forked from OSchip/llvm-project
2515 lines
90 KiB
C++
2515 lines
90 KiB
C++
//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This file defines ObjC ARC optimizations. ARC stands for Automatic
|
|
/// Reference Counting and is a system for managing reference counts for objects
|
|
/// in Objective C.
|
|
///
|
|
/// The optimizations performed include elimination of redundant, partially
|
|
/// redundant, and inconsequential reference count operations, elimination of
|
|
/// redundant weak pointer operations, and numerous minor simplifications.
|
|
///
|
|
/// WARNING: This file knows about certain library functions. It recognizes them
|
|
/// by name, and hardwires knowledge of their semantics.
|
|
///
|
|
/// WARNING: This file knows about how certain Objective-C library functions are
|
|
/// used. Naive LLVM IR transformations which would otherwise be
|
|
/// behavior-preserving may break these assumptions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARCRuntimeEntryPoints.h"
|
|
#include "BlotMapVector.h"
|
|
#include "DependencyAnalysis.h"
|
|
#include "ObjCARC.h"
|
|
#include "ProvenanceAnalysis.h"
|
|
#include "PtrState.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
|
#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
|
|
#include "llvm/Analysis/ObjCARCAnalysisUtils.h"
|
|
#include "llvm/Analysis/ObjCARCInstKind.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/ObjCARC.h"
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::objcarc;
|
|
|
|
#define DEBUG_TYPE "objc-arc-opts"
|
|
|
|
static cl::opt<unsigned> MaxPtrStates("arc-opt-max-ptr-states",
|
|
cl::Hidden,
|
|
cl::desc("Maximum number of ptr states the optimizer keeps track of"),
|
|
cl::init(4095));
|
|
|
|
/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
|
|
/// @{
|
|
|
|
/// This is similar to GetRCIdentityRoot but it stops as soon
|
|
/// as it finds a value with multiple uses.
|
|
static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
|
|
// ConstantData (like ConstantPointerNull and UndefValue) is used across
|
|
// modules. It's never a single-use value.
|
|
if (isa<ConstantData>(Arg))
|
|
return nullptr;
|
|
|
|
if (Arg->hasOneUse()) {
|
|
if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
|
|
return FindSingleUseIdentifiedObject(BC->getOperand(0));
|
|
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
|
|
if (GEP->hasAllZeroIndices())
|
|
return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
|
|
if (IsForwarding(GetBasicARCInstKind(Arg)))
|
|
return FindSingleUseIdentifiedObject(
|
|
cast<CallInst>(Arg)->getArgOperand(0));
|
|
if (!IsObjCIdentifiedObject(Arg))
|
|
return nullptr;
|
|
return Arg;
|
|
}
|
|
|
|
// If we found an identifiable object but it has multiple uses, but they are
|
|
// trivial uses, we can still consider this to be a single-use value.
|
|
if (IsObjCIdentifiedObject(Arg)) {
|
|
for (const User *U : Arg->users())
|
|
if (!U->use_empty() || GetRCIdentityRoot(U) != Arg)
|
|
return nullptr;
|
|
|
|
return Arg;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// @}
|
|
///
|
|
/// \defgroup ARCOpt ARC Optimization.
|
|
/// @{
|
|
|
|
// TODO: On code like this:
|
|
//
|
|
// objc_retain(%x)
|
|
// stuff_that_cannot_release()
|
|
// objc_autorelease(%x)
|
|
// stuff_that_cannot_release()
|
|
// objc_retain(%x)
|
|
// stuff_that_cannot_release()
|
|
// objc_autorelease(%x)
|
|
//
|
|
// The second retain and autorelease can be deleted.
|
|
|
|
// TODO: It should be possible to delete
|
|
// objc_autoreleasePoolPush and objc_autoreleasePoolPop
|
|
// pairs if nothing is actually autoreleased between them. Also, autorelease
|
|
// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
|
|
// after inlining) can be turned into plain release calls.
|
|
|
|
// TODO: Critical-edge splitting. If the optimial insertion point is
|
|
// a critical edge, the current algorithm has to fail, because it doesn't
|
|
// know how to split edges. It should be possible to make the optimizer
|
|
// think in terms of edges, rather than blocks, and then split critical
|
|
// edges on demand.
|
|
|
|
// TODO: OptimizeSequences could generalized to be Interprocedural.
|
|
|
|
// TODO: Recognize that a bunch of other objc runtime calls have
|
|
// non-escaping arguments and non-releasing arguments, and may be
|
|
// non-autoreleasing.
|
|
|
|
// TODO: Sink autorelease calls as far as possible. Unfortunately we
|
|
// usually can't sink them past other calls, which would be the main
|
|
// case where it would be useful.
|
|
|
|
// TODO: The pointer returned from objc_loadWeakRetained is retained.
|
|
|
|
// TODO: Delete release+retain pairs (rare).
|
|
|
|
STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
|
|
STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
|
|
STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
|
|
STATISTIC(NumRets, "Number of return value forwarding "
|
|
"retain+autoreleases eliminated");
|
|
STATISTIC(NumRRs, "Number of retain+release paths eliminated");
|
|
STATISTIC(NumPeeps, "Number of calls peephole-optimized");
|
|
#ifndef NDEBUG
|
|
STATISTIC(NumRetainsBeforeOpt,
|
|
"Number of retains before optimization");
|
|
STATISTIC(NumReleasesBeforeOpt,
|
|
"Number of releases before optimization");
|
|
STATISTIC(NumRetainsAfterOpt,
|
|
"Number of retains after optimization");
|
|
STATISTIC(NumReleasesAfterOpt,
|
|
"Number of releases after optimization");
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
/// Per-BasicBlock state.
|
|
class BBState {
|
|
/// The number of unique control paths from the entry which can reach this
|
|
/// block.
|
|
unsigned TopDownPathCount = 0;
|
|
|
|
/// The number of unique control paths to exits from this block.
|
|
unsigned BottomUpPathCount = 0;
|
|
|
|
/// The top-down traversal uses this to record information known about a
|
|
/// pointer at the bottom of each block.
|
|
BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown;
|
|
|
|
/// The bottom-up traversal uses this to record information known about a
|
|
/// pointer at the top of each block.
|
|
BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp;
|
|
|
|
/// Effective predecessors of the current block ignoring ignorable edges and
|
|
/// ignored backedges.
|
|
SmallVector<BasicBlock *, 2> Preds;
|
|
|
|
/// Effective successors of the current block ignoring ignorable edges and
|
|
/// ignored backedges.
|
|
SmallVector<BasicBlock *, 2> Succs;
|
|
|
|
public:
|
|
static const unsigned OverflowOccurredValue;
|
|
|
|
BBState() = default;
|
|
|
|
using top_down_ptr_iterator = decltype(PerPtrTopDown)::iterator;
|
|
using const_top_down_ptr_iterator = decltype(PerPtrTopDown)::const_iterator;
|
|
|
|
top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
|
|
top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
|
|
const_top_down_ptr_iterator top_down_ptr_begin() const {
|
|
return PerPtrTopDown.begin();
|
|
}
|
|
const_top_down_ptr_iterator top_down_ptr_end() const {
|
|
return PerPtrTopDown.end();
|
|
}
|
|
bool hasTopDownPtrs() const {
|
|
return !PerPtrTopDown.empty();
|
|
}
|
|
|
|
unsigned top_down_ptr_list_size() const {
|
|
return std::distance(top_down_ptr_begin(), top_down_ptr_end());
|
|
}
|
|
|
|
using bottom_up_ptr_iterator = decltype(PerPtrBottomUp)::iterator;
|
|
using const_bottom_up_ptr_iterator =
|
|
decltype(PerPtrBottomUp)::const_iterator;
|
|
|
|
bottom_up_ptr_iterator bottom_up_ptr_begin() {
|
|
return PerPtrBottomUp.begin();
|
|
}
|
|
bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
|
|
const_bottom_up_ptr_iterator bottom_up_ptr_begin() const {
|
|
return PerPtrBottomUp.begin();
|
|
}
|
|
const_bottom_up_ptr_iterator bottom_up_ptr_end() const {
|
|
return PerPtrBottomUp.end();
|
|
}
|
|
bool hasBottomUpPtrs() const {
|
|
return !PerPtrBottomUp.empty();
|
|
}
|
|
|
|
unsigned bottom_up_ptr_list_size() const {
|
|
return std::distance(bottom_up_ptr_begin(), bottom_up_ptr_end());
|
|
}
|
|
|
|
/// Mark this block as being an entry block, which has one path from the
|
|
/// entry by definition.
|
|
void SetAsEntry() { TopDownPathCount = 1; }
|
|
|
|
/// Mark this block as being an exit block, which has one path to an exit by
|
|
/// definition.
|
|
void SetAsExit() { BottomUpPathCount = 1; }
|
|
|
|
/// Attempt to find the PtrState object describing the top down state for
|
|
/// pointer Arg. Return a new initialized PtrState describing the top down
|
|
/// state for Arg if we do not find one.
|
|
TopDownPtrState &getPtrTopDownState(const Value *Arg) {
|
|
return PerPtrTopDown[Arg];
|
|
}
|
|
|
|
/// Attempt to find the PtrState object describing the bottom up state for
|
|
/// pointer Arg. Return a new initialized PtrState describing the bottom up
|
|
/// state for Arg if we do not find one.
|
|
BottomUpPtrState &getPtrBottomUpState(const Value *Arg) {
|
|
return PerPtrBottomUp[Arg];
|
|
}
|
|
|
|
/// Attempt to find the PtrState object describing the bottom up state for
|
|
/// pointer Arg.
|
|
bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) {
|
|
return PerPtrBottomUp.find(Arg);
|
|
}
|
|
|
|
void clearBottomUpPointers() {
|
|
PerPtrBottomUp.clear();
|
|
}
|
|
|
|
void clearTopDownPointers() {
|
|
PerPtrTopDown.clear();
|
|
}
|
|
|
|
void InitFromPred(const BBState &Other);
|
|
void InitFromSucc(const BBState &Other);
|
|
void MergePred(const BBState &Other);
|
|
void MergeSucc(const BBState &Other);
|
|
|
|
/// Compute the number of possible unique paths from an entry to an exit
|
|
/// which pass through this block. This is only valid after both the
|
|
/// top-down and bottom-up traversals are complete.
|
|
///
|
|
/// Returns true if overflow occurred. Returns false if overflow did not
|
|
/// occur.
|
|
bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
|
|
if (TopDownPathCount == OverflowOccurredValue ||
|
|
BottomUpPathCount == OverflowOccurredValue)
|
|
return true;
|
|
unsigned long long Product =
|
|
(unsigned long long)TopDownPathCount*BottomUpPathCount;
|
|
// Overflow occurred if any of the upper bits of Product are set or if all
|
|
// the lower bits of Product are all set.
