forked from OSchip/llvm-project
1311 lines
52 KiB
C++
1311 lines
52 KiB
C++
//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements loop fusion.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
#include "mlir/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Analysis/Utils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/InstVisitor.h"
|
|
#include "mlir/Pass.h"
|
|
#include "mlir/StandardOps/StandardOps.h"
|
|
#include "mlir/Transforms/LoopUtils.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "mlir/Transforms/Utils.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <iomanip>
|
|
|
|
#define DEBUG_TYPE "loop-fusion"
|
|
|
|
using llvm::SetVector;
|
|
|
|
using namespace mlir;
|
|
|
|
/// Disables fusion profitability check and fuses if valid.
|
|
static llvm::cl::opt<bool>
|
|
clMaximalLoopFusion("fusion-maximal", llvm::cl::Hidden,
|
|
llvm::cl::desc("Enables maximal loop fusion"));
|
|
|
|
/// A threshold in percent of additional computation allowed when fusing.
|
|
static llvm::cl::opt<double> clFusionAddlComputeTolerance(
|
|
"fusion-compute-tolerance", llvm::cl::Hidden,
|
|
llvm::cl::desc("Fractional increase in additional"
|
|
"computation tolerated while fusing"));
|
|
|
|
namespace {
|
|
|
|
/// Loop fusion pass. This pass currently supports a greedy fusion policy,
|
|
/// which fuses loop nests with single-writer/single-reader memref dependences
|
|
/// with the goal of improving locality.
|
|
|
|
// TODO(andydavis) Support fusion of source loop nests which write to multiple
|
|
// memrefs, where each memref can have multiple users (if profitable).
|
|
// TODO(andydavis) Extend this pass to check for fusion preventing dependences,
|
|
// and add support for more general loop fusion algorithms.
|
|
|
|
struct LoopFusion : public FunctionPass {
|
|
LoopFusion() : FunctionPass(&LoopFusion::passID) {}
|
|
|
|
PassResult runOnFunction(Function *f) override;
|
|
static char passID;
|
|
|
|
// The amount of additional computation that is tolerated while fusing
|
|
// pair-wise as a fraction of the total computation.
|
|
constexpr static double kComputeToleranceThreshold = 0.30f;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char LoopFusion::passID = 0;
|
|
|
|
FunctionPass *mlir::createLoopFusionPass() { return new LoopFusion; }
|
|
|
|
namespace {
|
|
|
|
// LoopNestStateCollector walks loop nests and collects load and store
|
|
// operations, and whether or not an IfInst was encountered in the loop nest.
|
|
class LoopNestStateCollector : public InstWalker<LoopNestStateCollector> {
|
|
public:
|
|
SmallVector<ForInst *, 4> forInsts;
|
|
SmallVector<OperationInst *, 4> loadOpInsts;
|
|
SmallVector<OperationInst *, 4> storeOpInsts;
|
|
bool hasIfInst = false;
|
|
|
|
void visitForInst(ForInst *forInst) { forInsts.push_back(forInst); }
|
|
|
|
void visitIfInst(IfInst *ifInst) { hasIfInst = true; }
|
|
|
|
void visitOperationInst(OperationInst *opInst) {
|
|
if (opInst->isa<LoadOp>())
|
|
loadOpInsts.push_back(opInst);
|
|
if (opInst->isa<StoreOp>())
|
|
storeOpInsts.push_back(opInst);
|
|
}
|
|
};
|
|
|
|
// TODO(b/117228571) Replace when this is modeled through side-effects/op traits
|
|
static bool isMemRefDereferencingOp(const OperationInst &op) {
|
|
if (op.isa<LoadOp>() || op.isa<StoreOp>() || op.isa<DmaStartOp>() ||
|
|
op.isa<DmaWaitOp>())
|
|
return true;
|
|
return false;
|
|
}
|
|
// MemRefDependenceGraph is a graph data structure where graph nodes are
|
|
// top-level instructions in a Function which contain load/store ops, and edges
|
|
// are memref dependences between the nodes.
|
|
// TODO(andydavis) Add a more flexible dependece graph representation.
|
|
// TODO(andydavis) Add a depth parameter to dependence graph construction.
|
|
struct MemRefDependenceGraph {
|
|
public:
|
|
// Node represents a node in the graph. A Node is either an entire loop nest
|
|
// rooted at the top level which contains loads/stores, or a top level
|
|
// load/store.
|
|
struct Node {
|
|
// The unique identifier of this node in the graph.
|
|
unsigned id;
|
|
// The top-level statment which is (or contains) loads/stores.
|
|
Instruction *inst;
|
|
// List of load operations.
|
|
SmallVector<OperationInst *, 4> loads;
|
|
// List of store op insts.
|
|
SmallVector<OperationInst *, 4> stores;
|
|
Node(unsigned id, Instruction *inst) : id(id), inst(inst) {}
|
|
|
|
// Returns the load op count for 'memref'.
|
|
unsigned getLoadOpCount(Value *memref) {
|
|
unsigned loadOpCount = 0;
|
|
for (auto *loadOpInst : loads) {
|
|
if (memref == loadOpInst->cast<LoadOp>()->getMemRef())
|
|
++loadOpCount;
|
|
}
|
|
return loadOpCount;
|
|
}
|
|
|
|
// Returns the store op count for 'memref'.
|
|
unsigned getStoreOpCount(Value *memref) {
|
|
unsigned storeOpCount = 0;
|
|
for (auto *storeOpInst : stores) {
|
|
if (memref == storeOpInst->cast<StoreOp>()->getMemRef())
|
|
++storeOpCount;
|
|
}
|
|
return storeOpCount;
|
|
}
|
|
};
|
|
|
|
// Edge represents a memref data dependece between nodes in the graph.
|
|
struct Edge {
|
|
// The id of the node at the other end of the edge.
|
|
unsigned id;
|
|
// The memref on which this edge represents a dependence.
|
|
Value *memref;
|
|
};
|
|
|
|
// Map from node id to Node.
|
|
DenseMap<unsigned, Node> nodes;
|
|
// Map from node id to list of input edges.
|
|
DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
|
|
// Map from node id to list of output edges.
|
|
DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
|
|
// Map from memref to a count on the dependence edges associated with that
|
|
// memref.
|
|
DenseMap<Value *, unsigned> memrefEdgeCount;
|
|
|
|
MemRefDependenceGraph() {}
|
|
|
|
// Initializes the dependence graph based on operations in 'f'.
|
|
// Returns true on success, false otherwise.
|
|
bool init(Function *f);
|
|
|
|
// Returns the graph node for 'id'.
|
|
Node *getNode(unsigned id) {
|
|
auto it = nodes.find(id);
|
|
assert(it != nodes.end());
|
|
return &it->second;
|
|
}
|
|
|
|
// Remove node 'id' (and its associated edges) from graph.
|
|
void removeNode(unsigned id) {
|
|
// Remove each edge in 'inEdges[id]'.
|
|
if (inEdges.count(id) > 0) {
|
|
SmallVector<Edge, 2> oldInEdges = inEdges[id];
|
|
for (auto &inEdge : oldInEdges) {
|
|
removeEdge(inEdge.id, id, inEdge.memref);
|
|
}
|
|
}
|
|
// Remove each edge in 'outEdges[id]'.
|
|
if (outEdges.count(id) > 0) {
|
|
SmallVector<Edge, 2> oldOutEdges = outEdges[id];
|
|
for (auto &outEdge : oldOutEdges) {
|
|
removeEdge(id, outEdge.id, outEdge.memref);
|
|
}
|
|
}
|
|
// Erase remaining node state.
