E' = o_h * 2^(e'-1) + E
|
|
//
|
|
// = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
|
|
// + ((b_m + a_m) % 2^(n-2)) +
|
|
// + E' * 2^(n-e')
|
|
//
|
|
// Because X and Y are distinct only in there error terms and E' can be
|
|
// constructed as shown the theorem holds.
|
|
// [qed]
|
|
//
|
|
// For completeness in case of the case e=n it is also required to show that
|
|
// distributivity can be applied.
|
|
//
|
|
// In this case Theorem(1) transforms to (the pre-condition on A can also be
|
|
// dropped)
|
|
//
|
|
// Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
|
|
// where
|
|
// A, B, E, E' are two's complement numbers with the same bit
|
|
// width
|
|
//
|
|
// Let A + B + E = X
|
|
// Let (B >> 1) + (A >> 1) = Y
|
|
//
|
|
// Therefore we need to show that for every X and Y there is an E' which
|
|
// makes the equation
|
|
//
|
|
// X = Y + E'
|
|
//
|
|
// hold. This is trivially the case for E' = X - Y.
|
|
//
|
|
// [qed]
|
|
//
|
|
// Remark: Distributing lshr with and arbitrary number n can be expressed as
|
|
// ((((B + A) lshr 1) lshr 1) ... ) {n times}.
|
|
// This construction induces n additional error bits at the left.
|
|
|
|
if (C.getBitWidth() != A.getBitWidth()) {
|
|
ErrorMSBs = (unsigned)-1;
|
|
return *this;
|
|
}
|
|
|
|
if (C.isZero())
|
|
return *this;
|
|
|
|
// Test if the result will be zero
|
|
unsigned shiftAmt = C.getZExtValue();
|
|
if (shiftAmt >= C.getBitWidth())
|
|
return mul(APInt(C.getBitWidth(), 0));
|
|
|
|
// The proof that shiftAmt LSBs are zero for at least one summand is only
|
|
// possible for the constant number.
|
|
//
|
|
// If this can be proven add shiftAmt to the error counter
|
|
// `ErrorMSBs`. Otherwise set all bits as undefined.
|
|
if (A.countTrailingZeros() < shiftAmt)
|
|
ErrorMSBs = A.getBitWidth();
|
|
else
|
|
incErrorMSBs(shiftAmt);
|
|
|
|
// Apply the operation.
|
|
pushBOperation(LShr, C);
|
|
A = A.lshr(shiftAmt);
|
|
|
|
return *this;
|
|
}
|
|
|
|
/// Apply a sign-extend or truncate operation on the polynomial.
|
|
Polynomial &sextOrTrunc(unsigned n) {
|
|
if (n < A.getBitWidth()) {
|
|
// Truncate: Clearly undefined Bits on the MSB side are removed
|
|
// if there are any.
|
|
decErrorMSBs(A.getBitWidth() - n);
|
|
A = A.trunc(n);
|
|
pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
|
|
}
|
|
if (n > A.getBitWidth()) {
|
|
// Extend: Clearly extending first and adding later is different
|
|
// to adding first and extending later in all extended bits.
|
|
incErrorMSBs(n - A.getBitWidth());
|
|
A = A.sext(n);
|
|
pushBOperation(SExt, APInt(sizeof(n) * 8, n));
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
/// Test if there is a coefficient B.
|
|
bool isFirstOrder() const { return V != nullptr; }
|
|
|
|
/// Test coefficient B of two Polynomials are equal.
|
|
bool isCompatibleTo(const Polynomial &o) const {
|
|
// The polynomial use different bit width.
|
|
if (A.getBitWidth() != o.A.getBitWidth())
|
|
return false;
|
|
|
|
// If neither Polynomial has the Coefficient B.
|
|
if (!isFirstOrder() && !o.isFirstOrder())
|
|
return true;
|
|
|
|
// The index variable is different.
|
|
if (V != o.V)
|
|
return false;
|
|
|
|
// Check the operations.
|
|
if (B.size() != o.B.size())
|
|
return false;
|
|
|
|
auto ob = o.B.begin();
|
|
for (auto &b : B) {
|
|
if (b != *ob)
|
|
return false;
|
|
ob++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Subtract two polynomials, return an undefined polynomial if
|
|
/// subtraction is not possible.