|
|
return (Product >> 32) ||
|
|
((PathCount = Product) == OverflowOccurredValue);
|
|
}
|
|
|
|
// Specialized CFG utilities.
|
|
using edge_iterator = SmallVectorImpl<BasicBlock *>::const_iterator;
|
|
|
|
edge_iterator pred_begin() const { return Preds.begin(); }
|
|
edge_iterator pred_end() const { return Preds.end(); }
|
|
edge_iterator succ_begin() const { return Succs.begin(); }
|
|
edge_iterator succ_end() const { return Succs.end(); }
|
|
|
|
void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
|
|
void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
|
|
|
|
bool isExit() const { return Succs.empty(); }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
const unsigned BBState::OverflowOccurredValue = 0xffffffff;
|
|
|
|
namespace llvm {
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS,
|
|
BBState &BBState) LLVM_ATTRIBUTE_UNUSED;
|
|
|
|
} // end namespace llvm
|
|
|
|
void BBState::InitFromPred(const BBState &Other) {
|
|
PerPtrTopDown = Other.PerPtrTopDown;
|
|
TopDownPathCount = Other.TopDownPathCount;
|
|
}
|
|
|
|
void BBState::InitFromSucc(const BBState &Other) {
|
|
PerPtrBottomUp = Other.PerPtrBottomUp;
|
|
BottomUpPathCount = Other.BottomUpPathCount;
|
|
}
|
|
|
|
/// The top-down traversal uses this to merge information about predecessors to
|
|
/// form the initial state for a new block.
|
|
void BBState::MergePred(const BBState &Other) {
|
|
if (TopDownPathCount == OverflowOccurredValue)
|
|
return;
|
|
|
|
// Other.TopDownPathCount can be 0, in which case it is either dead or a
|
|
// loop backedge. Loop backedges are special.
|
|
TopDownPathCount += Other.TopDownPathCount;
|
|
|
|
// In order to be consistent, we clear the top down pointers when by adding
|
|
// TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
|
|
// has not occurred.
|
|
if (TopDownPathCount == OverflowOccurredValue) {
|
|
clearTopDownPointers();
|
|
return;
|
|
}
|
|
|
|
// Check for overflow. If we have overflow, fall back to conservative
|
|
// behavior.
|
|
if (TopDownPathCount < Other.TopDownPathCount) {
|
|
TopDownPathCount = OverflowOccurredValue;
|
|
clearTopDownPointers();
|
|
return;
|
|
}
|
|
|
|
// For each entry in the other set, if our set has an entry with the same key,
|
|
// merge the entries. Otherwise, copy the entry and merge it with an empty
|
|
// entry.
|
|
for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end();
|
|
MI != ME; ++MI) {
|
|
auto Pair = PerPtrTopDown.insert(*MI);
|
|
Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second,
|
|
/*TopDown=*/true);
|
|
}
|
|
|
|
// For each entry in our set, if the other set doesn't have an entry with the
|
|
// same key, force it to merge with an empty entry.
|
|
for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI)
|
|
if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
|
|
MI->second.Merge(TopDownPtrState(), /*TopDown=*/true);
|
|
}
|
|
|
|
/// The bottom-up traversal uses this to merge information about successors to
|
|
/// form the initial state for a new block.
|
|
void BBState::MergeSucc(const BBState &Other) {
|
|
if (BottomUpPathCount == OverflowOccurredValue)
|
|
return;
|
|
|
|
// Other.BottomUpPathCount can be 0, in which case it is either dead or a
|
|
// loop backedge. Loop backedges are special.
|
|
BottomUpPathCount += Other.BottomUpPathCount;
|
|
|
|
// In order to be consistent, we clear the top down pointers when by adding
|
|
// BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
|
|
// has not occurred.
|
|
if (BottomUpPathCount == OverflowOccurredValue) {
|
|
clearBottomUpPointers();
|
|
return;
|
|
}
|
|
|
|
// Check for overflow. If we have overflow, fall back to conservative
|
|
// behavior.
|
|
if (BottomUpPathCount < Other.BottomUpPathCount) {
|
|
BottomUpPathCount = OverflowOccurredValue;
|
|
clearBottomUpPointers();
|
|
return;
|
|
}
|
|
|
|
// For each entry in the other set, if our set has an entry with the
|
|
// same key, merge the entries. Otherwise, copy the entry and merge
|
|
// it with an empty entry.
|
|
for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end();
|
|
MI != ME; ++MI) {
|
|
auto Pair = PerPtrBottomUp.insert(*MI);
|
|
Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second,
|
|
/*TopDown=*/false);
|
|
}
|
|
|
|
// For each entry in our set, if the other set doesn't have an entry
|
|
// with the same key, force it to merge with an empty entry.
|
|
for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME;
|
|
++MI)
|
|
if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
|
|
MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false);
|
|
}
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) {
|
|
// Dump the pointers we are tracking.
|
|
OS << " TopDown State:\n";
|
|
if (!BBInfo.hasTopDownPtrs()) {
|
|
LLVM_DEBUG(dbgs() << " NONE!\n");
|
|
} else {
|
|
for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end();
|
|
I != E; ++I) {
|
|
const PtrState &P = I->second;
|
|
OS << " Ptr: " << *I->first
|
|
<< "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false")
|
|
<< "\n ImpreciseRelease: "
|
|
<< (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
|
|
<< " HasCFGHazards: "
|
|
<< (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
|
|
<< " KnownPositive: "
|
|
<< (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
|
|
<< " Seq: "
|
|
<< P.GetSeq() << "\n";
|
|
}
|
|
}
|
|
|
|
OS << " BottomUp State:\n";
|
|
if (!BBInfo.hasBottomUpPtrs()) {
|
|
LLVM_DEBUG(dbgs() << " NONE!\n");
|
|
} else {
|
|
for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end();
|
|
I != E; ++I) {
|
|
const PtrState &P = I->second;
|
|
OS << " Ptr: " << *I->first
|
|
<< "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false")
|
|
<< "\n ImpreciseRelease: "
|
|
<< (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
|
|
<< " HasCFGHazards: "
|
|
<< (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
|
|
<< " KnownPositive: "
|
|
<< (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
|
|
<< " Seq: "
|
|
<< P.GetSeq() << "\n";
|
|
}
|
|
}
|
|
|
|
return OS;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// The main ARC optimization pass.
|
|
class ObjCARCOpt {
|
|
bool Changed;
|
|
ProvenanceAnalysis PA;
|
|
|
|
/// A cache of references to runtime entry point constants.
|
|
ARCRuntimeEntryPoints EP;
|
|
|
|
/// A cache of MDKinds that can be passed into other functions to propagate
|
|
/// MDKind identifiers.
|
|
ARCMDKindCache MDKindCache;
|
|
|
|
/// A flag indicating whether this optimization pass should run.
|
|
bool Run;
|
|
|
|
/// A flag indicating whether the optimization that removes or moves
|
|
/// retain/release pairs should be performed.
|
|
bool DisableRetainReleasePairing = false;
|
|
|
|
/// Flags which determine whether each of the interesting runtime functions
|
|
/// is in fact used in the current function.
|
|
unsigned UsedInThisFunction;
|
|
|
|
bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
|
|
void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
|
|
ARCInstKind &Class);
|
|
void OptimizeIndividualCalls(Function &F);
|
|
|
|
/// Optimize an individual call, optionally passing the
|
|
/// GetArgRCIdentityRoot if it has already been computed.
|
|
void OptimizeIndividualCallImpl(
|
|
Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
|
|
Instruction *Inst, ARCInstKind Class, const Value *Arg);
|
|
|
|
/// Try to optimize an AutoreleaseRV with a RetainRV or ClaimRV. If the
|
|
/// optimization occurs, returns true to indicate that the caller should
|
|
/// assume the instructions are dead.
|
|
bool OptimizeInlinedAutoreleaseRVCall(
|
|
Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
|
|
Instruction *Inst, const Value *&Arg, ARCInstKind Class,
|
|
Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg);
|
|
|
|
void CheckForCFGHazards(const BasicBlock *BB,
|
|
DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
BBState &MyStates) const;
|
|
bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB,
|
|
BlotMapVector<Value *, RRInfo> &Retains,
|
|
BBState &MyStates);
|
|
bool VisitBottomUp(BasicBlock *BB,
|
|
DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
BlotMapVector<Value *, RRInfo> &Retains);
|
|
bool VisitInstructionTopDown(Instruction *Inst,
|
|
DenseMap<Value *, RRInfo> &Releases,
|
|
BBState &MyStates);
|
|
bool VisitTopDown(BasicBlock *BB,
|
|
DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
DenseMap<Value *, RRInfo> &Releases);
|
|
bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
BlotMapVector<Value *, RRInfo> &Retains,
|
|
DenseMap<Value *, RRInfo> &Releases);
|
|
|
|
void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
|
|
BlotMapVector<Value *, RRInfo> &Retains,
|
|
DenseMap<Value *, RRInfo> &Releases,
|
|
SmallVectorImpl<Instruction *> &DeadInsts, Module *M);
|
|
|
|
bool PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
BlotMapVector<Value *, RRInfo> &Retains,
|
|
DenseMap<Value *, RRInfo> &Releases, Module *M,
|
|
Instruction *Retain,
|
|
SmallVectorImpl<Instruction *> &DeadInsts,
|
|
RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
|
|
Value *Arg, bool KnownSafe,
|
|
bool &AnyPairsCompletelyEliminated);
|
|
|
|
bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
BlotMapVector<Value *, RRInfo> &Retains,
|
|
DenseMap<Value *, RRInfo> &Releases, Module *M);
|
|
|
|
void OptimizeWeakCalls(Function &F);
|
|
|
|
bool OptimizeSequences(Function &F);
|
|
|
|
void OptimizeReturns(Function &F);
|
|
|
|
#ifndef NDEBUG
|
|
void GatherStatistics(Function &F, bool AfterOptimization = false);
|
|
#endif
|
|
|
|
public:
|
|
void init(Module &M);
|
|
bool run(Function &F, AAResults &AA);
|
|
void releaseMemory();
|
|
};
|
|
|
|
/// The main ARC optimization pass.
|
|
class ObjCARCOptLegacyPass : public FunctionPass {
|
|
public:
|
|
ObjCARCOptLegacyPass() : FunctionPass(ID) {
|
|
initializeObjCARCOptLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
bool doInitialization(Module &M) override {
|
|
OCAO.init(M);
|
|
return false;
|
|
}
|
|
bool runOnFunction(Function &F) override {
|
|
return OCAO.run(F, getAnalysis<AAResultsWrapperPass>().getAAResults());
|
|
}
|
|
void releaseMemory() override { OCAO.releaseMemory(); }
|
|
static char ID;
|
|
|
|
private:
|
|
ObjCARCOpt OCAO;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char ObjCARCOptLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ObjCARCOptLegacyPass, "objc-arc", "ObjC ARC optimization",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
|
|
INITIALIZE_PASS_END(ObjCARCOptLegacyPass, "objc-arc", "ObjC ARC optimization",
|
|
false, false)
|
|
|
|
Pass *llvm::createObjCARCOptPass() { return new ObjCARCOptLegacyPass(); }
|
|
|
|
void ObjCARCOptLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<ObjCARCAAWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
// ARC optimization doesn't currently split critical edges.