|
|
inEdges.erase(id);
|
|
outEdges.erase(id);
|
|
nodes.erase(id);
|
|
}
|
|
|
|
bool hasOutEdges(unsigned id) {
|
|
return outEdges.count(id) > 0 && !outEdges[id].empty();
|
|
}
|
|
|
|
// Returns true if node 'id' writes to any memref which escapes (or is an
|
|
// argument to) the function/block. Returns false otherwise.
|
|
bool writesToLiveInOrEscapingMemrefs(unsigned id) {
|
|
Node *node = getNode(id);
|
|
for (auto *storeOpInst : node->stores) {
|
|
auto *memref = storeOpInst->cast<StoreOp>()->getMemRef();
|
|
auto *inst = memref->getDefiningInst();
|
|
auto *opInst = dyn_cast_or_null<OperationInst>(inst);
|
|
// Return false if 'memref' is a function argument.
|
|
if (opInst == nullptr)
|
|
return true;
|
|
// Return false if any use of 'memref' escapes the function.
|
|
for (auto &use : memref->getUses()) {
|
|
auto *user = dyn_cast<OperationInst>(use.getOwner());
|
|
if (!user || !isMemRefDereferencingOp(*user))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns true iff there is an edge from node 'srcId' to node 'dstId' for
|
|
// 'memref'. Returns false otherwise.
|
|
bool hasEdge(unsigned srcId, unsigned dstId, Value *memref) {
|
|
if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
|
|
return false;
|
|
}
|
|
bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
|
|
return edge.id == dstId && edge.memref == memref;
|
|
});
|
|
bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
|
|
return edge.id == srcId && edge.memref == memref;
|
|
});
|
|
return hasOutEdge && hasInEdge;
|
|
}
|
|
|
|
// Adds an edge from node 'srcId' to node 'dstId' for 'memref'.
|
|
void addEdge(unsigned srcId, unsigned dstId, Value *memref) {
|
|
if (!hasEdge(srcId, dstId, memref)) {
|
|
outEdges[srcId].push_back({dstId, memref});
|
|
inEdges[dstId].push_back({srcId, memref});
|
|
memrefEdgeCount[memref]++;
|
|
}
|
|
}
|
|
|
|
// Removes an edge from node 'srcId' to node 'dstId' for 'memref'.
|
|
void removeEdge(unsigned srcId, unsigned dstId, Value *memref) {
|
|
assert(inEdges.count(dstId) > 0);
|
|
assert(outEdges.count(srcId) > 0);
|
|
assert(memrefEdgeCount.count(memref) > 0);
|
|
memrefEdgeCount[memref]--;
|
|
// Remove 'srcId' from 'inEdges[dstId]'.
|
|
for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
|
|
if ((*it).id == srcId && (*it).memref == memref) {
|
|
inEdges[dstId].erase(it);
|
|
break;
|
|
}
|
|
}
|
|
// Remove 'dstId' from 'outEdges[srcId]'.
|
|
for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
|
|
if ((*it).id == dstId && (*it).memref == memref) {
|
|
outEdges[srcId].erase(it);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the input edge count for node 'id' and 'memref'.
|
|
unsigned getInEdgeCount(unsigned id, Value *memref) {
|
|
unsigned inEdgeCount = 0;
|
|
if (inEdges.count(id) > 0)
|
|
for (auto &inEdge : inEdges[id])
|
|
if (inEdge.memref == memref)
|
|
++inEdgeCount;
|
|
return inEdgeCount;
|
|
}
|
|
|
|
// Returns the output edge count for node 'id' and 'memref'.
|
|
unsigned getOutEdgeCount(unsigned id, Value *memref) {
|
|
unsigned outEdgeCount = 0;
|
|
if (outEdges.count(id) > 0)
|
|
for (auto &outEdge : outEdges[id])
|
|
if (outEdge.memref == memref)
|
|
++outEdgeCount;
|
|
return outEdgeCount;
|
|
}
|
|
|
|
// Check for a dependence in Block instruction list range (srcId, dstId) on
|
|
// memrefs other than 'memrefToSkip' (which will be privatized for the fused
|
|
// loop).
|
|
bool hasDependenceTargetInRange(unsigned srcId, unsigned dstId,
|
|
Value *memrefToSkip) {
|
|
if (outEdges.count(srcId) == 0)
|
|
return false;
|
|
// Check if any of the outgoing edge targets from srcId lie in
|
|
// (srcId, dstId).
|
|
SmallPtrSet<Instruction *, 2> depInsts;
|
|
for (auto &outEdge : outEdges[srcId]) {
|
|
if (outEdge.id != dstId && outEdge.memref != memrefToSkip) {
|
|
Node *node = getNode(outEdge.id);
|
|
depInsts.insert(node->inst);
|
|
}
|
|
}
|
|
// Do a linear walk from 'srcNode.inst' to 'dstNode.inst' and for each
|
|
// instruction 'inst' in range ('srcNode.inst', 'dstNode.inst') test
|
|
// if 'depInsts' contains 'inst', and return true if it does.
|
|
// TODO(andydavis) If this linear search becomes a compile time issue,
|
|
// create a data structure which allows a faster search through ForInsts
|
|
// in a Block.
|
|
Block::iterator it = std::next(Block::iterator(getNode(srcId)->inst));
|
|
Block::iterator itEnd = Block::iterator(getNode(dstId)->inst);
|
|
return std::any_of(it, itEnd, [&](Instruction &inst) {
|
|
return depInsts.count(&inst) > 0;
|
|
});
|
|
}
|
|
|
|
// Updates edge mappings from node 'srcId' to node 'dstId'.
|
|
void updateEdges(unsigned srcId, unsigned dstId) {
|
|
// For each edge in 'inEdges[srcId]': add new edge remaping to 'dstId'.
|
|
if (inEdges.count(srcId) > 0) {
|
|
SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
|
|
for (auto &inEdge : oldInEdges) {
|
|
// Add edge from 'inEdge.id' to 'dstId'.
|
|
addEdge(inEdge.id, dstId, inEdge.memref);
|
|
}
|
|
}
|
|
// For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
|
|
if (outEdges.count(srcId) > 0) {
|
|
SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
|
|
for (auto &outEdge : oldOutEdges) {
|
|
// Remove any out edges from 'srcId' to 'dstId' across memrefs.
|
|
if (outEdge.id == dstId)
|
|
removeEdge(srcId, outEdge.id, outEdge.memref);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds ops in 'loads' and 'stores' to node at 'id'.
|
|
void addToNode(unsigned id, const SmallVectorImpl<OperationInst *> &loads,
|
|
const SmallVectorImpl<OperationInst *> &stores) {
|
|
Node *node = getNode(id);
|
|
for (auto *loadOpInst : loads)
|
|
node->loads.push_back(loadOpInst);
|
|
for (auto *storeOpInst : stores)
|
|
node->stores.push_back(storeOpInst);
|
|
}
|
|
|
|
void clearNodeLoadAndStores(unsigned id) {
|
|
Node *node = getNode(id);
|
|
node->loads.clear();
|
|
node->stores.clear();
|
|
}
|
|
|
|
void print(raw_ostream &os) const {
|
|
os << "\nMemRefDependenceGraph\n";
|
|
os << "\nNodes:\n";
|
|
for (auto &idAndNode : nodes) {
|
|
os << "Node: " << idAndNode.first << "\n";
|
|
auto it = inEdges.find(idAndNode.first);
|
|
if (it != inEdges.end()) {
|
|
for (const auto &e : it->second)
|
|
os << " InEdge: " << e.id << " " << e.memref << "\n";
|
|
}
|
|
it = outEdges.find(idAndNode.first);
|
|
if (it != outEdges.end()) {
|
|
for (const auto &e : it->second)
|
|
os << " OutEdge: " << e.id << " " << e.memref << "\n";
|
|
}
|
|
}
|
|
}
|
|
void dump() const { print(llvm::errs()); }
|
|
};
|
|
|
|
// Intializes the data dependence graph by walking instructions in 'f'.