|
|
Polynomial operator-(const Polynomial &o) const {
|
|
// Return an undefined polynomial if incompatible.
|
|
if (!isCompatibleTo(o))
|
|
return Polynomial();
|
|
|
|
// If the polynomials are compatible (meaning they have the same
|
|
// coefficient on B), B is eliminated. Thus a polynomial solely
|
|
// containing A is returned
|
|
return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
|
|
}
|
|
|
|
/// Subtract a constant from a polynomial,
|
|
Polynomial operator-(uint64_t C) const {
|
|
Polynomial Result(*this);
|
|
Result.A -= C;
|
|
return Result;
|
|
}
|
|
|
|
/// Add a constant to a polynomial,
|
|
Polynomial operator+(uint64_t C) const {
|
|
Polynomial Result(*this);
|
|
Result.A += C;
|
|
return Result;
|
|
}
|
|
|
|
/// Returns true if it can be proven that two Polynomials are equal.
|
|
bool isProvenEqualTo(const Polynomial &o) {
|
|
// Subtract both polynomials and test if it is fully defined and zero.
|
|
Polynomial r = *this - o;
|
|
return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero());
|
|
}
|
|
|
|
/// Print the polynomial into a stream.
|
|
void print(raw_ostream &OS) const {
|
|
OS << "[{#ErrBits:" << ErrorMSBs << "} ";
|
|
|
|
if (V) {
|
|
for (auto b : B)
|
|
OS << "(";
|
|
OS << "(" << *V << ") ";
|
|
|
|
for (auto b : B) {
|
|
switch (b.first) {
|
|
case LShr:
|
|
OS << "LShr ";
|
|
break;
|
|
case Mul:
|
|
OS << "Mul ";
|
|
break;
|
|
case SExt:
|
|
OS << "SExt ";
|
|
break;
|
|
case Trunc:
|
|
OS << "Trunc ";
|
|
break;
|
|
}
|
|
|
|
OS << b.second << ") ";
|
|
}
|
|
}
|
|
|
|
OS << "+ " << A << "]";
|
|
}
|
|
|
|
private:
|
|
void deleteB() {
|
|
V = nullptr;
|
|
B.clear();
|
|
}
|
|
|
|
void pushBOperation(const BOps Op, const APInt &C) {
|
|
if (isFirstOrder()) {
|
|
B.push_back(std::make_pair(Op, C));
|
|
return;
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
|
|
S.print(OS);
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
/// VectorInfo stores abstract the following information for each vector
|
|
/// element:
|
|
///
|
|
/// 1) The the memory address loaded into the element as Polynomial
|
|
/// 2) a set of load instruction necessary to construct the vector,
|
|
/// 3) a set of all other instructions that are necessary to create the vector and
|
|
/// 4) a pointer value that can be used as relative base for all elements.
|
|
struct VectorInfo {
|
|
private:
|
|
VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
|
|
llvm_unreachable(
|
|
"Copying VectorInfo is neither implemented nor necessary,");
|
|
}
|
|
|
|
public:
|
|
/// Information of a Vector Element
|
|
struct ElementInfo {
|
|
/// Offset Polynomial.
|
|
Polynomial Ofs;
|
|
|
|
/// The Load Instruction used to Load the entry. LI is null if the pointer
|
|
/// of the load instruction does not point on to the entry
|
|
LoadInst *LI;
|
|
|
|
ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
|
|
: Ofs(Offset), LI(LI) {}
|
|
};
|
|
|
|
/// Basic-block the load instructions are within
|
|
BasicBlock *BB = nullptr;
|
|
|
|
/// Pointer value of all participation load instructions
|
|
Value *PV = nullptr;
|
|
|
|
/// Participating load instructions
|
|
std::set<LoadInst *> LIs;
|
|
|
|
/// Participating instructions
|
|
std::set<Instruction *> Is;
|
|
|
|
/// Final shuffle-vector instruction
|
|
ShuffleVectorInst *SVI = nullptr;
|
|
|
|
/// Information of the offset for each vector element
|
|
ElementInfo *EI;
|
|
|
|
/// Vector Type
|
|
FixedVectorType *const VTy;
|
|
|
|
VectorInfo(FixedVectorType *VTy) : VTy(VTy) {
|
|
EI = new ElementInfo[VTy->getNumElements()];
|
|
}
|
|
|
|
virtual ~VectorInfo() { delete[] EI; }
|
|
|
|
unsigned getDimension() const { return VTy->getNumElements(); }
|
|
|
|
/// Test if the VectorInfo can be part of an interleaved load with the
|
|
/// specified factor.