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
|
|
/// not a return value.
|
|
bool
|
|
ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
|
|
// Check for the argument being from an immediately preceding call or invoke.
|
|
const Value *Arg = GetArgRCIdentityRoot(RetainRV);
|
|
if (const Instruction *Call = dyn_cast<CallBase>(Arg)) {
|
|
if (Call->getParent() == RetainRV->getParent()) {
|
|
BasicBlock::const_iterator I(Call);
|
|
++I;
|
|
while (IsNoopInstruction(&*I))
|
|
++I;
|
|
if (&*I == RetainRV)
|
|
return false;
|
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
|
|
BasicBlock *RetainRVParent = RetainRV->getParent();
|
|
if (II->getNormalDest() == RetainRVParent) {
|
|
BasicBlock::const_iterator I = RetainRVParent->begin();
|
|
while (IsNoopInstruction(&*I))
|
|
++I;
|
|
if (&*I == RetainRV)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Turn it to a plain objc_retain.
|
|
Changed = true;
|
|
++NumPeeps;
|
|
|
|
LLVM_DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
|
|
"objc_retain since the operand is not a return value.\n"
|
|
"Old = "
|
|
<< *RetainRV << "\n");
|
|
|
|
Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain);
|
|
cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
|
|
|
|
LLVM_DEBUG(dbgs() << "New = " << *RetainRV << "\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ObjCARCOpt::OptimizeInlinedAutoreleaseRVCall(
|
|
Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
|
|
Instruction *Inst, const Value *&Arg, ARCInstKind Class,
|
|
Instruction *AutoreleaseRV, const Value *&AutoreleaseRVArg) {
|
|
// Must be in the same basic block.
|
|
assert(Inst->getParent() == AutoreleaseRV->getParent());
|
|
|
|
// Must operate on the same root.
|
|
Arg = GetArgRCIdentityRoot(Inst);
|
|
AutoreleaseRVArg = GetArgRCIdentityRoot(AutoreleaseRV);
|
|
if (Arg != AutoreleaseRVArg) {
|
|
// If there isn't an exact match, check if we have equivalent PHIs.
|
|
const PHINode *PN = dyn_cast<PHINode>(Arg);
|
|
if (!PN)
|
|
return false;
|
|
|
|
SmallVector<const Value *, 4> ArgUsers;
|
|
getEquivalentPHIs(*PN, ArgUsers);
|
|
if (llvm::find(ArgUsers, AutoreleaseRVArg) == ArgUsers.end())
|
|
return false;
|
|
}
|
|
|
|
// Okay, this is a match. Merge them.
|
|
++NumPeeps;
|
|
LLVM_DEBUG(dbgs() << "Found inlined objc_autoreleaseReturnValue '"
|
|
<< *AutoreleaseRV << "' paired with '" << *Inst << "'\n");
|
|
|
|
// Delete the RV pair, starting with the AutoreleaseRV.
|
|
AutoreleaseRV->replaceAllUsesWith(
|
|
cast<CallInst>(AutoreleaseRV)->getArgOperand(0));
|
|
Changed = true;
|
|
EraseInstruction(AutoreleaseRV);
|
|
if (Class == ARCInstKind::RetainRV) {
|
|
// AutoreleaseRV and RetainRV cancel out. Delete the RetainRV.
|
|
Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
|
|
EraseInstruction(Inst);
|
|
return true;
|
|
}
|
|
|
|
// ClaimRV is a frontend peephole for RetainRV + Release. Since the
|
|
// AutoreleaseRV and RetainRV cancel out, replace the ClaimRV with a Release.
|
|
assert(Class == ARCInstKind::ClaimRV);
|
|
Value *CallArg = cast<CallInst>(Inst)->getArgOperand(0);
|
|
CallInst *Release = CallInst::Create(
|
|
EP.get(ARCRuntimeEntryPointKind::Release), CallArg, "", Inst);
|
|
assert(IsAlwaysTail(ARCInstKind::ClaimRV) &&
|
|
"Expected ClaimRV to be safe to tail call");
|
|
Release->setTailCall();
|
|
Inst->replaceAllUsesWith(CallArg);
|
|
EraseInstruction(Inst);
|
|
|
|
// Run the normal optimizations on Release.
|
|
OptimizeIndividualCallImpl(F, BlockColors, Release, ARCInstKind::Release,
|
|
Arg);
|
|
return true;
|
|
}
|
|
|
|
/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
|
|
/// used as a return value.
|
|
void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F,
|
|
Instruction *AutoreleaseRV,
|
|
ARCInstKind &Class) {
|
|
// Check for a return of the pointer value.
|
|
const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV);
|
|
|
|
// If the argument is ConstantPointerNull or UndefValue, its other users
|
|
// aren't actually interesting to look at.
|
|
if (isa<ConstantData>(Ptr))
|
|
return;
|
|
|
|
SmallVector<const Value *, 2> Users;
|
|
Users.push_back(Ptr);
|
|
|
|
// Add PHIs that are equivalent to Ptr to Users.
|
|
if (const PHINode *PN = dyn_cast<PHINode>(Ptr))
|
|
getEquivalentPHIs(*PN, Users);
|
|
|
|
do {
|
|
Ptr = Users.pop_back_val();
|
|
for (const User *U : Ptr->users()) {
|
|
if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV)
|
|
return;
|
|
if (isa<BitCastInst>(U))
|
|
Users.push_back(U);
|
|
}
|
|
} while (!Users.empty());
|
|
|
|
Changed = true;
|
|
++NumPeeps;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Transforming objc_autoreleaseReturnValue => "
|
|
"objc_autorelease since its operand is not used as a return "
|
|
"value.\n"
|
|
"Old = "
|
|
<< *AutoreleaseRV << "\n");
|
|
|
|
CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
|
|
Function *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease);
|
|
AutoreleaseRVCI->setCalledFunction(NewDecl);
|
|
AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
|
|
Class = ARCInstKind::Autorelease;
|
|
|
|
LLVM_DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
|
|
}
|
|
|
|
namespace {
|
|
Instruction *
|
|
CloneCallInstForBB(CallInst &CI, BasicBlock &BB,
|
|
const DenseMap<BasicBlock *, ColorVector> &BlockColors) {
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
for (unsigned I = 0, E = CI.getNumOperandBundles(); I != E; ++I) {
|
|
auto Bundle = CI.getOperandBundleAt(I);
|
|
// Funclets will be reassociated in the future.
|
|
if (Bundle.getTagID() == LLVMContext::OB_funclet)
|
|
continue;
|
|
OpBundles.emplace_back(Bundle);
|
|
}
|
|
|
|
if (!BlockColors.empty()) {
|
|
const ColorVector &CV = BlockColors.find(&BB)->second;
|
|
assert(CV.size() == 1 && "non-unique color for block!");
|
|
Instruction *EHPad = CV.front()->getFirstNonPHI();
|
|
if (EHPad->isEHPad())
|
|
OpBundles.emplace_back("funclet", EHPad);
|
|
}
|
|
|
|
return CallInst::Create(&CI, OpBundles);
|
|
}
|
|
}
|
|
|
|
/// Visit each call, one at a time, and make simplifications without doing any
|
|
/// additional analysis.
|
|
void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
|
|
LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
|
|
// Reset all the flags in preparation for recomputing them.
|
|
UsedInThisFunction = 0;
|
|
|
|
DenseMap<BasicBlock *, ColorVector> BlockColors;
|
|
if (F.hasPersonalityFn() &&
|
|
isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
|
|
BlockColors = colorEHFunclets(F);
|
|
|
|
// Store any delayed AutoreleaseRV intrinsics, so they can be easily paired
|
|
// with RetainRV and ClaimRV.
|
|
Instruction *DelayedAutoreleaseRV = nullptr;
|
|
const Value *DelayedAutoreleaseRVArg = nullptr;
|
|
auto setDelayedAutoreleaseRV = [&](Instruction *AutoreleaseRV) {
|
|
assert(!DelayedAutoreleaseRV || !AutoreleaseRV);
|
|
DelayedAutoreleaseRV = AutoreleaseRV;
|
|
DelayedAutoreleaseRVArg = nullptr;
|
|
};
|
|
auto optimizeDelayedAutoreleaseRV = [&]() {
|
|
if (!DelayedAutoreleaseRV)
|
|
return;
|
|
OptimizeIndividualCallImpl(F, BlockColors, DelayedAutoreleaseRV,
|
|
ARCInstKind::AutoreleaseRV,
|
|
DelayedAutoreleaseRVArg);
|
|
setDelayedAutoreleaseRV(nullptr);
|
|
};
|
|
auto shouldDelayAutoreleaseRV = [&](Instruction *NonARCInst) {
|
|
// Nothing to delay, but we may as well skip the logic below.
|
|
if (!DelayedAutoreleaseRV)
|
|
return true;
|
|
|
|
// If we hit the end of the basic block we're not going to find an RV-pair.
|
|
// Stop delaying.
|
|
if (NonARCInst->isTerminator())
|
|
return false;
|
|
|
|
// Given the frontend rules for emitting AutoreleaseRV, RetainRV, and
|
|
// ClaimRV, it's probably safe to skip over even opaque function calls
|
|
// here since OptimizeInlinedAutoreleaseRVCall will confirm that they
|
|
// have the same RCIdentityRoot. However, what really matters is
|
|
// skipping instructions or intrinsics that the inliner could leave behind;
|
|
// be conservative for now and don't skip over opaque calls, which could
|
|
// potentially include other ARC calls.
|
|
auto *CB = dyn_cast<CallBase>(NonARCInst);
|
|
if (!CB)
|
|
return true;
|
|
return CB->getIntrinsicID() != Intrinsic::not_intrinsic;
|
|
};
|
|
|
|
// Visit all objc_* calls in F.
|
|
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
|
|
Instruction *Inst = &*I++;
|
|
|
|
ARCInstKind Class = GetBasicARCInstKind(Inst);
|
|
|
|
// Skip this loop if this instruction isn't itself an ARC intrinsic.