|
|
// Assigns each node in the graph a node id based on program order in 'f'.
|
|
// TODO(andydavis) Add support for taking a Block arg to construct the
|
|
// dependence graph at a different depth.
|
|
bool MemRefDependenceGraph::init(Function *f) {
|
|
unsigned id = 0;
|
|
DenseMap<Value *, SetVector<unsigned>> memrefAccesses;
|
|
|
|
// TODO: support multi-block functions.
|
|
if (f->getBlocks().size() != 1)
|
|
return false;
|
|
|
|
for (auto &inst : f->front()) {
|
|
if (auto *forInst = dyn_cast<ForInst>(&inst)) {
|
|
// Create graph node 'id' to represent top-level 'forInst' and record
|
|
// all loads and store accesses it contains.
|
|
LoopNestStateCollector collector;
|
|
collector.walkForInst(forInst);
|
|
// Return false if IfInsts are found (not currently supported).
|
|
if (collector.hasIfInst)
|
|
return false;
|
|
Node node(id++, &inst);
|
|
for (auto *opInst : collector.loadOpInsts) {
|
|
node.loads.push_back(opInst);
|
|
auto *memref = opInst->cast<LoadOp>()->getMemRef();
|
|
memrefAccesses[memref].insert(node.id);
|
|
}
|
|
for (auto *opInst : collector.storeOpInsts) {
|
|
node.stores.push_back(opInst);
|
|
auto *memref = opInst->cast<StoreOp>()->getMemRef();
|
|
memrefAccesses[memref].insert(node.id);
|
|
}
|
|
nodes.insert({node.id, node});
|
|
}
|
|
if (auto *opInst = dyn_cast<OperationInst>(&inst)) {
|
|
if (auto loadOp = opInst->dyn_cast<LoadOp>()) {
|
|
// Create graph node for top-level load op.
|
|
Node node(id++, &inst);
|
|
node.loads.push_back(opInst);
|
|
auto *memref = opInst->cast<LoadOp>()->getMemRef();
|
|
memrefAccesses[memref].insert(node.id);
|
|
nodes.insert({node.id, node});
|
|
}
|
|
if (auto storeOp = opInst->dyn_cast<StoreOp>()) {
|
|
// Create graph node for top-level store op.
|
|
Node node(id++, &inst);
|
|
node.stores.push_back(opInst);
|
|
auto *memref = opInst->cast<StoreOp>()->getMemRef();
|
|
memrefAccesses[memref].insert(node.id);
|
|
nodes.insert({node.id, node});
|
|
}
|
|
}
|
|
// Return false if IfInsts are found (not currently supported).
|
|
if (isa<IfInst>(&inst))
|
|
return false;
|
|
}
|
|
|
|
// Walk memref access lists and add graph edges between dependent nodes.
|
|
for (auto &memrefAndList : memrefAccesses) {
|
|
unsigned n = memrefAndList.second.size();
|
|
for (unsigned i = 0; i < n; ++i) {
|
|
unsigned srcId = memrefAndList.second[i];
|
|
bool srcHasStore =
|
|
getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
|
|
for (unsigned j = i + 1; j < n; ++j) {
|
|
unsigned dstId = memrefAndList.second[j];
|
|
bool dstHasStore =
|
|
getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
|
|
if (srcHasStore || dstHasStore)
|
|
addEdge(srcId, dstId, memrefAndList.first);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// LoopNestStats aggregates various per-loop statistics (eg. loop trip count
|
|
// and operation count) for a loop nest up until the innermost loop body.
|
|
struct LoopNestStats {
|
|
// Map from ForInst to immediate child ForInsts in its loop body.
|
|
DenseMap<ForInst *, SmallVector<ForInst *, 2>> loopMap;
|
|
// Map from ForInst to count of operations in its loop body.
|
|
DenseMap<ForInst *, uint64_t> opCountMap;
|
|
// Map from ForInst to its constant trip count.
|
|
DenseMap<ForInst *, uint64_t> tripCountMap;
|
|
};
|
|
|
|
// LoopNestStatsCollector walks a single loop nest and gathers per-loop
|
|
// trip count and operation count statistics and records them in 'stats'.
|
|
class LoopNestStatsCollector : public InstWalker<LoopNestStatsCollector> {
|
|
public:
|
|
LoopNestStats *stats;
|
|
bool hasLoopWithNonConstTripCount = false;
|
|
|
|
LoopNestStatsCollector(LoopNestStats *stats) : stats(stats) {}
|
|
|
|
void visitForInst(ForInst *forInst) {
|
|
auto *parentInst = forInst->getParentInst();
|
|
if (parentInst != nullptr) {
|
|
assert(isa<ForInst>(parentInst) && "Expected parent ForInst");
|
|
// Add mapping to 'forInst' from its parent ForInst.
|
|
stats->loopMap[cast<ForInst>(parentInst)].push_back(forInst);
|
|
}
|
|
// Record the number of op instructions in the body of 'forInst'.
|
|
unsigned count = 0;
|
|
stats->opCountMap[forInst] = 0;
|
|
for (auto &inst : *forInst->getBody()) {
|
|
if (isa<OperationInst>(&inst))
|
|
++count;
|
|
}
|
|
stats->opCountMap[forInst] = count;
|
|
// Record trip count for 'forInst'. Set flag if trip count is not constant.
|
|
Optional<uint64_t> maybeConstTripCount = getConstantTripCount(*forInst);
|
|
if (!maybeConstTripCount.hasValue()) {
|
|
hasLoopWithNonConstTripCount = true;
|
|
return;
|
|
}
|
|
stats->tripCountMap[forInst] = maybeConstTripCount.getValue();
|
|
}
|
|
};
|
|
|
|
// Computes the total cost of the loop nest rooted at 'forInst'.
|
|
// Currently, the total cost is computed by counting the total operation
|
|
// instance count (i.e. total number of operations in the loop bodyloop
|
|
// operation count * loop trip count) for the entire loop nest.
|
|
// If 'tripCountOverrideMap' is non-null, overrides the trip count for loops
|
|
// specified in the map when computing the total op instance count.
|
|
// NOTE: this is used to compute the cost of computation slices, which are
|
|
// sliced along the iteration dimension, and thus reduce the trip count.
|
|
// If 'computeCostMap' is non-null, the total op count for forInsts specified
|
|
// in the map is increased (not overridden) by adding the op count from the
|
|
// map to the existing op count for the for loop. This is done before
|
|
// multiplying by the loop's trip count, and is used to model the cost of
|
|
// inserting a sliced loop nest of known cost into the loop's body.
|
|
// NOTE: this is used to compute the cost of fusing a slice of some loop nest
|
|
// within another loop.
|
|
static int64_t getComputeCost(
|
|
ForInst *forInst, LoopNestStats *stats,
|
|
llvm::SmallDenseMap<ForInst *, uint64_t, 8> *tripCountOverrideMap,
|
|
DenseMap<ForInst *, int64_t> *computeCostMap) {
|
|
// 'opCount' is the total number operations in one iteration of 'forInst' body
|
|
int64_t opCount = stats->opCountMap[forInst];
|
|
if (stats->loopMap.count(forInst) > 0) {
|
|
for (auto *childForInst : stats->loopMap[forInst]) {
|
|
opCount += getComputeCost(childForInst, stats, tripCountOverrideMap,
|
|
computeCostMap);
|
|
}
|
|
}
|
|
// Add in additional op instances from slice (if specified in map).