|
|
///
|
|
/// \param Factor of the interleave
|
|
/// \param DL Targets Datalayout
|
|
///
|
|
/// \returns true if this is possible and false if not
|
|
bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
|
|
unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
|
|
for (unsigned i = 1; i < getDimension(); i++) {
|
|
if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Recursively computes the vector information stored in V.
|
|
///
|
|
/// This function delegates the work to specialized implementations
|
|
///
|
|
/// \param V Value to operate on
|
|
/// \param Result Result of the computation
|
|
///
|
|
/// \returns false if no sensible information can be gathered.
|
|
static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
|
|
ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
|
|
if (SVI)
|
|
return computeFromSVI(SVI, Result, DL);
|
|
LoadInst *LI = dyn_cast<LoadInst>(V);
|
|
if (LI)
|
|
return computeFromLI(LI, Result, DL);
|
|
BitCastInst *BCI = dyn_cast<BitCastInst>(V);
|
|
if (BCI)
|
|
return computeFromBCI(BCI, Result, DL);
|
|
return false;
|
|
}
|
|
|
|
/// BitCastInst specialization to compute the vector information.
|
|
///
|
|
/// \param BCI BitCastInst to operate on
|
|
/// \param Result Result of the computation
|
|
///
|
|
/// \returns false if no sensible information can be gathered.
|
|
static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
|
|
const DataLayout &DL) {
|
|
Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
|
|
|
|
if (!Op)
|
|
return false;
|
|
|
|
FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType());
|
|
if (!VTy)
|
|
return false;
|
|
|
|
// We can only cast from large to smaller vectors
|
|
if (Result.VTy->getNumElements() % VTy->getNumElements())
|
|
return false;
|
|
|
|
unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
|
|
unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
|
|
unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
|
|
|
|
if (NewSize * Factor != OldSize)
|
|
return false;
|
|
|
|
VectorInfo Old(VTy);
|
|
if (!compute(Op, Old, DL))
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
|
|
for (unsigned j = 0; j < Factor; j++) {
|
|
Result.EI[i + j] =
|
|
ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
|
|
j == 0 ? Old.EI[i / Factor].LI : nullptr);
|
|
}
|
|
}
|
|
|
|
Result.BB = Old.BB;
|
|
Result.PV = Old.PV;
|
|
Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
|
|
Result.Is.insert(Old.Is.begin(), Old.Is.end());
|
|
Result.Is.insert(BCI);
|
|
Result.SVI = nullptr;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// ShuffleVectorInst specialization to compute vector information.
|
|
///
|
|
/// \param SVI ShuffleVectorInst to operate on
|
|
/// \param Result Result of the computation
|
|
///
|
|
/// Compute the left and the right side vector information and merge them by
|
|
/// applying the shuffle operation. This function also ensures that the left
|
|
/// and right side have compatible loads. This means that all loads are with
|
|
/// in the same basic block and are based on the same pointer.
|
|
///
|
|
/// \returns false if no sensible information can be gathered.
|
|
static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
|
|
const DataLayout &DL) {
|
|
FixedVectorType *ArgTy =
|
|
cast<FixedVectorType>(SVI->getOperand(0)->getType());
|
|
|
|
// Compute the left hand vector information.
|
|
VectorInfo LHS(ArgTy);
|
|
if (!compute(SVI->getOperand(0), LHS, DL))
|
|
LHS.BB = nullptr;
|
|
|
|
// Compute the right hand vector information.
|
|
VectorInfo RHS(ArgTy);
|
|
if (!compute(SVI->getOperand(1), RHS, DL))
|
|
RHS.BB = nullptr;
|
|
|
|
// Neither operand produced sensible results?
|
|
if (!LHS.BB && !RHS.BB)
|
|
return false;
|
|
// Only RHS produced sensible results?
|
|
else if (!LHS.BB) {
|
|
Result.BB = RHS.BB;
|
|
Result.PV = RHS.PV;
|
|
}
|
|
// Only LHS produced sensible results?
|
|
else if (!RHS.BB) {
|
|
Result.BB = LHS.BB;
|
|
Result.PV = LHS.PV;
|
|
}
|
|
// Both operands produced sensible results?