|
|
const Value *Arg = nullptr;
|
|
switch (Class) {
|
|
default:
|
|
optimizeDelayedAutoreleaseRV();
|
|
break;
|
|
case ARCInstKind::CallOrUser:
|
|
case ARCInstKind::User:
|
|
case ARCInstKind::None:
|
|
// This is a non-ARC instruction. If we're delaying an AutoreleaseRV,
|
|
// check if it's safe to skip over it; if not, optimize the AutoreleaseRV
|
|
// now.
|
|
if (!shouldDelayAutoreleaseRV(Inst))
|
|
optimizeDelayedAutoreleaseRV();
|
|
continue;
|
|
case ARCInstKind::AutoreleaseRV:
|
|
optimizeDelayedAutoreleaseRV();
|
|
setDelayedAutoreleaseRV(Inst);
|
|
continue;
|
|
case ARCInstKind::RetainRV:
|
|
case ARCInstKind::ClaimRV:
|
|
if (DelayedAutoreleaseRV) {
|
|
// We have a potential RV pair. Check if they cancel out.
|
|
if (OptimizeInlinedAutoreleaseRVCall(F, BlockColors, Inst, Arg, Class,
|
|
DelayedAutoreleaseRV,
|
|
DelayedAutoreleaseRVArg)) {
|
|
setDelayedAutoreleaseRV(nullptr);
|
|
continue;
|
|
}
|
|
optimizeDelayedAutoreleaseRV();
|
|
}
|
|
break;
|
|
}
|
|
|
|
OptimizeIndividualCallImpl(F, BlockColors, Inst, Class, Arg);
|
|
}
|
|
|
|
// Catch the final delayed AutoreleaseRV.
|
|
optimizeDelayedAutoreleaseRV();
|
|
}
|
|
|
|
/// This function returns true if the value is inert. An ObjC ARC runtime call
|
|
/// taking an inert operand can be safely deleted.
|
|
static bool isInertARCValue(Value *V, SmallPtrSet<Value *, 1> &VisitedPhis) {
|
|
V = V->stripPointerCasts();
|
|
|
|
if (IsNullOrUndef(V))
|
|
return true;
|
|
|
|
// See if this is a global attribute annotated with an 'objc_arc_inert'.
|
|
if (auto *GV = dyn_cast<GlobalVariable>(V))
|
|
if (GV->hasAttribute("objc_arc_inert"))
|
|
return true;
|
|
|
|
if (auto PN = dyn_cast<PHINode>(V)) {
|
|
// Ignore this phi if it has already been discovered.
|
|
if (!VisitedPhis.insert(PN).second)
|
|
return true;
|
|
// Look through phis's operands.
|
|
for (Value *Opnd : PN->incoming_values())
|
|
if (!isInertARCValue(Opnd, VisitedPhis))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void ObjCARCOpt::OptimizeIndividualCallImpl(
|
|
Function &F, DenseMap<BasicBlock *, ColorVector> &BlockColors,
|
|
Instruction *Inst, ARCInstKind Class, const Value *Arg) {
|
|
LLVM_DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
|
|
|
|
// We can delete this call if it takes an inert value.
|
|
SmallPtrSet<Value *, 1> VisitedPhis;
|
|
|
|
if (IsNoopOnGlobal(Class))
|
|
if (isInertARCValue(Inst->getOperand(0), VisitedPhis)) {
|
|
if (!Inst->getType()->isVoidTy())
|
|
Inst->replaceAllUsesWith(Inst->getOperand(0));
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
return;
|
|
}
|
|
|
|
switch (Class) {
|
|
default:
|
|
break;
|
|
|
|
// Delete no-op casts. These function calls have special semantics, but
|
|
// the semantics are entirely implemented via lowering in the front-end,
|
|
// so by the time they reach the optimizer, they are just no-op calls
|
|
// which return their argument.
|
|
//
|
|
// There are gray areas here, as the ability to cast reference-counted
|
|
// pointers to raw void* and back allows code to break ARC assumptions,
|
|
// however these are currently considered to be unimportant.
|
|
case ARCInstKind::NoopCast:
|
|
Changed = true;
|
|
++NumNoops;
|
|
LLVM_DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
|
|
EraseInstruction(Inst);
|
|
return;
|
|
|
|
// If the pointer-to-weak-pointer is null, it's undefined behavior.
|
|
case ARCInstKind::StoreWeak:
|
|
case ARCInstKind::LoadWeak:
|
|
case ARCInstKind::LoadWeakRetained:
|
|
case ARCInstKind::InitWeak:
|
|
case ARCInstKind::DestroyWeak: {
|
|
CallInst *CI = cast<CallInst>(Inst);
|
|
if (IsNullOrUndef(CI->getArgOperand(0))) {
|
|
Changed = true;
|
|
Type *Ty = CI->getArgOperand(0)->getType();
|
|
new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
|
|
Constant::getNullValue(Ty), CI);
|
|
Value *NewValue = UndefValue::get(CI->getType());
|
|
LLVM_DEBUG(
|
|
dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
|
|
"\nOld = "
|
|
<< *CI << "\nNew = " << *NewValue << "\n");
|
|
CI->replaceAllUsesWith(NewValue);
|
|
CI->eraseFromParent();
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case ARCInstKind::CopyWeak:
|
|
case ARCInstKind::MoveWeak: {
|
|
CallInst *CI = cast<CallInst>(Inst);
|
|
if (IsNullOrUndef(CI->getArgOperand(0)) ||
|
|
IsNullOrUndef(CI->getArgOperand(1))) {
|
|
Changed = true;
|
|
Type *Ty = CI->getArgOperand(0)->getType();
|
|
new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
|
|
Constant::getNullValue(Ty), CI);
|
|
|
|
Value *NewValue = UndefValue::get(CI->getType());
|
|
LLVM_DEBUG(
|
|
dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
|
|
"\nOld = "
|
|
<< *CI << "\nNew = " << *NewValue << "\n");
|
|
|
|
CI->replaceAllUsesWith(NewValue);
|
|
CI->eraseFromParent();
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case ARCInstKind::RetainRV:
|
|
if (OptimizeRetainRVCall(F, Inst))
|
|
return;
|
|
break;
|
|
case ARCInstKind::AutoreleaseRV:
|
|
OptimizeAutoreleaseRVCall(F, Inst, Class);
|
|
break;
|
|
}
|
|
|
|
// objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
|
|
if (IsAutorelease(Class) && Inst->use_empty()) {
|
|
CallInst *Call = cast<CallInst>(Inst);
|
|
const Value *Arg = Call->getArgOperand(0);
|
|
Arg = FindSingleUseIdentifiedObject(Arg);
|
|
if (Arg) {
|
|
Changed = true;
|
|
++NumAutoreleases;
|
|
|
|
// Create the declaration lazily.
|
|
LLVMContext &C = Inst->getContext();
|
|
|
|
Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
|
|
CallInst *NewCall =
|
|
CallInst::Create(Decl, Call->getArgOperand(0), "", Call);
|
|
NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease),
|
|
MDNode::get(C, None));
|
|
|
|
LLVM_DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
|
|
"since x is otherwise unused.\nOld: "
|
|
<< *Call << "\nNew: " << *NewCall << "\n");
|
|
|
|
EraseInstruction(Call);
|
|
Inst = NewCall;
|
|
Class = ARCInstKind::Release;
|
|
}
|
|
}
|
|
|
|
// For functions which can never be passed stack arguments, add
|
|
// a tail keyword.
|
|
if (IsAlwaysTail(Class) && !cast<CallInst>(Inst)->isNoTailCall()) {
|
|
Changed = true;
|
|
LLVM_DEBUG(
|
|
dbgs() << "Adding tail keyword to function since it can never be "
|
|
"passed stack args: "
|
|
<< *Inst << "\n");
|
|
cast<CallInst>(Inst)->setTailCall();
|
|
}
|
|
|
|
// Ensure that functions that can never have a "tail" keyword due to the
|
|
// semantics of ARC truly do not do so.
|
|
if (IsNeverTail(Class)) {
|
|
Changed = true;
|
|
LLVM_DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst
|
|
<< "\n");
|
|
cast<CallInst>(Inst)->setTailCall(false);
|
|
}
|
|
|
|
// Set nounwind as needed.
|
|
if (IsNoThrow(Class)) {
|
|
Changed = true;
|
|
LLVM_DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
|
|
<< "\n");
|
|
cast<CallInst>(Inst)->setDoesNotThrow();
|
|
}
|
|
|
|
// Note: This catches instructions unrelated to ARC.
|
|
if (!IsNoopOnNull(Class)) {
|
|
UsedInThisFunction |= 1 << unsigned(Class);
|
|
return;
|
|
}
|
|
|
|
// If we haven't already looked up the root, look it up now.
|
|
if (!Arg)
|
|
Arg = GetArgRCIdentityRoot(Inst);
|
|
|
|
// ARC calls with null are no-ops. Delete them.
|
|
if (IsNullOrUndef(Arg)) {
|
|
Changed = true;
|
|
++NumNoops;
|
|
LLVM_DEBUG(dbgs() << "ARC calls with null are no-ops. Erasing: " << *Inst
|
|
<< "\n");
|
|
EraseInstruction(Inst);
|
|
return;
|
|
}
|
|
|
|
// Keep track of which of retain, release, autorelease, and retain_block
|
|
// are actually present in this function.
|
|
UsedInThisFunction |= 1 << unsigned(Class);
|
|
|
|
// If Arg is a PHI, and one or more incoming values to the
|
|
// PHI are null, and the call is control-equivalent to the PHI, and there
|
|
// are no relevant side effects between the PHI and the call, and the call
|
|
// is not a release that doesn't have the clang.imprecise_release tag, the
|
|
// call could be pushed up to just those paths with non-null incoming
|
|
// values. For now, don't bother splitting critical edges for this.
|
|
if (Class == ARCInstKind::Release &&
|
|
!Inst->getMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease)))
|
|
return;
|
|
|
|
SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
|
|
Worklist.push_back(std::make_pair(Inst, Arg));
|
|
do {
|
|
std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
|
|
Inst = Pair.first;
|
|
Arg = Pair.second;
|
|
|
|
const PHINode *PN = dyn_cast<PHINode>(Arg);
|
|
if (!PN)
|
|
continue;
|
|
|
|
// Determine if the PHI has any null operands, or any incoming
|
|
// critical edges.