|
|
if (computeCostMap != nullptr) {
|
|
auto it = computeCostMap->find(forInst);
|
|
if (it != computeCostMap->end()) {
|
|
opCount += it->second;
|
|
}
|
|
}
|
|
// Override trip count (if specified in map).
|
|
int64_t tripCount = stats->tripCountMap[forInst];
|
|
if (tripCountOverrideMap != nullptr) {
|
|
auto it = tripCountOverrideMap->find(forInst);
|
|
if (it != tripCountOverrideMap->end()) {
|
|
tripCount = it->second;
|
|
}
|
|
}
|
|
// Returns the total number of dynamic instances of operations in loop body.
|
|
return tripCount * opCount;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
static Optional<uint64_t> getConstDifference(AffineMap lbMap, AffineMap ubMap) {
|
|
assert(lbMap.getNumResults() == 1 && "expected single result bound map");
|
|
assert(ubMap.getNumResults() == 1 && "expected single result bound map");
|
|
assert(lbMap.getNumDims() == ubMap.getNumDims());
|
|
assert(lbMap.getNumSymbols() == ubMap.getNumSymbols());
|
|
// TODO(andydavis) Merge this code with 'mlir::getTripCountExpr'.
|
|
// ub_expr - lb_expr
|
|
AffineExpr lbExpr(lbMap.getResult(0));
|
|
AffineExpr ubExpr(ubMap.getResult(0));
|
|
auto loopSpanExpr = simplifyAffineExpr(ubExpr - lbExpr, lbMap.getNumDims(),
|
|
lbMap.getNumSymbols());
|
|
auto cExpr = loopSpanExpr.dyn_cast<AffineConstantExpr>();
|
|
if (!cExpr)
|
|
return None;
|
|
return cExpr.getValue();
|
|
}
|
|
|
|
// Builds a map 'tripCountMap' from ForInst to constant trip count for loop
|
|
// nest surrounding 'srcAccess' utilizing slice loop bounds in 'sliceState'.
|
|
// Returns true on success, false otherwise (if a non-constant trip count
|
|
// was encountered).
|
|
// TODO(andydavis) Make this work with non-unit step loops.
|
|
static bool buildSliceTripCountMap(
|
|
OperationInst *srcOpInst, ComputationSliceState *sliceState,
|
|
llvm::SmallDenseMap<ForInst *, uint64_t, 8> *tripCountMap) {
|
|
SmallVector<ForInst *, 4> srcLoopIVs;
|
|
getLoopIVs(*srcOpInst, &srcLoopIVs);
|
|
unsigned numSrcLoopIVs = srcLoopIVs.size();
|
|
// Populate map from ForInst -> trip count
|
|
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
|
|
AffineMap lbMap = sliceState->lbs[i];
|
|
AffineMap ubMap = sliceState->ubs[i];
|
|
if (lbMap == AffineMap::Null() || ubMap == AffineMap::Null()) {
|
|
// The iteration of src loop IV 'i' was not sliced. Use full loop bounds.
|
|
if (srcLoopIVs[i]->hasConstantLowerBound() &&
|
|
srcLoopIVs[i]->hasConstantUpperBound()) {
|
|
(*tripCountMap)[srcLoopIVs[i]] =
|
|
srcLoopIVs[i]->getConstantUpperBound() -
|
|
srcLoopIVs[i]->getConstantLowerBound();
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
Optional<uint64_t> tripCount = getConstDifference(lbMap, ubMap);
|
|
if (!tripCount.hasValue())
|
|
return false;
|
|
(*tripCountMap)[srcLoopIVs[i]] = tripCount.getValue();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Removes load operations from 'srcLoads' which operate on 'memref', and
|
|
// adds them to 'dstLoads'.
|
|
static void
|
|
moveLoadsAccessingMemrefTo(Value *memref,
|
|
SmallVectorImpl<OperationInst *> *srcLoads,
|
|
SmallVectorImpl<OperationInst *> *dstLoads) {
|
|
dstLoads->clear();
|
|
SmallVector<OperationInst *, 4> srcLoadsToKeep;
|
|
for (auto *load : *srcLoads) {
|
|
if (load->cast<LoadOp>()->getMemRef() == memref)
|
|
dstLoads->push_back(load);
|
|
else
|
|
srcLoadsToKeep.push_back(load);
|
|
}
|
|
srcLoads->swap(srcLoadsToKeep);
|
|
}
|
|
|
|
// Returns the innermost common loop depth for the set of operations in 'ops'.
|
|
static unsigned getInnermostCommonLoopDepth(ArrayRef<OperationInst *> ops) {
|
|
unsigned numOps = ops.size();
|
|
assert(numOps > 0);
|
|
|
|
std::vector<SmallVector<ForInst *, 4>> loops(numOps);
|
|
unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
|
|
for (unsigned i = 0; i < numOps; ++i) {
|
|
getLoopIVs(*ops[i], &loops[i]);
|
|
loopDepthLimit =
|
|
std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
|
|
}
|
|
|
|
unsigned loopDepth = 0;
|
|
for (unsigned d = 0; d < loopDepthLimit; ++d) {
|
|
unsigned i;
|
|
for (i = 1; i < numOps; ++i) {
|
|
if (loops[i - 1][d] != loops[i][d]) {
|
|
break;
|
|
}
|
|
}
|
|
if (i != numOps)
|
|
break;
|
|
++loopDepth;
|
|
}
|
|
return loopDepth;
|
|
}
|
|
|
|
// Returns the slice union of 'sliceStateA' and 'sliceStateB' in 'sliceStateB'
|
|
// using a rectangular bounding box.
|
|
// TODO(andydavis) This function assumes that lower bounds for 'sliceStateA'
|
|
// and 'sliceStateB' are aligned.
|
|
// Specifically, when taking the union of overlapping intervals, it assumes
|
|
// that both intervals start at zero. Support needs to be added to take into
|
|
// account interval start offset when computing the union.
|
|
// TODO(andydavis) Move this function to an analysis library.
|
|
static bool getSliceUnion(const ComputationSliceState &sliceStateA,
|
|
ComputationSliceState *sliceStateB) {
|
|
assert(sliceStateA.lbs.size() == sliceStateB->lbs.size());
|
|
assert(sliceStateA.ubs.size() == sliceStateB->ubs.size());
|
|
|
|
for (unsigned i = 0, e = sliceStateA.lbs.size(); i < e; ++i) {
|
|
AffineMap lbMapA = sliceStateA.lbs[i];
|
|
AffineMap ubMapA = sliceStateA.ubs[i];
|
|
if (lbMapA == AffineMap::Null()) {
|
|
assert(ubMapA == AffineMap::Null());
|
|
continue;
|
|
}
|
|
assert(ubMapA && "expected non-null ub map");
|
|
|
|
AffineMap lbMapB = sliceStateB->lbs[i];
|
|
AffineMap ubMapB = sliceStateB->ubs[i];
|
|
if (lbMapB == AffineMap::Null()) {
|
|
assert(ubMapB == AffineMap::Null());
|
|
// Union 'sliceStateB' does not have a bound for 'i' so copy from A.
|
|
sliceStateB->lbs[i] = lbMapA;
|
|
sliceStateB->ubs[i] = ubMapA;
|
|
continue;
|
|
}
|
|
|
|
// TODO(andydavis) Change this code to take the min across all lower bounds
|
|
// and max across all upper bounds for each dimension. This code can for
|
|
// cases where a unique min or max could not be statically determined.