|
|
else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
|
|
Result.BB = LHS.BB;
|
|
Result.PV = LHS.PV;
|
|
}
|
|
// Both operands produced sensible results but they are incompatible.
|
|
else {
|
|
return false;
|
|
}
|
|
|
|
// Merge and apply the operation on the offset information.
|
|
if (LHS.BB) {
|
|
Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
|
|
Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
|
|
}
|
|
if (RHS.BB) {
|
|
Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
|
|
Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
|
|
}
|
|
Result.Is.insert(SVI);
|
|
Result.SVI = SVI;
|
|
|
|
int j = 0;
|
|
for (int i : SVI->getShuffleMask()) {
|
|
assert((i < 2 * (signed)ArgTy->getNumElements()) &&
|
|
"Invalid ShuffleVectorInst (index out of bounds)");
|
|
|
|
if (i < 0)
|
|
Result.EI[j] = ElementInfo();
|
|
else if (i < (signed)ArgTy->getNumElements()) {
|
|
if (LHS.BB)
|
|
Result.EI[j] = LHS.EI[i];
|
|
else
|
|
Result.EI[j] = ElementInfo();
|
|
} else {
|
|
if (RHS.BB)
|
|
Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
|
|
else
|
|
Result.EI[j] = ElementInfo();
|
|
}
|
|
j++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// LoadInst specialization to compute vector information.
|
|
///
|
|
/// This function also acts as abort condition to the recursion.
|
|
///
|
|
/// \param LI LoadInst to operate on
|
|
/// \param Result Result of the computation
|
|
///
|
|
/// \returns false if no sensible information can be gathered.
|
|
static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
|
|
const DataLayout &DL) {
|
|
Value *BasePtr;
|
|
Polynomial Offset;
|
|
|
|
if (LI->isVolatile())
|
|
return false;
|
|
|
|
if (LI->isAtomic())
|
|
return false;
|
|
|
|
// Get the base polynomial
|
|
computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
|
|
|
|
Result.BB = LI->getParent();
|
|
Result.PV = BasePtr;
|
|
Result.LIs.insert(LI);
|
|
Result.Is.insert(LI);
|
|
|
|
for (unsigned i = 0; i < Result.getDimension(); i++) {
|
|
Value *Idx[2] = {
|
|
ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
|
|
ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
|
|
};
|
|
int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
|
|
Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Recursively compute polynomial of a value.
|
|
///
|
|
/// \param BO Input binary operation
|
|
/// \param Result Result polynomial
|
|
static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
|
|
Value *LHS = BO.getOperand(0);
|
|
Value *RHS = BO.getOperand(1);
|
|
|
|
// Find the RHS Constant if any
|
|
ConstantInt *C = dyn_cast<ConstantInt>(RHS);
|
|
if ((!C) && BO.isCommutative()) {
|
|
C = dyn_cast<ConstantInt>(LHS);
|
|
if (C)
|
|
std::swap(LHS, RHS);
|
|
}
|
|
|
|
switch (BO.getOpcode()) {
|
|
case Instruction::Add:
|
|
if (!C)
|
|
break;
|
|
|
|
computePolynomial(*LHS, Result);
|
|
Result.add(C->getValue());
|
|
return;
|
|
|
|
case Instruction::LShr:
|
|
if (!C)
|
|
break;
|
|
|
|
computePolynomial(*LHS, Result);
|
|
Result.lshr(C->getValue());
|
|
return;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
Result = Polynomial(&BO);
|
|
}
|
|
|
|
/// Recursively compute polynomial of a value
|
|
///
|
|
/// \param V input value
|
|
/// \param Result result polynomial
|
|
static void computePolynomial(Value &V, Polynomial &Result) {
|
|
if (auto *BO = dyn_cast<BinaryOperator>(&V))
|
|
computePolynomialBinOp(*BO, Result);
|
|
else
|
|
Result = Polynomial(&V);
|
|
}
|
|
|
|
/// Compute the Polynomial representation of a Pointer type.