|
|
bool HasNull = false;
|
|
bool HasCriticalEdges = false;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i));
|
|
if (IsNullOrUndef(Incoming))
|
|
HasNull = true;
|
|
else if (PN->getIncomingBlock(i)->getTerminator()->getNumSuccessors() !=
|
|
1) {
|
|
HasCriticalEdges = true;
|
|
break;
|
|
}
|
|
}
|
|
// If we have null operands and no critical edges, optimize.
|
|
if (HasCriticalEdges)
|
|
continue;
|
|
if (!HasNull)
|
|
continue;
|
|
|
|
SmallPtrSet<Instruction *, 4> DependingInstructions;
|
|
SmallPtrSet<const BasicBlock *, 4> Visited;
|
|
|
|
// Check that there is nothing that cares about the reference
|
|
// count between the call and the phi.
|
|
switch (Class) {
|
|
case ARCInstKind::Retain:
|
|
case ARCInstKind::RetainBlock:
|
|
// These can always be moved up.
|
|
break;
|
|
case ARCInstKind::Release:
|
|
// These can't be moved across things that care about the retain
|
|
// count.
|
|
FindDependencies(NeedsPositiveRetainCount, Arg, Inst->getParent(), Inst,
|
|
DependingInstructions, Visited, PA);
|
|
break;
|
|
case ARCInstKind::Autorelease:
|
|
// These can't be moved across autorelease pool scope boundaries.
|
|
FindDependencies(AutoreleasePoolBoundary, Arg, Inst->getParent(), Inst,
|
|
DependingInstructions, Visited, PA);
|
|
break;
|
|
case ARCInstKind::ClaimRV:
|
|
case ARCInstKind::RetainRV:
|
|
case ARCInstKind::AutoreleaseRV:
|
|
// Don't move these; the RV optimization depends on the autoreleaseRV
|
|
// being tail called, and the retainRV being immediately after a call
|
|
// (which might still happen if we get lucky with codegen layout, but
|
|
// it's not worth taking the chance).
|
|
continue;
|
|
default:
|
|
llvm_unreachable("Invalid dependence flavor");
|
|
}
|
|
|
|
if (DependingInstructions.size() != 1)
|
|
continue;
|
|
if (*DependingInstructions.begin() != PN)
|
|
continue;
|
|
|
|
Changed = true;
|
|
++NumPartialNoops;
|
|
// Clone the call into each predecessor that has a non-null value.
|
|
CallInst *CInst = cast<CallInst>(Inst);
|
|
Type *ParamTy = CInst->getArgOperand(0)->getType();
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *Incoming = GetRCIdentityRoot(PN->getIncomingValue(i));
|
|
if (IsNullOrUndef(Incoming))
|
|
continue;
|
|
Value *Op = PN->getIncomingValue(i);
|
|
Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
|
|
CallInst *Clone = cast<CallInst>(
|
|
CloneCallInstForBB(*CInst, *InsertPos->getParent(), BlockColors));
|
|
if (Op->getType() != ParamTy)
|
|
Op = new BitCastInst(Op, ParamTy, "", InsertPos);
|
|
Clone->setArgOperand(0, Op);
|
|
Clone->insertBefore(InsertPos);
|
|
|
|
LLVM_DEBUG(dbgs() << "Cloning " << *CInst << "\n"
|
|
"And inserting clone at "
|
|
<< *InsertPos << "\n");
|
|
Worklist.push_back(std::make_pair(Clone, Incoming));
|
|
}
|
|
// Erase the original call.
|
|
LLVM_DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
|
|
EraseInstruction(CInst);
|
|
} while (!Worklist.empty());
|
|
}
|
|
|
|
/// If we have a top down pointer in the S_Use state, make sure that there are
|
|
/// no CFG hazards by checking the states of various bottom up pointers.
|
|
static void CheckForUseCFGHazard(const Sequence SuccSSeq,
|
|
const bool SuccSRRIKnownSafe,
|
|
TopDownPtrState &S,
|
|
bool &SomeSuccHasSame,
|
|
bool &AllSuccsHaveSame,
|
|
bool &NotAllSeqEqualButKnownSafe,
|
|
bool &ShouldContinue) {
|
|
switch (SuccSSeq) {
|
|
case S_CanRelease: {
|
|
if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
|
|
S.ClearSequenceProgress();
|
|
break;
|
|
}
|
|
S.SetCFGHazardAfflicted(true);
|
|
ShouldContinue = true;
|
|
break;
|
|
}
|
|
case S_Use:
|
|
SomeSuccHasSame = true;
|
|
break;
|
|
case S_Stop:
|
|
case S_Release:
|
|
case S_MovableRelease:
|
|
if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
|
|
AllSuccsHaveSame = false;
|
|
else
|
|
NotAllSeqEqualButKnownSafe = true;
|
|
break;
|
|
case S_Retain:
|
|
llvm_unreachable("bottom-up pointer in retain state!");
|
|
case S_None:
|
|
llvm_unreachable("This should have been handled earlier.");
|
|
}
|
|
}
|
|
|
|
/// If we have a Top Down pointer in the S_CanRelease state, make sure that
|
|
/// there are no CFG hazards by checking the states of various bottom up
|
|
/// pointers.
|
|
static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
|
|
const bool SuccSRRIKnownSafe,
|
|
TopDownPtrState &S,
|
|
bool &SomeSuccHasSame,
|
|
bool &AllSuccsHaveSame,
|
|
bool &NotAllSeqEqualButKnownSafe) {
|
|
switch (SuccSSeq) {
|
|
case S_CanRelease:
|
|
SomeSuccHasSame = true;
|
|
break;
|
|
case S_Stop:
|
|
case S_Release:
|
|
case S_MovableRelease:
|
|
case S_Use:
|
|
if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
|
|
AllSuccsHaveSame = false;
|
|
else
|
|
NotAllSeqEqualButKnownSafe = true;
|
|
break;
|
|
case S_Retain:
|
|
llvm_unreachable("bottom-up pointer in retain state!");
|
|
case S_None:
|
|
llvm_unreachable("This should have been handled earlier.");
|
|
}
|
|
}
|
|
|
|
/// Check for critical edges, loop boundaries, irreducible control flow, or
|
|
/// other CFG structures where moving code across the edge would result in it
|
|
/// being executed more.
|
|
void
|
|
ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
|
|
DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
BBState &MyStates) const {
|
|
// If any top-down local-use or possible-dec has a succ which is earlier in
|
|
// the sequence, forget it.
|
|
for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end();
|
|
I != E; ++I) {
|
|
TopDownPtrState &S = I->second;
|
|
const Sequence Seq = I->second.GetSeq();
|
|
|
|
// We only care about S_Retain, S_CanRelease, and S_Use.
|
|
if (Seq == S_None)
|
|
continue;
|
|
|
|
// Make sure that if extra top down states are added in the future that this
|
|
// code is updated to handle it.
|
|
assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
|
|
"Unknown top down sequence state.");
|
|
|
|
const Value *Arg = I->first;
|
|
bool SomeSuccHasSame = false;
|
|
bool AllSuccsHaveSame = true;
|
|
bool NotAllSeqEqualButKnownSafe = false;
|
|
|
|
for (const BasicBlock *Succ : successors(BB)) {
|
|
// If VisitBottomUp has pointer information for this successor, take
|
|
// what we know about it.
|
|
const DenseMap<const BasicBlock *, BBState>::iterator BBI =
|
|
BBStates.find(Succ);
|
|
assert(BBI != BBStates.end());
|
|
const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
|
|
const Sequence SuccSSeq = SuccS.GetSeq();
|
|
|
|
// If bottom up, the pointer is in an S_None state, clear the sequence
|
|
// progress since the sequence in the bottom up state finished
|
|
// suggesting a mismatch in between retains/releases. This is true for
|
|
// all three cases that we are handling here: S_Retain, S_Use, and
|
|
// S_CanRelease.
|
|
if (SuccSSeq == S_None) {
|
|
S.ClearSequenceProgress();
|
|
continue;
|
|
}
|
|
|
|
// If we have S_Use or S_CanRelease, perform our check for cfg hazard
|
|
// checks.
|
|
const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
|
|
|
|
// *NOTE* We do not use Seq from above here since we are allowing for
|
|
// S.GetSeq() to change while we are visiting basic blocks.
|
|
switch(S.GetSeq()) {
|
|
case S_Use: {
|
|
bool ShouldContinue = false;
|
|
CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
|
|
AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
|
|
ShouldContinue);
|
|
if (ShouldContinue)
|
|
continue;
|
|
break;
|
|
}
|
|
case S_CanRelease:
|
|
CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
|
|
SomeSuccHasSame, AllSuccsHaveSame,
|
|
NotAllSeqEqualButKnownSafe);
|
|
break;
|
|
case S_Retain:
|
|
case S_None:
|
|
case S_Stop:
|
|
case S_Release:
|
|
case S_MovableRelease:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the state at the other end of any of the successor edges
|
|
// matches the current state, require all edges to match. This
|
|
// guards against loops in the middle of a sequence.
|
|
if (SomeSuccHasSame && !AllSuccsHaveSame) {
|
|
S.ClearSequenceProgress();
|
|
} else if (NotAllSeqEqualButKnownSafe) {
|
|
// If we would have cleared the state foregoing the fact that we are known
|
|
// safe, stop code motion. This is because whether or not it is safe to
|
|
// remove RR pairs via KnownSafe is an orthogonal concept to whether we
|
|
// are allowed to perform code motion.
|
|
S.SetCFGHazardAfflicted(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ObjCARCOpt::VisitInstructionBottomUp(
|
|
Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains,
|
|
BBState &MyStates) {
|
|
bool NestingDetected = false;
|
|
ARCInstKind Class = GetARCInstKind(Inst);
|
|
const Value *Arg = nullptr;
|
|
|
|
LLVM_DEBUG(dbgs() << " Class: " << Class << "\n");
|
|
|
|
switch (Class) {
|
|
case ARCInstKind::Release: {
|
|
Arg = GetArgRCIdentityRoot(Inst);
|
|
|
|
BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
|
|
NestingDetected |= S.InitBottomUp(MDKindCache, Inst);
|
|
break;
|
|
}
|
|
case ARCInstKind::RetainBlock:
|
|
// In OptimizeIndividualCalls, we have strength reduced all optimizable
|
|
// objc_retainBlocks to objc_retains. Thus at this point any
|
|
// objc_retainBlocks that we see are not optimizable.
|
|
break;
|
|
case ARCInstKind::Retain:
|
|
case ARCInstKind::RetainRV: {
|
|
Arg = GetArgRCIdentityRoot(Inst);
|
|
BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
|
|
if (S.MatchWithRetain()) {
|
|
// Don't do retain+release tracking for ARCInstKind::RetainRV, because
|
|
// it's better to let it remain as the first instruction after a call.