|
|
|
|
// Assumption: both lower bounds are the same.
|
|
if (lbMapA != lbMapB)
|
|
return false;
|
|
|
|
// Add bound with the largest trip count to union.
|
|
Optional<uint64_t> tripCountA = getConstDifference(lbMapA, ubMapA);
|
|
Optional<uint64_t> tripCountB = getConstDifference(lbMapB, ubMapB);
|
|
if (!tripCountA.hasValue() || !tripCountB.hasValue())
|
|
return false;
|
|
|
|
if (tripCountA.getValue() > tripCountB.getValue()) {
|
|
sliceStateB->lbs[i] = lbMapA;
|
|
sliceStateB->ubs[i] = ubMapA;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Creates and returns a private (single-user) memref for fused loop rooted
|
|
// at 'forInst', with (potentially reduced) memref size based on the
|
|
// MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
|
|
// TODO(bondhugula): consider refactoring the common code from generateDma and
|
|
// this one.
|
|
static Value *createPrivateMemRef(ForInst *forInst,
|
|
OperationInst *srcStoreOpInst,
|
|
unsigned dstLoopDepth) {
|
|
// Create builder to insert alloc op just before 'forInst'.
|
|
FuncBuilder b(forInst);
|
|
// Builder to create constants at the top level.
|
|
FuncBuilder top(forInst->getFunction());
|
|
// Create new memref type based on slice bounds.
|
|
auto *oldMemRef = srcStoreOpInst->cast<StoreOp>()->getMemRef();
|
|
auto oldMemRefType = oldMemRef->getType().cast<MemRefType>();
|
|
unsigned rank = oldMemRefType.getRank();
|
|
|
|
// Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
|
|
MemRefRegion region;
|
|
getMemRefRegion(srcStoreOpInst, dstLoopDepth, ®ion);
|
|
SmallVector<int64_t, 4> newShape;
|
|
std::vector<SmallVector<int64_t, 4>> lbs;
|
|
SmallVector<int64_t, 8> lbDivisors;
|
|
lbs.reserve(rank);
|
|
// Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
|
|
// by 'srcStoreOpInst' at depth 'dstLoopDepth'.
|
|
Optional<int64_t> numElements =
|
|
region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
|
|
assert(numElements.hasValue());
|
|
|
|
const FlatAffineConstraints *cst = region.getConstraints();
|
|
// 'outerIVs' holds the values that this memory region is symbolic/paramteric
|
|
// on; this would correspond to loop IVs surrounding the level at which the
|
|
// slice is being materialized.
|
|
SmallVector<Value *, 8> outerIVs;
|
|
cst->getIdValues(rank, cst->getNumIds(), &outerIVs);
|
|
|
|
// Build 'rank' AffineExprs from MemRefRegion 'lbs'
|
|
SmallVector<AffineExpr, 4> offsets;
|
|
offsets.reserve(rank);
|
|
for (unsigned d = 0; d < rank; ++d) {
|
|
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
|
|
|
|
AffineExpr offset = top.getAffineConstantExpr(0);
|
|
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
|
|
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
|
|
}
|
|
assert(lbDivisors[d] > 0);
|
|
offset =
|
|
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
|
|
offsets.push_back(offset);
|
|
}
|
|
|
|
// Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
|
|
// by 'srcStoreOpInst'.
|
|
auto newMemRefType = b.getMemRefType(newShape, oldMemRefType.getElementType(),
|
|
{}, oldMemRefType.getMemorySpace());
|
|
// Gather alloc operands for the dynamic dimensions of the memref.
|
|
SmallVector<Value *, 4> allocOperands;
|
|
unsigned dynamicDimCount = 0;
|
|
for (auto dimSize : oldMemRefType.getShape()) {
|
|
if (dimSize == -1)
|
|
allocOperands.push_back(
|
|
b.create<DimOp>(forInst->getLoc(), oldMemRef, dynamicDimCount++));
|
|
}
|
|
|
|
// Create new private memref for fused loop 'forInst'.
|
|
Value *newMemRef =
|
|
b.create<AllocOp>(forInst->getLoc(), newMemRefType, allocOperands);
|
|
|
|
// Build an AffineMap to remap access functions based on lower bound offsets.
|
|
SmallVector<AffineExpr, 4> remapExprs;
|
|
remapExprs.reserve(rank);
|
|
unsigned zeroOffsetCount = 0;
|
|
for (unsigned i = 0; i < rank; i++) {
|
|
if (auto constExpr = offsets[i].dyn_cast<AffineConstantExpr>())
|
|
if (constExpr.getValue() == 0)
|
|
++zeroOffsetCount;
|
|
auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
|
|
|
|
auto remapExpr =
|
|
simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
|
|
remapExprs.push_back(remapExpr);
|
|
}
|
|
auto indexRemap =
|
|
zeroOffsetCount == rank
|
|
? AffineMap::Null()
|
|
: b.getAffineMap(outerIVs.size() + rank, 0, remapExprs, {});
|
|
// Replace all users of 'oldMemRef' with 'newMemRef'.
|
|
bool ret =
|
|
replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
|
|
/*extraOperands=*/outerIVs,
|
|
/*domInstFilter=*/&*forInst->getBody()->begin());
|
|
assert(ret && "replaceAllMemrefUsesWith should always succeed here");
|
|
(void)ret;
|
|
return newMemRef;
|
|
}
|
|
|
|
// Does the slice have a single iteration?
|
|
static uint64_t getSliceIterationCount(
|
|
const llvm::SmallDenseMap<ForInst *, uint64_t, 8> &sliceTripCountMap) {
|
|
uint64_t iterCount = 1;
|
|
for (const auto &count : sliceTripCountMap) {
|
|
iterCount *= count.second;
|
|
}
|
|
return iterCount;
|
|
}
|
|
|
|
// Checks the profitability of fusing a backwards slice of the loop nest
|
|
// surrounding 'srcOpInst' into the loop nest surrounding 'dstOpInsts'.
|
|
// Returns true if it is profitable to fuse the candidate loop nests. Returns
|
|
// false otherwise. `dstLoopDepth` is set to the most profitable depth at which
|
|
// to materialize the source loop nest slice.
|
|
// The profitability model executes the following steps:
|
|
// *) Computes the backward computation slice at 'srcOpInst'. This
|
|
// computation slice of the loop nest surrounding 'srcOpInst' is
|
|
// represented by modified src loop bounds in 'sliceState', which are
|
|
// functions of loop IVs in the loop nest surrounding 'srcOpInst'.
|
|
// *) Computes the cost of unfused src/dst loop nests (currently the cost of a
|
|
// loop nest is the total number of dynamic operation instances in the loop
|
|
// nest).
|
|
// *) Computes the cost of fusing a slice of the src loop nest into the dst
|
|
// loop nest at various values of dst loop depth, attempting to fuse
|
|
// the largest compution slice at the maximal dst loop depth (closest to the
|
|
// load) to minimize reuse distance and potentially enable subsequent
|
|
// load/store forwarding.
|
|
// NOTE: If the dst loop nest includes multiple loads in 'dstOpInsts' for
|
|
// the same memref as is written by 'srcOpInst', then the union of slice
|
|
// loop bounds is used to compute the slice and associated slice cost.
|
|
// NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
|
|
// nest, at which the src computation slice is inserted/fused.