|
|
///
|
|
/// \param Ptr input pointer value
|
|
/// \param Result result polynomial
|
|
/// \param BasePtr pointer the polynomial is based on
|
|
/// \param DL Datalayout of the target machine
|
|
static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
|
|
Value *&BasePtr,
|
|
const DataLayout &DL) {
|
|
// Not a pointer type? Return an undefined polynomial
|
|
PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
|
|
if (!PtrTy) {
|
|
Result = Polynomial();
|
|
BasePtr = nullptr;
|
|
return;
|
|
}
|
|
unsigned PointerBits =
|
|
DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
|
|
|
|
/// Skip pointer casts. Return Zero polynomial otherwise
|
|
if (isa<CastInst>(&Ptr)) {
|
|
CastInst &CI = *cast<CastInst>(&Ptr);
|
|
switch (CI.getOpcode()) {
|
|
case Instruction::BitCast:
|
|
computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
|
|
break;
|
|
default:
|
|
BasePtr = &Ptr;
|
|
Polynomial(PointerBits, 0);
|
|
break;
|
|
}
|
|
}
|
|
/// Resolve GetElementPtrInst.
|
|
else if (isa<GetElementPtrInst>(&Ptr)) {
|
|
GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
|
|
|
|
APInt BaseOffset(PointerBits, 0);
|
|
|
|
// Check if we can compute the Offset with accumulateConstantOffset
|
|
if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
|
|
Result = Polynomial(BaseOffset);
|
|
BasePtr = GEP.getPointerOperand();
|
|
return;
|
|
} else {
|
|
// Otherwise we allow that the last index operand of the GEP is
|
|
// non-constant.
|
|
unsigned idxOperand, e;
|
|
SmallVector<Value *, 4> Indices;
|
|
for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
|
|
idxOperand++) {
|
|
ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
|
|
if (!IDX)
|
|
break;
|
|
Indices.push_back(IDX);
|
|
}
|
|
|
|
// It must also be the last operand.
|
|
if (idxOperand + 1 != e) {
|
|
Result = Polynomial();
|
|
BasePtr = nullptr;
|
|
return;
|
|
}
|
|
|
|
// Compute the polynomial of the index operand.
|
|
computePolynomial(*GEP.getOperand(idxOperand), Result);
|
|
|
|
// Compute base offset from zero based index, excluding the last
|
|
// variable operand.
|
|
BaseOffset =
|
|
DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
|
|
|
|
// Apply the operations of GEP to the polynomial.
|
|
unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
|
|
Result.sextOrTrunc(PointerBits);
|
|
Result.mul(APInt(PointerBits, ResultSize));
|
|
Result.add(BaseOffset);
|
|
BasePtr = GEP.getPointerOperand();
|
|
}
|
|
}
|
|
// All other instructions are handled by using the value as base pointer and
|
|
// a zero polynomial.
|
|
else {
|
|
BasePtr = &Ptr;
|
|
Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void print(raw_ostream &OS) const {
|
|
if (PV)
|
|
OS << *PV;
|
|
else
|
|
OS << "(none)";
|
|
OS << " + ";
|
|
for (unsigned i = 0; i < getDimension(); i++)
|
|
OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
|
|
OS << "]";
|
|
}
|
|
#endif
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
bool InterleavedLoadCombineImpl::findPattern(
|
|
std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
|
|
unsigned Factor, const DataLayout &DL) {
|
|
for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
|
|
unsigned i;
|
|
// Try to find an interleaved load using the front of Worklist as first line
|
|
unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
|
|
|
|
// List containing iterators pointing to the VectorInfos of the candidates
|
|
std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
|
|
|
|
for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
|
|
if (C->VTy != C0->VTy)
|
|
continue;
|
|
if (C->BB != C0->BB)
|
|
continue;
|
|
if (C->PV != C0->PV)
|
|
continue;
|
|
|
|
// Check the current value matches any of factor - 1 remaining lines
|
|
for (i = 1; i < Factor; i++) {
|
|
if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
|
|
Res[i] = C;
|
|
}
|
|
}
|
|
|
|
for (i = 1; i < Factor; i++) {
|
|
if (Res[i] == Candidates.end())
|
|
break;
|
|
}
|
|
if (i == Factor) {
|
|
Res[0] = C0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Res[0] != Candidates.end()) {
|
|
// Move the result into the output
|
|
for (unsigned i = 0; i < Factor; i++) {
|
|
InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
LoadInst *
|
|
InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
|
|
assert(!LIs.empty() && "No load instructions given.");
|
|
|
|
// All LIs are within the same BB. Select the first for a reference.