|
|
if (Class != ARCInstKind::RetainRV) {
|
|
LLVM_DEBUG(dbgs() << " Matching with: " << *Inst << "\n");
|
|
Retains[Inst] = S.GetRRInfo();
|
|
}
|
|
S.ClearSequenceProgress();
|
|
}
|
|
// A retain moving bottom up can be a use.
|
|
break;
|
|
}
|
|
case ARCInstKind::AutoreleasepoolPop:
|
|
// Conservatively, clear MyStates for all known pointers.
|
|
MyStates.clearBottomUpPointers();
|
|
return NestingDetected;
|
|
case ARCInstKind::AutoreleasepoolPush:
|
|
case ARCInstKind::None:
|
|
// These are irrelevant.
|
|
return NestingDetected;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Consider any other possible effects of this instruction on each
|
|
// pointer being tracked.
|
|
for (auto MI = MyStates.bottom_up_ptr_begin(),
|
|
ME = MyStates.bottom_up_ptr_end();
|
|
MI != ME; ++MI) {
|
|
const Value *Ptr = MI->first;
|
|
if (Ptr == Arg)
|
|
continue; // Handled above.
|
|
BottomUpPtrState &S = MI->second;
|
|
|
|
if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
|
|
continue;
|
|
|
|
S.HandlePotentialUse(BB, Inst, Ptr, PA, Class);
|
|
}
|
|
|
|
return NestingDetected;
|
|
}
|
|
|
|
bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
|
|
DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
BlotMapVector<Value *, RRInfo> &Retains) {
|
|
LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
|
|
|
|
bool NestingDetected = false;
|
|
BBState &MyStates = BBStates[BB];
|
|
|
|
// Merge the states from each successor to compute the initial state
|
|
// for the current block.
|
|
BBState::edge_iterator SI(MyStates.succ_begin()),
|
|
SE(MyStates.succ_end());
|
|
if (SI != SE) {
|
|
const BasicBlock *Succ = *SI;
|
|
DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
|
|
assert(I != BBStates.end());
|
|
MyStates.InitFromSucc(I->second);
|
|
++SI;
|
|
for (; SI != SE; ++SI) {
|
|
Succ = *SI;
|
|
I = BBStates.find(Succ);
|
|
assert(I != BBStates.end());
|
|
MyStates.MergeSucc(I->second);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Before:\n"
|
|
<< BBStates[BB] << "\n"
|
|
<< "Performing Dataflow:\n");
|
|
|
|
// Visit all the instructions, bottom-up.
|
|
for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
|
|
Instruction *Inst = &*std::prev(I);
|
|
|
|
// Invoke instructions are visited as part of their successors (below).
|
|
if (isa<InvokeInst>(Inst))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << " Visiting " << *Inst << "\n");
|
|
|
|
NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
|
|
|
|
// Bail out if the number of pointers being tracked becomes too large so
|
|
// that this pass can complete in a reasonable amount of time.
|
|
if (MyStates.bottom_up_ptr_list_size() > MaxPtrStates) {
|
|
DisableRetainReleasePairing = true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If there's a predecessor with an invoke, visit the invoke as if it were
|
|
// part of this block, since we can't insert code after an invoke in its own
|
|
// block, and we don't want to split critical edges.
|
|
for (BBState::edge_iterator PI(MyStates.pred_begin()),
|
|
PE(MyStates.pred_end()); PI != PE; ++PI) {
|
|
BasicBlock *Pred = *PI;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
|
|
NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n");
|
|
|
|
return NestingDetected;
|
|
}
|
|
|
|
bool
|
|
ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
|
|
DenseMap<Value *, RRInfo> &Releases,
|
|
BBState &MyStates) {
|
|
bool NestingDetected = false;
|
|
ARCInstKind Class = GetARCInstKind(Inst);
|
|
const Value *Arg = nullptr;
|
|
|
|
LLVM_DEBUG(dbgs() << " Class: " << Class << "\n");
|
|
|
|
switch (Class) {
|
|
case ARCInstKind::RetainBlock:
|
|
// In OptimizeIndividualCalls, we have strength reduced all optimizable
|
|
// objc_retainBlocks to objc_retains. Thus at this point any
|
|
// objc_retainBlocks that we see are not optimizable. We need to break since
|
|
// a retain can be a potential use.
|
|
break;
|
|
case ARCInstKind::Retain:
|
|
case ARCInstKind::RetainRV: {
|
|
Arg = GetArgRCIdentityRoot(Inst);
|
|
TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
|
|
NestingDetected |= S.InitTopDown(Class, Inst);
|
|
// A retain can be a potential use; proceed to the generic checking
|
|
// code below.
|
|
break;
|
|
}
|
|
case ARCInstKind::Release: {
|
|
Arg = GetArgRCIdentityRoot(Inst);
|
|
TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
|
|
// Try to form a tentative pair in between this release instruction and the
|
|
// top down pointers that we are tracking.
|
|
if (S.MatchWithRelease(MDKindCache, Inst)) {
|
|
// If we succeed, copy S's RRInfo into the Release -> {Retain Set
|
|
// Map}. Then we clear S.
|
|
LLVM_DEBUG(dbgs() << " Matching with: " << *Inst << "\n");
|
|
Releases[Inst] = S.GetRRInfo();
|
|
S.ClearSequenceProgress();
|
|
}
|
|
break;
|
|
}
|
|
case ARCInstKind::AutoreleasepoolPop:
|
|
// Conservatively, clear MyStates for all known pointers.
|
|
MyStates.clearTopDownPointers();
|
|
return false;
|
|
case ARCInstKind::AutoreleasepoolPush:
|
|
case ARCInstKind::None:
|
|
// These can not be uses of
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Consider any other possible effects of this instruction on each
|
|
// pointer being tracked.
|
|
for (auto MI = MyStates.top_down_ptr_begin(),
|
|
ME = MyStates.top_down_ptr_end();
|
|
MI != ME; ++MI) {
|
|
const Value *Ptr = MI->first;
|
|
if (Ptr == Arg)
|
|
continue; // Handled above.
|
|
TopDownPtrState &S = MI->second;
|
|
if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
|
|
continue;
|
|
|
|
S.HandlePotentialUse(Inst, Ptr, PA, Class);
|
|
}
|
|
|
|
return NestingDetected;
|
|
}
|
|
|
|
bool
|
|
ObjCARCOpt::VisitTopDown(BasicBlock *BB,
|
|
DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
DenseMap<Value *, RRInfo> &Releases) {
|
|
LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
|
|
bool NestingDetected = false;
|
|
BBState &MyStates = BBStates[BB];
|
|
|
|
// Merge the states from each predecessor to compute the initial state
|
|
// for the current block.
|
|
BBState::edge_iterator PI(MyStates.pred_begin()),
|
|
PE(MyStates.pred_end());
|
|
if (PI != PE) {
|
|
const BasicBlock *Pred = *PI;
|
|
DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
|
|
assert(I != BBStates.end());
|
|
MyStates.InitFromPred(I->second);
|
|
++PI;
|
|
for (; PI != PE; ++PI) {
|
|
Pred = *PI;
|
|
I = BBStates.find(Pred);
|
|
assert(I != BBStates.end());
|
|
MyStates.MergePred(I->second);
|
|
}
|
|
}
|
|
|
|
// Check that BB and MyStates have the same number of predecessors. This
|
|
// prevents retain calls that live outside a loop from being moved into the
|
|
// loop.
|
|
if (!BB->hasNPredecessors(MyStates.pred_end() - MyStates.pred_begin()))
|
|
for (auto I = MyStates.top_down_ptr_begin(),
|
|
E = MyStates.top_down_ptr_end();
|
|
I != E; ++I)
|
|
I->second.SetCFGHazardAfflicted(true);
|
|
|
|
LLVM_DEBUG(dbgs() << "Before:\n"
|
|
<< BBStates[BB] << "\n"
|
|
<< "Performing Dataflow:\n");
|
|
|
|
// Visit all the instructions, top-down.
|
|
for (Instruction &Inst : *BB) {
|
|
LLVM_DEBUG(dbgs() << " Visiting " << Inst << "\n");
|
|
|
|
NestingDetected |= VisitInstructionTopDown(&Inst, Releases, MyStates);
|
|
|
|
// Bail out if the number of pointers being tracked becomes too large so
|
|
// that this pass can complete in a reasonable amount of time.
|
|
if (MyStates.top_down_ptr_list_size() > MaxPtrStates) {
|
|
DisableRetainReleasePairing = true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\nState Before Checking for CFG Hazards:\n"
|
|
<< BBStates[BB] << "\n\n");
|
|
CheckForCFGHazards(BB, BBStates, MyStates);
|
|
LLVM_DEBUG(dbgs() << "Final State:\n" << BBStates[BB] << "\n");
|
|
return NestingDetected;
|
|
}
|
|
|
|
static void
|
|
ComputePostOrders(Function &F,
|
|
SmallVectorImpl<BasicBlock *> &PostOrder,
|
|
SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
|
|
unsigned NoObjCARCExceptionsMDKind,
|
|
DenseMap<const BasicBlock *, BBState> &BBStates) {
|
|
/// The visited set, for doing DFS walks.
|
|
SmallPtrSet<BasicBlock *, 16> Visited;
|
|
|
|
// Do DFS, computing the PostOrder.
|
|
SmallPtrSet<BasicBlock *, 16> OnStack;
|
|
SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
|
|
|
|
// Functions always have exactly one entry block, and we don't have
|
|
// any other block that we treat like an entry block.
|
|
BasicBlock *EntryBB = &F.getEntryBlock();
|
|
BBState &MyStates = BBStates[EntryBB];
|
|
MyStates.SetAsEntry();
|
|
Instruction *EntryTI = EntryBB->getTerminator();
|
|
SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
|
|
Visited.insert(EntryBB);
|
|
OnStack.insert(EntryBB);
|
|
do {
|
|
dfs_next_succ:
|
|
BasicBlock *CurrBB = SuccStack.back().first;
|
|
succ_iterator SE(CurrBB->getTerminator(), false);
|
|
|
|
while (SuccStack.back().second != SE) {
|
|
BasicBlock *SuccBB = *SuccStack.back().second++;
|
|
if (Visited.insert(SuccBB).second) {
|
|
SuccStack.push_back(
|
|
std::make_pair(SuccBB, succ_iterator(SuccBB->getTerminator())));
|
|
BBStates[CurrBB].addSucc(SuccBB);
|
|
BBState &SuccStates = BBStates[SuccBB];
|
|
SuccStates.addPred(CurrBB);
|
|
OnStack.insert(SuccBB);
|
|
goto dfs_next_succ;
|
|
}
|
|
|
|
if (!OnStack.count(SuccBB)) {
|
|
BBStates[CurrBB].addSucc(SuccBB);
|
|
BBStates[SuccBB].addPred(CurrBB);
|
|
}
|
|
}
|
|
OnStack.erase(CurrBB);
|
|
PostOrder.push_back(CurrBB);
|
|
SuccStack.pop_back();
|
|
} while (!SuccStack.empty());
|
|
|
|
Visited.clear();
|
|
|
|
// Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
|
|
// Functions may have many exits, and there also blocks which we treat
|
|
// as exits due to ignored edges.