|
|
// NOTE: We attempt to maximize the dst loop depth, but there are cases
|
|
// where a particular setting for 'dstLoopNest' might fuse an unsliced
|
|
// loop (within the src computation slice) at a depth which results in
|
|
// execessive recomputation (see unit tests for examples).
|
|
// *) Compares the total cost of the unfused loop nests to the min cost fused
|
|
// loop nest computed in the previous step, and returns true if the latter
|
|
// is lower.
|
|
static bool isFusionProfitable(OperationInst *srcOpInst,
|
|
ArrayRef<OperationInst *> dstOpInsts,
|
|
ComputationSliceState *sliceState,
|
|
unsigned *dstLoopDepth) {
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "Checking whether fusion is profitable between:\n";
|
|
llvm::dbgs() << " ";
|
|
srcOpInst->dump();
|
|
llvm::dbgs() << " and \n";
|
|
for (auto dstOpInst : dstOpInsts) {
|
|
llvm::dbgs() << " ";
|
|
dstOpInst->dump();
|
|
};
|
|
});
|
|
|
|
// Compute cost of sliced and unsliced src loop nest.
|
|
SmallVector<ForInst *, 4> srcLoopIVs;
|
|
getLoopIVs(*srcOpInst, &srcLoopIVs);
|
|
unsigned numSrcLoopIVs = srcLoopIVs.size();
|
|
|
|
// Walk src loop nest and collect stats.
|
|
LoopNestStats srcLoopNestStats;
|
|
LoopNestStatsCollector srcStatsCollector(&srcLoopNestStats);
|
|
srcStatsCollector.walk(srcLoopIVs[0]);
|
|
// Currently only constant trip count loop nests are supported.
|
|
if (srcStatsCollector.hasLoopWithNonConstTripCount)
|
|
return false;
|
|
|
|
// Compute cost of dst loop nest.
|
|
SmallVector<ForInst *, 4> dstLoopIVs;
|
|
getLoopIVs(*dstOpInsts[0], &dstLoopIVs);
|
|
|
|
LoopNestStats dstLoopNestStats;
|
|
LoopNestStatsCollector dstStatsCollector(&dstLoopNestStats);
|
|
dstStatsCollector.walk(dstLoopIVs[0]);
|
|
// Currently only constant trip count loop nests are supported.
|
|
if (dstStatsCollector.hasLoopWithNonConstTripCount)
|
|
return false;
|
|
|
|
// Compute the innermost common loop for ops in 'dstOpInst'.
|
|
unsigned maxDstLoopDepth = getInnermostCommonLoopDepth(dstOpInsts);
|
|
if (maxDstLoopDepth == 0)
|
|
return false;
|
|
|
|
// Search for min cost value for 'dstLoopDepth'. At each value of
|
|
// 'dstLoopDepth' from 'maxDstLoopDepth' to '1', compute computation slice
|
|
// bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
|
|
// of these bounds). Next the union slice bounds are used to calculate
|
|
// the cost of the slice and the cost of the slice inserted into the dst
|
|
// loop nest at 'dstLoopDepth'.
|
|
uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
|
|
uint64_t maxStorageReduction = 0;
|
|
Optional<uint64_t> sliceMemEstimate = None;
|
|
|
|
SmallVector<ComputationSliceState, 4> sliceStates;
|
|
sliceStates.resize(maxDstLoopDepth);
|
|
// The best loop depth at which to materialize the slice.
|
|
Optional<unsigned> bestDstLoopDepth = None;
|
|
|
|
// Compute op instance count for the src loop nest without iteration slicing.
|
|
uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], &srcLoopNestStats,
|
|
/*tripCountOverrideMap=*/nullptr,
|
|
/*computeCostMap=*/nullptr);
|
|
|
|
// Compute op instance count for the src loop nest.
|
|
uint64_t dstLoopNestCost = getComputeCost(dstLoopIVs[0], &dstLoopNestStats,
|
|
/*tripCountOverrideMap=*/nullptr,
|
|
/*computeCostMap=*/nullptr);
|
|
|
|
llvm::SmallDenseMap<ForInst *, uint64_t, 8> sliceTripCountMap;
|
|
DenseMap<ForInst *, int64_t> computeCostMap;
|
|
for (unsigned i = maxDstLoopDepth; i >= 1; --i) {
|
|
MemRefAccess srcAccess(srcOpInst);
|
|
// Handle the common case of one dst load without a copy.
|
|
if (!mlir::getBackwardComputationSliceState(
|
|
srcAccess, MemRefAccess(dstOpInsts[0]), i, &sliceStates[i - 1]))
|
|
return false;
|
|
// Compute the union of slice bound of all ops in 'dstOpInsts'.
|
|
for (int j = 1, e = dstOpInsts.size(); j < e; ++j) {
|
|
MemRefAccess dstAccess(dstOpInsts[j]);
|
|
ComputationSliceState tmpSliceState;
|
|
if (!mlir::getBackwardComputationSliceState(srcAccess, dstAccess, i,
|
|
&tmpSliceState))
|
|
return false;
|
|
// Compute slice boun dunion of 'tmpSliceState' and 'sliceStates[i - 1]'.
|
|
getSliceUnion(tmpSliceState, &sliceStates[i - 1]);
|
|
}
|
|
// Build trip count map for computation slice. We'll skip cases where the
|
|
// trip count was non-constant.
|
|
sliceTripCountMap.clear();
|
|
if (!buildSliceTripCountMap(srcOpInst, &sliceStates[i - 1],
|
|
&sliceTripCountMap))
|
|
continue;
|
|
|
|
// Checks whether a store to load forwarding will happen.
|
|
int64_t sliceIterationCount = getSliceIterationCount(sliceTripCountMap);
|
|
assert(sliceIterationCount > 0);
|
|
bool storeLoadFwdGuaranteed = (sliceIterationCount == 1);
|
|
|
|
// Compute cost of fusion for this dest loop depth.
|
|
|
|
computeCostMap.clear();
|
|
|
|
// The store and loads to this memref will disappear.
|
|
if (storeLoadFwdGuaranteed) {
|
|
// A single store disappears: -1 for that.
|
|
computeCostMap[srcLoopIVs[numSrcLoopIVs - 1]] = -1;
|
|
for (auto *loadOp : dstOpInsts) {
|
|
if (auto *loadLoop = dyn_cast_or_null<ForInst>(loadOp->getParentInst()))
|
|
computeCostMap[loadLoop] = -1;
|
|
}
|
|
}
|
|
|
|
// Compute op instance count for the src loop nest with iteration slicing.
|
|
int64_t sliceComputeCost =
|
|
getComputeCost(srcLoopIVs[0], &srcLoopNestStats,
|
|
/*tripCountOverrideMap=*/&sliceTripCountMap,
|
|
/*computeCostMap=*/&computeCostMap);
|
|
|
|
// Compute cost of fusion for this depth.
|
|
computeCostMap[dstLoopIVs[i - 1]] = sliceComputeCost;
|
|
|
|
int64_t fusedLoopNestComputeCost =
|
|
getComputeCost(dstLoopIVs[0], &dstLoopNestStats,
|
|
/*tripCountOverrideMap=*/nullptr, &computeCostMap);
|
|
|
|
double additionalComputeFraction =
|
|
fusedLoopNestComputeCost /
|
|
(static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
|
|
1;
|
|
|
|
// TODO(bondhugula): This is an ugly approximation. Fix this by finding a
|
|
// good way to calculate the footprint of the memref in the slice and
|
|
// divide it by the total memory footprint of the fused computation.