|
|
BasicBlock *BB = (*LIs.begin())->getParent();
|
|
BasicBlock::iterator FLI = llvm::find_if(
|
|
*BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); });
|
|
assert(FLI != BB->end());
|
|
|
|
return cast<LoadInst>(FLI);
|
|
}
|
|
|
|
bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
|
|
OptimizationRemarkEmitter &ORE) {
|
|
LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
|
|
|
|
// The insertion point is the LoadInst which loads the first values. The
|
|
// following tests are used to proof that the combined load can be inserted
|
|
// just before InsertionPoint.
|
|
LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
|
|
|
|
// Test if the offset is computed
|
|
if (!InsertionPoint)
|
|
return false;
|
|
|
|
std::set<LoadInst *> LIs;
|
|
std::set<Instruction *> Is;
|
|
std::set<Instruction *> SVIs;
|
|
|
|
InstructionCost InterleavedCost;
|
|
InstructionCost InstructionCost = 0;
|
|
const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency;
|
|
|
|
// Get the interleave factor
|
|
unsigned Factor = InterleavedLoad.size();
|
|
|
|
// Merge all input sets used in analysis
|
|
for (auto &VI : InterleavedLoad) {
|
|
// Generate a set of all load instructions to be combined
|
|
LIs.insert(VI.LIs.begin(), VI.LIs.end());
|
|
|
|
// Generate a set of all instructions taking part in load
|
|
// interleaved. This list excludes the instructions necessary for the
|
|
// polynomial construction.
|
|
Is.insert(VI.Is.begin(), VI.Is.end());
|
|
|
|
// Generate the set of the final ShuffleVectorInst.
|
|
SVIs.insert(VI.SVI);
|
|
}
|
|
|
|
// There is nothing to combine.
|
|
if (LIs.size() < 2)
|
|
return false;
|
|
|
|
// Test if all participating instruction will be dead after the
|
|
// transformation. If intermediate results are used, no performance gain can
|
|
// be expected. Also sum the cost of the Instructions beeing left dead.
|
|
for (auto &I : Is) {
|
|
// Compute the old cost
|
|
InstructionCost += TTI.getInstructionCost(I, CostKind);
|
|
|
|
// The final SVIs are allowed not to be dead, all uses will be replaced
|
|
if (SVIs.find(I) != SVIs.end())
|
|
continue;
|
|
|
|
// If there are users outside the set to be eliminated, we abort the
|
|
// transformation. No gain can be expected.
|
|
for (auto *U : I->users()) {
|
|
if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We need to have a valid cost in order to proceed.
|
|
if (!InstructionCost.isValid())
|
|
return false;
|
|
|
|
// We know that all LoadInst are within the same BB. This guarantees that
|
|
// either everything or nothing is loaded.
|
|
LoadInst *First = findFirstLoad(LIs);
|
|
|
|
// To be safe that the loads can be combined, iterate over all loads and test
|
|
// that the corresponding defining access dominates first LI. This guarantees
|
|
// that there are no aliasing stores in between the loads.
|
|
auto FMA = MSSA.getMemoryAccess(First);
|
|
for (auto LI : LIs) {
|
|
auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
|
|
if (!MSSA.dominates(MADef, FMA))
|
|
return false;
|
|
}
|
|
assert(!LIs.empty() && "There are no LoadInst to combine");
|
|
|
|
// It is necessary that insertion point dominates all final ShuffleVectorInst.
|
|
for (auto &VI : InterleavedLoad) {
|
|
if (!DT.dominates(InsertionPoint, VI.SVI))
|
|
return false;
|
|
}
|
|
|
|
// All checks are done. Add instructions detectable by InterleavedAccessPass
|
|
// The old instruction will are left dead.
|
|
IRBuilder<> Builder(InsertionPoint);
|
|
Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
|
|
unsigned ElementsPerSVI =
|
|
cast<FixedVectorType>(InterleavedLoad.front().SVI->getType())
|
|
->getNumElements();
|
|
FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI);
|
|
|
|
SmallVector<unsigned, 4> Indices;
|
|
for (unsigned i = 0; i < Factor; i++)
|
|
Indices.push_back(i);
|
|
InterleavedCost = TTI.getInterleavedMemoryOpCost(
|
|
Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(),
|
|
InsertionPoint->getPointerAddressSpace(), CostKind);
|
|
|
|
if (InterleavedCost >= InstructionCost) {
|
|
return false;
|
|
}
|
|
|
|
// Create a pointer cast for the wide load.