|
|
SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
|
|
for (BasicBlock &ExitBB : F) {
|
|
BBState &MyStates = BBStates[&ExitBB];
|
|
if (!MyStates.isExit())
|
|
continue;
|
|
|
|
MyStates.SetAsExit();
|
|
|
|
PredStack.push_back(std::make_pair(&ExitBB, MyStates.pred_begin()));
|
|
Visited.insert(&ExitBB);
|
|
while (!PredStack.empty()) {
|
|
reverse_dfs_next_succ:
|
|
BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
|
|
while (PredStack.back().second != PE) {
|
|
BasicBlock *BB = *PredStack.back().second++;
|
|
if (Visited.insert(BB).second) {
|
|
PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
|
|
goto reverse_dfs_next_succ;
|
|
}
|
|
}
|
|
ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Visit the function both top-down and bottom-up.
|
|
bool ObjCARCOpt::Visit(Function &F,
|
|
DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
BlotMapVector<Value *, RRInfo> &Retains,
|
|
DenseMap<Value *, RRInfo> &Releases) {
|
|
// Use reverse-postorder traversals, because we magically know that loops
|
|
// will be well behaved, i.e. they won't repeatedly call retain on a single
|
|
// pointer without doing a release. We can't use the ReversePostOrderTraversal
|
|
// class here because we want the reverse-CFG postorder to consider each
|
|
// function exit point, and we want to ignore selected cycle edges.
|
|
SmallVector<BasicBlock *, 16> PostOrder;
|
|
SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
|
|
ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
|
|
MDKindCache.get(ARCMDKindID::NoObjCARCExceptions),
|
|
BBStates);
|
|
|
|
// Use reverse-postorder on the reverse CFG for bottom-up.
|
|
bool BottomUpNestingDetected = false;
|
|
for (BasicBlock *BB : llvm::reverse(ReverseCFGPostOrder)) {
|
|
BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains);
|
|
if (DisableRetainReleasePairing)
|
|
return false;
|
|
}
|
|
|
|
// Use reverse-postorder for top-down.
|
|
bool TopDownNestingDetected = false;
|
|
for (BasicBlock *BB : llvm::reverse(PostOrder)) {
|
|
TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases);
|
|
if (DisableRetainReleasePairing)
|
|
return false;
|
|
}
|
|
|
|
return TopDownNestingDetected && BottomUpNestingDetected;
|
|
}
|
|
|
|
/// Move the calls in RetainsToMove and ReleasesToMove.
|
|
void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove,
|
|
RRInfo &ReleasesToMove,
|
|
BlotMapVector<Value *, RRInfo> &Retains,
|
|
DenseMap<Value *, RRInfo> &Releases,
|
|
SmallVectorImpl<Instruction *> &DeadInsts,
|
|
Module *M) {
|
|
Type *ArgTy = Arg->getType();
|
|
Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
|
|
|
|
LLVM_DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
|
|
|
|
// Insert the new retain and release calls.
|
|
for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
|
|
Value *MyArg = ArgTy == ParamTy ? Arg :
|
|
new BitCastInst(Arg, ParamTy, "", InsertPt);
|
|
Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
|
|
CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
|
|
Call->setDoesNotThrow();
|
|
Call->setTailCall();
|
|
|
|
LLVM_DEBUG(dbgs() << "Inserting new Retain: " << *Call
|
|
<< "\n"
|
|
"At insertion point: "
|
|
<< *InsertPt << "\n");
|
|
}
|
|
for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
|
|
Value *MyArg = ArgTy == ParamTy ? Arg :
|
|
new BitCastInst(Arg, ParamTy, "", InsertPt);
|
|
Function *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
|
|
CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
|
|
// Attach a clang.imprecise_release metadata tag, if appropriate.
|
|
if (MDNode *M = ReleasesToMove.ReleaseMetadata)
|
|
Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M);
|
|
Call->setDoesNotThrow();
|
|
if (ReleasesToMove.IsTailCallRelease)
|
|
Call->setTailCall();
|
|
|
|
LLVM_DEBUG(dbgs() << "Inserting new Release: " << *Call
|
|
<< "\n"
|
|
"At insertion point: "
|
|
<< *InsertPt << "\n");
|
|
}
|
|
|
|
// Delete the original retain and release calls.
|
|
for (Instruction *OrigRetain : RetainsToMove.Calls) {
|
|
Retains.blot(OrigRetain);
|
|
DeadInsts.push_back(OrigRetain);
|
|
LLVM_DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
|
|
}
|
|
for (Instruction *OrigRelease : ReleasesToMove.Calls) {
|
|
Releases.erase(OrigRelease);
|
|
DeadInsts.push_back(OrigRelease);
|
|
LLVM_DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
|
|
}
|
|
}
|
|
|
|
bool ObjCARCOpt::PairUpRetainsAndReleases(
|
|
DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
BlotMapVector<Value *, RRInfo> &Retains,
|
|
DenseMap<Value *, RRInfo> &Releases, Module *M,
|
|
Instruction *Retain,
|
|
SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove,
|
|
RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe,
|
|
bool &AnyPairsCompletelyEliminated) {
|
|
// If a pair happens in a region where it is known that the reference count
|
|
// is already incremented, we can similarly ignore possible decrements unless
|
|
// we are dealing with a retainable object with multiple provenance sources.
|
|
bool KnownSafeTD = true, KnownSafeBU = true;
|
|
bool CFGHazardAfflicted = false;
|
|
|
|
// Connect the dots between the top-down-collected RetainsToMove and
|
|
// bottom-up-collected ReleasesToMove to form sets of related calls.
|
|
// This is an iterative process so that we connect multiple releases
|
|
// to multiple retains if needed.
|
|
unsigned OldDelta = 0;
|
|
unsigned NewDelta = 0;
|
|
unsigned OldCount = 0;
|
|
unsigned NewCount = 0;
|
|
bool FirstRelease = true;
|
|
for (SmallVector<Instruction *, 4> NewRetains{Retain};;) {
|
|
SmallVector<Instruction *, 4> NewReleases;
|
|
for (Instruction *NewRetain : NewRetains) {
|
|
auto It = Retains.find(NewRetain);
|
|
assert(It != Retains.end());
|
|
const RRInfo &NewRetainRRI = It->second;
|
|
KnownSafeTD &= NewRetainRRI.KnownSafe;
|
|
CFGHazardAfflicted |= NewRetainRRI.CFGHazardAfflicted;
|
|
for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
|
|
auto Jt = Releases.find(NewRetainRelease);
|
|
if (Jt == Releases.end())
|
|
return false;
|
|
const RRInfo &NewRetainReleaseRRI = Jt->second;
|
|
|
|
// If the release does not have a reference to the retain as well,
|
|
// something happened which is unaccounted for. Do not do anything.
|
|
//
|
|
// This can happen if we catch an additive overflow during path count
|
|
// merging.
|
|
if (!NewRetainReleaseRRI.Calls.count(NewRetain))
|
|
return false;
|
|
|
|
if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
|
|
// If we overflow when we compute the path count, don't remove/move
|
|
// anything.
|
|
const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
|
|
unsigned PathCount = BBState::OverflowOccurredValue;
|
|
if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
|
|
return false;
|
|
assert(PathCount != BBState::OverflowOccurredValue &&
|
|
"PathCount at this point can not be "
|
|
"OverflowOccurredValue.");
|
|
OldDelta -= PathCount;
|
|
|
|
// Merge the ReleaseMetadata and IsTailCallRelease values.
|
|
if (FirstRelease) {
|
|
ReleasesToMove.ReleaseMetadata =
|
|
NewRetainReleaseRRI.ReleaseMetadata;
|
|
ReleasesToMove.IsTailCallRelease =
|
|
NewRetainReleaseRRI.IsTailCallRelease;
|
|
FirstRelease = false;
|
|
} else {
|
|
if (ReleasesToMove.ReleaseMetadata !=
|
|
NewRetainReleaseRRI.ReleaseMetadata)
|
|
ReleasesToMove.ReleaseMetadata = nullptr;
|
|
if (ReleasesToMove.IsTailCallRelease !=
|
|
NewRetainReleaseRRI.IsTailCallRelease)
|
|
ReleasesToMove.IsTailCallRelease = false;
|
|
}
|
|
|
|
// Collect the optimal insertion points.
|
|
if (!KnownSafe)
|
|
for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
|
|
if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
|
|
// If we overflow when we compute the path count, don't
|
|
// remove/move anything.
|
|
const BBState &RIPBBState = BBStates[RIP->getParent()];
|
|
PathCount = BBState::OverflowOccurredValue;
|
|
if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
|
|
return false;
|
|
assert(PathCount != BBState::OverflowOccurredValue &&
|
|
"PathCount at this point can not be "
|
|
"OverflowOccurredValue.");
|
|
NewDelta -= PathCount;
|
|
}
|
|
}
|
|
NewReleases.push_back(NewRetainRelease);
|
|
}
|
|
}
|
|
}
|
|
NewRetains.clear();
|
|
if (NewReleases.empty()) break;
|
|
|
|
// Back the other way.
|
|
for (Instruction *NewRelease : NewReleases) {
|
|
auto It = Releases.find(NewRelease);
|
|
assert(It != Releases.end());
|
|
const RRInfo &NewReleaseRRI = It->second;
|
|
KnownSafeBU &= NewReleaseRRI.KnownSafe;
|
|
CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
|
|
for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
|
|
auto Jt = Retains.find(NewReleaseRetain);
|
|
if (Jt == Retains.end())
|
|
return false;
|
|
const RRInfo &NewReleaseRetainRRI = Jt->second;
|
|
|
|
// If the retain does not have a reference to the release as well,
|
|
// something happened which is unaccounted for. Do not do anything.
|
|
//
|
|
// This can happen if we catch an additive overflow during path count
|
|
// merging.
|
|
if (!NewReleaseRetainRRI.Calls.count(NewRelease))
|
|
return false;
|
|
|
|
if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
|
|
// If we overflow when we compute the path count, don't remove/move
|
|
// anything.