|
|
double storageReduction =
|
|
static_cast<double>(srcLoopNestCost) / sliceIterationCount;
|
|
|
|
LLVM_DEBUG({
|
|
std::stringstream msg;
|
|
msg << " evaluating fusion profitability at depth : " << i << "\n"
|
|
<< std::setprecision(2) << " additional compute fraction: "
|
|
<< 100.0 * additionalComputeFraction << "%\n"
|
|
<< " storage reduction factor: " << storageReduction << "x\n"
|
|
<< " fused nest cost: " << fusedLoopNestComputeCost << "\n"
|
|
<< " slice iteration count: " << sliceIterationCount << "\n";
|
|
llvm::dbgs() << msg.str();
|
|
});
|
|
|
|
double computeToleranceThreshold =
|
|
clFusionAddlComputeTolerance.getNumOccurrences() > 0
|
|
? clFusionAddlComputeTolerance
|
|
: LoopFusion::kComputeToleranceThreshold;
|
|
|
|
// TODO(b/123247369): This is a placeholder cost model.
|
|
// Among all choices that add an acceptable amount of redundant computation
|
|
// (as per computeToleranceThreshold), we will simply pick the one that
|
|
// reduces the intermediary size the most.
|
|
if ((storageReduction > maxStorageReduction) &&
|
|
(clMaximalLoopFusion ||
|
|
(additionalComputeFraction < computeToleranceThreshold))) {
|
|
maxStorageReduction = storageReduction;
|
|
bestDstLoopDepth = i;
|
|
minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
|
|
// TODO(bondhugula,andydavis): find a good way to compute the memory
|
|
// footprint of the materialized slice.
|
|
// Approximating this to the compute cost of the slice. This could be an
|
|
// under-approximation or an overapproximation, but in many cases
|
|
// accurate.
|
|
sliceMemEstimate = sliceIterationCount;
|
|
}
|
|
}
|
|
|
|
// A simple cost model: fuse if it reduces the memory footprint. If
|
|
// -maximal-fusion is set, fuse nevertheless.
|
|
|
|
if (!clMaximalLoopFusion && !bestDstLoopDepth.hasValue()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "All fusion choices involve more than the threshold amount of"
|
|
"redundant computation; NOT fusing.\n");
|
|
return false;
|
|
}
|
|
|
|
assert(bestDstLoopDepth.hasValue() &&
|
|
"expected to have a value per logic above");
|
|
|
|
// Set dstLoopDepth based on best values from search.
|
|
*dstLoopDepth = bestDstLoopDepth.getValue();
|
|
|
|
LLVM_DEBUG(
|
|
llvm::dbgs() << " LoopFusion fusion stats:"
|
|
<< "\n best loop depth: " << bestDstLoopDepth
|
|
<< "\n src loop nest compute cost: " << srcLoopNestCost
|
|
<< "\n dst loop nest compute cost: " << dstLoopNestCost
|
|
<< "\n fused loop nest compute cost: "
|
|
<< minFusedLoopNestComputeCost << "\n");
|
|
|
|
auto dstMemSize = getMemoryFootprintBytes(*dstLoopIVs[0]);
|
|
auto srcMemSize = getMemoryFootprintBytes(*srcLoopIVs[0]);
|
|
|
|
Optional<double> storageReduction = None;
|
|
|
|
if (!clMaximalLoopFusion) {
|
|
if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< " fusion memory benefit cannot be evaluated; NOT fusing.\n");
|
|
return false;
|
|
}
|
|
|
|
auto srcMemSizeVal = srcMemSize.getValue();
|
|
auto dstMemSizeVal = dstMemSize.getValue();
|
|
|
|
assert(sliceMemEstimate.hasValue() && "expected value");
|
|
// This is an inaccurate estimate since sliceMemEstimate is isaccurate.
|
|
auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n"
|
|
<< " dst mem: " << dstMemSizeVal << "\n"
|
|
<< " fused mem: " << fusedMem << "\n"
|
|
<< " slice mem: " << sliceMemEstimate << "\n");
|
|
|
|
if (fusedMem > srcMemSizeVal + dstMemSizeVal) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
|
|
return false;
|
|
}
|
|
storageReduction =
|
|
100.0 *
|
|
(1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
|
|
}
|
|
|
|
double additionalComputeFraction =
|
|
100.0 * (minFusedLoopNestComputeCost /
|
|
(static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
|
|
1);
|
|
(void)additionalComputeFraction;
|
|
LLVM_DEBUG({
|
|
std::stringstream msg;
|
|
msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
|
|
<< setprecision(2) << additionalComputeFraction
|
|
<< "% redundant computation and a ";
|
|
msg << (storageReduction.hasValue()
|
|
? std::to_string(storageReduction.getValue())
|
|
: "<unknown>");
|
|
msg << "% storage reduction.\n";
|
|
llvm::dbgs() << msg.str();
|
|
});
|
|
|
|
// Update return parameter 'sliceState' with 'bestSliceState'.
|
|
ComputationSliceState *bestSliceState = &sliceStates[*dstLoopDepth - 1];
|
|
sliceState->lbs = bestSliceState->lbs;
|
|
sliceState->ubs = bestSliceState->ubs;
|
|
sliceState->lbOperands = bestSliceState->lbOperands;
|
|
sliceState->ubOperands = bestSliceState->ubOperands;
|
|
|
|
// Canonicalize slice bound affine maps.
|
|
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
|
|
if (sliceState->lbs[i] != AffineMap::Null()) {
|
|
canonicalizeMapAndOperands(&sliceState->lbs[i],
|
|
&sliceState->lbOperands[i]);
|
|
}
|
|
if (sliceState->ubs[i] != AffineMap::Null()) {
|
|
canonicalizeMapAndOperands(&sliceState->ubs[i],
|
|
&sliceState->ubOperands[i]);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// GreedyFusion greedily fuses loop nests which have a producer/consumer
|
|
// relationship on a memref, with the goal of improving locality. Currently,
|
|
// this the producer/consumer relationship is required to be unique in the
|
|
// Function (there are TODOs to relax this constraint in the future).
|
|
//
|
|
// The steps of the algorithm are as follows:
|
|
//
|
|
// *) A worklist is initialized with node ids from the dependence graph.
|
|
// *) For each node id in the worklist:
|
|
// *) Pop a ForInst of the worklist. This 'dstForInst' will be a candidate
|
|
// destination ForInst into which fusion will be attempted.
|
|
// *) Add each LoadOp currently in 'dstForInst' into list 'dstLoadOps'.
|
|
// *) For each LoadOp in 'dstLoadOps' do:
|
|
// *) Lookup dependent loop nests at earlier positions in the Function
|
|
// which have a single store op to the same memref.
|
|
// *) Check if dependences would be violated by the fusion. For example,
|
|
// the src loop nest may load from memrefs which are different than
|
|
// the producer-consumer memref between src and dest loop nests.
|
|
// *) Get a computation slice of 'srcLoopNest', which adjusts its loop
|
|
// bounds to be functions of 'dstLoopNest' IVs and symbols.
|
|
// *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
|
|
// just before the dst load op user.
|
|
// *) Add the newly fused load/store operation instructions to the state,
|
|
// and also add newly fuse load ops to 'dstLoopOps' to be considered
|
|
// as fusion dst load ops in another iteration.
|
|
// *) Remove old src loop nest and its associated state.
|
|
//
|
|
// Given a graph where top-level instructions are vertices in the set 'V' and
|
|
// edges in the set 'E' are dependences between vertices, this algorithm
|
|
// takes O(V) time for initialization, and has runtime O(V + E).
|
|
//
|
|
// This greedy algorithm is not 'maximal' due to the current restriction of
|
|
// fusing along single producer consumer edges, but there is a TODO to fix this.