|
|
auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
|
|
ILTy->getPointerTo(),
|
|
"interleaved.wide.ptrcast");
|
|
|
|
// Create the wide load and update the MemorySSA.
|
|
auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlign(),
|
|
"interleaved.wide.load");
|
|
auto MSSAU = MemorySSAUpdater(&MSSA);
|
|
MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
|
|
LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
|
|
MSSAU.insertUse(MSSALoad);
|
|
|
|
// Create the final SVIs and replace all uses.
|
|
int i = 0;
|
|
for (auto &VI : InterleavedLoad) {
|
|
SmallVector<int, 4> Mask;
|
|
for (unsigned j = 0; j < ElementsPerSVI; j++)
|
|
Mask.push_back(i + j * Factor);
|
|
|
|
Builder.SetInsertPoint(VI.SVI);
|
|
auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle");
|
|
VI.SVI->replaceAllUsesWith(SVI);
|
|
i++;
|
|
}
|
|
|
|
NumInterleavedLoadCombine++;
|
|
ORE.emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
|
|
<< "Load interleaved combined with factor "
|
|
<< ore::NV("Factor", Factor);
|
|
});
|
|
|
|
return true;
|
|
}
|
|
|
|
bool InterleavedLoadCombineImpl::run() {
|
|
OptimizationRemarkEmitter ORE(&F);
|
|
bool changed = false;
|
|
unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
|
|
|
|
auto &DL = F.getParent()->getDataLayout();
|
|
|
|
// Start with the highest factor to avoid combining and recombining.
|
|
for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
|
|
std::list<VectorInfo> Candidates;
|
|
|
|
for (BasicBlock &BB : F) {
|
|
for (Instruction &I : BB) {
|
|
if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
|
|
// We don't support scalable vectors in this pass.
|
|
if (isa<ScalableVectorType>(SVI->getType()))
|
|
continue;
|
|
|
|
Candidates.emplace_back(cast<FixedVectorType>(SVI->getType()));
|
|
|
|
if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
|
|
Candidates.pop_back();
|
|
continue;
|
|
}
|
|
|
|
if (!Candidates.back().isInterleaved(Factor, DL)) {
|
|
Candidates.pop_back();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::list<VectorInfo> InterleavedLoad;
|
|
while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
|
|
if (combine(InterleavedLoad, ORE)) {
|
|
changed = true;
|
|
} else {
|
|
// Remove the first element of the Interleaved Load but put the others
|
|
// back on the list and continue searching
|
|
Candidates.splice(Candidates.begin(), InterleavedLoad,
|
|
std::next(InterleavedLoad.begin()),
|
|
InterleavedLoad.end());
|
|
}
|
|
InterleavedLoad.clear();
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
namespace {
|
|
/// This pass combines interleaved loads into a pattern detectable by
|
|
/// InterleavedAccessPass.
|
|
struct InterleavedLoadCombine : public FunctionPass {
|
|
static char ID;
|
|
|
|
InterleavedLoadCombine() : FunctionPass(ID) {
|
|
initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return "Interleaved Load Combine Pass";
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (DisableInterleavedLoadCombine)
|
|
return false;
|
|
|
|
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
|
|
if (!TPC)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
|
|
<< "\n");
|
|
|
|
return InterleavedLoadCombineImpl(
|
|
F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
|
|
getAnalysis<MemorySSAWrapperPass>().getMSSA(),
|
|
TPC->getTM<TargetMachine>())
|
|
.run();
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MemorySSAWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
private:
|
|
};
|
|
} // anonymous namespace
|
|
|
|
char InterleavedLoadCombine::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(
|
|
InterleavedLoadCombine, DEBUG_TYPE,
|
|
"Combine interleaved loads into wide loads and shufflevector instructions",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
INITIALIZE_PASS_END(
|
|
InterleavedLoadCombine, DEBUG_TYPE,
|
|
"Combine interleaved loads into wide loads and shufflevector instructions",
|
|
false, false)
|
|
|
|
FunctionPass *
|
|
llvm::createInterleavedLoadCombinePass() {
|
|
auto P = new InterleavedLoadCombine();
|
|
return P;
|
|
}
|