|
|
//
|
|
// TODO(andydavis) Experiment with other fusion policies.
|
|
// TODO(andydavis) Add support for fusing for input reuse (perhaps by
|
|
// constructing a graph with edges which represent loads from the same memref
|
|
// in two different loop nests.
|
|
struct GreedyFusion {
|
|
public:
|
|
MemRefDependenceGraph *mdg;
|
|
SmallVector<unsigned, 4> worklist;
|
|
|
|
GreedyFusion(MemRefDependenceGraph *mdg) : mdg(mdg) {
|
|
// Initialize worklist with nodes from 'mdg'.
|
|
worklist.resize(mdg->nodes.size());
|
|
std::iota(worklist.begin(), worklist.end(), 0);
|
|
}
|
|
|
|
void run() {
|
|
while (!worklist.empty()) {
|
|
unsigned dstId = worklist.back();
|
|
worklist.pop_back();
|
|
// Skip if this node was removed (fused into another node).
|
|
if (mdg->nodes.count(dstId) == 0)
|
|
continue;
|
|
// Get 'dstNode' into which to attempt fusion.
|
|
auto *dstNode = mdg->getNode(dstId);
|
|
// Skip if 'dstNode' is not a loop nest.
|
|
if (!isa<ForInst>(dstNode->inst))
|
|
continue;
|
|
|
|
SmallVector<OperationInst *, 4> loads = dstNode->loads;
|
|
SmallVector<OperationInst *, 4> dstLoadOpInsts;
|
|
DenseSet<Value *> visitedMemrefs;
|
|
while (!loads.empty()) {
|
|
// Get memref of load on top of the stack.
|
|
auto *memref = loads.back()->cast<LoadOp>()->getMemRef();
|
|
if (visitedMemrefs.count(memref) > 0)
|
|
continue;
|
|
visitedMemrefs.insert(memref);
|
|
// Move all loads in 'loads' accessing 'memref' to 'dstLoadOpInsts'.
|
|
moveLoadsAccessingMemrefTo(memref, &loads, &dstLoadOpInsts);
|
|
// Skip if no input edges along which to fuse.
|
|
if (mdg->inEdges.count(dstId) == 0)
|
|
continue;
|
|
// Iterate through in edges for 'dstId'.
|
|
for (auto &srcEdge : mdg->inEdges[dstId]) {
|
|
// Skip 'srcEdge' if not for 'memref'.
|
|
if (srcEdge.memref != memref)
|
|
continue;
|
|
|
|
auto *srcNode = mdg->getNode(srcEdge.id);
|
|
// Skip if 'srcNode' is not a loop nest.
|
|
if (!isa<ForInst>(srcNode->inst))
|
|
continue;
|
|
// Skip if 'srcNode' has more than one store to any memref.
|
|
// TODO(andydavis) Support fusing multi-output src loop nests.
|
|
if (srcNode->stores.size() != 1)
|
|
continue;
|
|
|
|
// Skip 'srcNode' if it has in dependence edges. NOTE: This is overly
|
|
// TODO(andydavis) Track dependence type with edges, and just check
|
|
// for WAW dependence edge here.
|
|
if (mdg->getInEdgeCount(srcNode->id, memref) != 0)
|
|
continue;
|
|
|
|
// Skip if 'srcNode' has out edges on memrefs other than 'memref'
|
|
// for nodes in instruction list range (srcNode.inst, dstNode.inst).
|
|
if (mdg->hasDependenceTargetInRange(srcNode->id, dstNode->id, memref))
|
|
continue;
|
|
|
|
// Check if fusion would be profitable and at what depth.
|
|
// Get unique 'srcNode' store op.
|
|
auto *srcStoreOpInst = srcNode->stores.front();
|
|
unsigned bestDstLoopDepth;
|
|
mlir::ComputationSliceState sliceState;
|
|
if (!isFusionProfitable(srcStoreOpInst, dstLoadOpInsts, &sliceState,
|
|
&bestDstLoopDepth))
|
|
continue;
|
|
|
|
// Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
|
|
auto *sliceLoopNest = mlir::insertBackwardComputationSlice(
|
|
srcStoreOpInst, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
|
|
if (sliceLoopNest != nullptr) {
|
|
// Update edges between 'srcNode' and 'dstNode'.
|
|
mdg->updateEdges(srcNode->id, dstNode->id);
|
|
|
|
// Collect slice loop stats.
|
|
LoopNestStateCollector sliceCollector;
|
|
sliceCollector.walkForInst(sliceLoopNest);
|
|
// Promote single iteration slice loops to single IV value.
|
|
for (auto *forInst : sliceCollector.forInsts) {
|
|
promoteIfSingleIteration(forInst);
|
|
}
|
|
|
|
// Create private memref for 'memref' in 'dstForInst'.
|
|
auto *dstForInst = cast<ForInst>(dstNode->inst);
|
|
SmallVector<OperationInst *, 4> storesForMemref;
|
|
for (auto *storeOpInst : sliceCollector.storeOpInsts) {
|
|
if (storeOpInst->cast<StoreOp>()->getMemRef() == memref)
|
|
storesForMemref.push_back(storeOpInst);
|
|
}
|
|
assert(storesForMemref.size() == 1);
|
|
auto *newMemRef = createPrivateMemRef(
|
|
dstForInst, storesForMemref[0], bestDstLoopDepth);
|
|
visitedMemrefs.insert(newMemRef);
|
|
|
|
// Collect dst loop stats after memref privatizaton transformation.
|
|
LoopNestStateCollector dstLoopCollector;
|
|
dstLoopCollector.walkForInst(dstForInst);
|
|
|
|
// Add new load ops to current Node load op list 'loads' to
|
|
// continue fusing based on new operands.
|
|
for (auto *loadOpInst : dstLoopCollector.loadOpInsts) {
|
|
auto *loadMemRef = loadOpInst->cast<LoadOp>()->getMemRef();
|
|
if (visitedMemrefs.count(loadMemRef) == 0)
|
|
loads.push_back(loadOpInst);
|
|
}
|
|
|
|
// Clear and add back loads and stores
|
|
mdg->clearNodeLoadAndStores(dstNode->id);
|
|
mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
|
|
dstLoopCollector.storeOpInsts);
|
|
// Remove old src loop nest if it no longer has outgoing dependence
|
|
// edges, and it does not write to a memref which escapes the
|
|
// function.
|
|
if (!mdg->hasOutEdges(srcNode->id) &&
|
|
!mdg->writesToLiveInOrEscapingMemrefs(srcNode->id)) {
|
|
mdg->removeNode(srcNode->id);
|
|
cast<ForInst>(srcNode->inst)->erase();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Clean up any allocs with no users.
|
|
for (auto &pair : mdg->memrefEdgeCount) {
|
|
if (pair.second > 0)
|
|
continue;
|
|
auto *memref = pair.first;
|
|
// Skip if there exist other uses (return instruction or function calls).
|
|
if (!memref->use_empty())
|
|
continue;
|
|
// Use list expected to match the dep graph info.
|
|
auto *inst = memref->getDefiningInst();
|
|
auto *opInst = dyn_cast_or_null<OperationInst>(inst);
|
|
if (opInst && opInst->isa<AllocOp>())
|
|
opInst->erase();
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
PassResult LoopFusion::runOnFunction(Function *f) {
|
|
MemRefDependenceGraph g;
|
|
if (g.init(f))
|
|
GreedyFusion(&g).run();
|
|
return success();
|
|
}
|
|
|
|
static PassRegistration<LoopFusion> pass("loop-fusion", "Fuse loop nests");
|