|
|
const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
|
|
unsigned PathCount = BBState::OverflowOccurredValue;
|
|
if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
|
|
return false;
|
|
assert(PathCount != BBState::OverflowOccurredValue &&
|
|
"PathCount at this point can not be "
|
|
"OverflowOccurredValue.");
|
|
OldDelta += PathCount;
|
|
OldCount += PathCount;
|
|
|
|
// Collect the optimal insertion points.
|
|
if (!KnownSafe)
|
|
for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
|
|
if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
|
|
// If we overflow when we compute the path count, don't
|
|
// remove/move anything.
|
|
const BBState &RIPBBState = BBStates[RIP->getParent()];
|
|
|
|
PathCount = BBState::OverflowOccurredValue;
|
|
if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
|
|
return false;
|
|
assert(PathCount != BBState::OverflowOccurredValue &&
|
|
"PathCount at this point can not be "
|
|
"OverflowOccurredValue.");
|
|
NewDelta += PathCount;
|
|
NewCount += PathCount;
|
|
}
|
|
}
|
|
NewRetains.push_back(NewReleaseRetain);
|
|
}
|
|
}
|
|
}
|
|
if (NewRetains.empty()) break;
|
|
}
|
|
|
|
// We can only remove pointers if we are known safe in both directions.
|
|
bool UnconditionallySafe = KnownSafeTD && KnownSafeBU;
|
|
if (UnconditionallySafe) {
|
|
RetainsToMove.ReverseInsertPts.clear();
|
|
ReleasesToMove.ReverseInsertPts.clear();
|
|
NewCount = 0;
|
|
} else {
|
|
// Determine whether the new insertion points we computed preserve the
|
|
// balance of retain and release calls through the program.
|
|
// TODO: If the fully aggressive solution isn't valid, try to find a
|
|
// less aggressive solution which is.
|
|
if (NewDelta != 0)
|
|
return false;
|
|
|
|
// At this point, we are not going to remove any RR pairs, but we still are
|
|
// able to move RR pairs. If one of our pointers is afflicted with
|
|
// CFGHazards, we cannot perform such code motion so exit early.
|
|
const bool WillPerformCodeMotion =
|
|
!RetainsToMove.ReverseInsertPts.empty() ||
|
|
!ReleasesToMove.ReverseInsertPts.empty();
|
|
if (CFGHazardAfflicted && WillPerformCodeMotion)
|
|
return false;
|
|
}
|
|
|
|
// Determine whether the original call points are balanced in the retain and
|
|
// release calls through the program. If not, conservatively don't touch
|
|
// them.
|
|
// TODO: It's theoretically possible to do code motion in this case, as
|
|
// long as the existing imbalances are maintained.
|
|
if (OldDelta != 0)
|
|
return false;
|
|
|
|
Changed = true;
|
|
assert(OldCount != 0 && "Unreachable code?");
|
|
NumRRs += OldCount - NewCount;
|
|
// Set to true if we completely removed any RR pairs.
|
|
AnyPairsCompletelyEliminated = NewCount == 0;
|
|
|
|
// We can move calls!
|
|
return true;
|
|
}
|
|
|
|
/// Identify pairings between the retains and releases, and delete and/or move
|
|
/// them.
|
|
bool ObjCARCOpt::PerformCodePlacement(
|
|
DenseMap<const BasicBlock *, BBState> &BBStates,
|
|
BlotMapVector<Value *, RRInfo> &Retains,
|
|
DenseMap<Value *, RRInfo> &Releases, Module *M) {
|
|
LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
|
|
|
|
bool AnyPairsCompletelyEliminated = false;
|
|
SmallVector<Instruction *, 8> DeadInsts;
|
|
|
|
// Visit each retain.
|
|
for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
|
|
E = Retains.end();
|
|
I != E; ++I) {
|
|
Value *V = I->first;
|
|
if (!V) continue; // blotted
|
|
|
|
Instruction *Retain = cast<Instruction>(V);
|
|
|
|
LLVM_DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
|
|
|
|
Value *Arg = GetArgRCIdentityRoot(Retain);
|
|
|
|
// If the object being released is in static or stack storage, we know it's
|
|
// not being managed by ObjC reference counting, so we can delete pairs
|
|
// regardless of what possible decrements or uses lie between them.
|
|
bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
|
|
|
|
// A constant pointer can't be pointing to an object on the heap. It may
|
|
// be reference-counted, but it won't be deleted.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
|
|
if (const GlobalVariable *GV =
|
|
dyn_cast<GlobalVariable>(
|
|
GetRCIdentityRoot(LI->getPointerOperand())))
|
|
if (GV->isConstant())
|
|
KnownSafe = true;
|
|
|
|
// Connect the dots between the top-down-collected RetainsToMove and
|
|
// bottom-up-collected ReleasesToMove to form sets of related calls.
|
|
RRInfo RetainsToMove, ReleasesToMove;
|
|
|
|
bool PerformMoveCalls = PairUpRetainsAndReleases(
|
|
BBStates, Retains, Releases, M, Retain, DeadInsts,
|
|
RetainsToMove, ReleasesToMove, Arg, KnownSafe,
|
|
AnyPairsCompletelyEliminated);
|
|
|
|
if (PerformMoveCalls) {
|
|
// Ok, everything checks out and we're all set. Let's move/delete some
|
|
// code!
|
|
MoveCalls(Arg, RetainsToMove, ReleasesToMove,
|
|
Retains, Releases, DeadInsts, M);
|
|
}
|
|
}
|
|
|
|
// Now that we're done moving everything, we can delete the newly dead
|
|
// instructions, as we no longer need them as insert points.
|
|
while (!DeadInsts.empty())
|
|
EraseInstruction(DeadInsts.pop_back_val());
|
|
|
|
return AnyPairsCompletelyEliminated;
|
|
}
|
|
|
|
/// Weak pointer optimizations.
|
|
void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
|
|
LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
|
|
|
|
// First, do memdep-style RLE and S2L optimizations. We can't use memdep
|
|
// itself because it uses AliasAnalysis and we need to do provenance
|
|
// queries instead.
|
|
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
|
|
Instruction *Inst = &*I++;
|
|
|
|
LLVM_DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
|
|
|
|
ARCInstKind Class = GetBasicARCInstKind(Inst);
|
|
if (Class != ARCInstKind::LoadWeak &&
|
|
Class != ARCInstKind::LoadWeakRetained)
|
|
continue;
|
|
|
|
// Delete objc_loadWeak calls with no users.
|
|
if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) {
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// TODO: For now, just look for an earlier available version of this value
|
|
// within the same block. Theoretically, we could do memdep-style non-local
|
|
// analysis too, but that would want caching. A better approach would be to
|
|
// use the technique that EarlyCSE uses.
|
|
inst_iterator Current = std::prev(I);
|
|
BasicBlock *CurrentBB = &*Current.getBasicBlockIterator();
|
|
for (BasicBlock::iterator B = CurrentBB->begin(),
|
|
J = Current.getInstructionIterator();
|
|
J != B; --J) {
|
|
Instruction *EarlierInst = &*std::prev(J);
|
|
ARCInstKind EarlierClass = GetARCInstKind(EarlierInst);
|
|
switch (EarlierClass) {
|
|
case ARCInstKind::LoadWeak:
|
|
case ARCInstKind::LoadWeakRetained: {
|
|
// If this is loading from the same pointer, replace this load's value
|
|
// with that one.
|
|
CallInst *Call = cast<CallInst>(Inst);
|
|
CallInst *EarlierCall = cast<CallInst>(EarlierInst);
|
|
Value *Arg = Call->getArgOperand(0);
|
|
Value *EarlierArg = EarlierCall->getArgOperand(0);
|
|
switch (PA.getAA()->alias(Arg, EarlierArg)) {
|
|
case MustAlias:
|
|
Changed = true;
|
|
// If the load has a builtin retain, insert a plain retain for it.
|
|
if (Class == ARCInstKind::LoadWeakRetained) {
|
|
Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
|
|
CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
|
|
CI->setTailCall();
|
|
}
|
|
// Zap the fully redundant load.
|
|
Call->replaceAllUsesWith(EarlierCall);
|
|
Call->eraseFromParent();
|
|
goto clobbered;
|
|
case MayAlias:
|
|
case PartialAlias:
|
|
goto clobbered;
|
|
case NoAlias:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case ARCInstKind::StoreWeak:
|
|
case ARCInstKind::InitWeak: {
|
|
// If this is storing to the same pointer and has the same size etc.
|
|
// replace this load's value with the stored value.
|
|
CallInst *Call = cast<CallInst>(Inst);
|
|
CallInst *EarlierCall = cast<CallInst>(EarlierInst);
|
|
Value *Arg = Call->getArgOperand(0);
|
|
Value *EarlierArg = EarlierCall->getArgOperand(0);
|
|
switch (PA.getAA()->alias(Arg, EarlierArg)) {
|
|
case MustAlias:
|
|
Changed = true;
|
|
// If the load has a builtin retain, insert a plain retain for it.
|
|
if (Class == ARCInstKind::LoadWeakRetained) {
|
|
Function *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
|
|
CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
|
|
CI->setTailCall();
|
|
}
|
|
// Zap the fully redundant load.
|
|
Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
|
|
Call->eraseFromParent();
|
|
goto clobbered;
|
|
case MayAlias:
|
|
case PartialAlias:
|
|
goto clobbered;
|
|
case NoAlias:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case ARCInstKind::MoveWeak:
|
|
case ARCInstKind::CopyWeak:
|
|
// TOOD: Grab the copied value.
|
|
goto clobbered;
|
|
case ARCInstKind::AutoreleasepoolPush:
|
|
case ARCInstKind::None:
|
|
case ARCInstKind::IntrinsicUser:
|
|
case ARCInstKind::User:
|
|
// Weak pointers are only modified through the weak entry points
|
|
// (and arbitrary calls, which could call the weak entry points).
|
|
break;
|
|
default:
|
|
// Anything else could modify the weak pointer.
|
|
goto clobbered;
|
|
}
|
|
}
|
|
clobbered:;
|
|
}
|
|
|
|
// Then, for each destroyWeak with an alloca operand, check to see if
|
|
// the alloca and all its users can be zapped.
|
|
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
|
|
Instruction *Inst = &*I++;
|
|
ARCInstKind Class = GetBasicARCInstKind(Inst);
|
|
if (Class != ARCInstKind::DestroyWeak)
|
|
continue;
|
|
|
|
CallInst *Call = cast<CallInst>(Inst);
|
|
Value *Arg = Call->getArgOperand(0);
|
|
if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
|
|
for (User *U : Alloca->users()) {
|
|
const Instruction *UserInst = cast<Instruction>(U);
|
|
switch (GetBasicARCInstKind(UserInst)) {
|
|
case ARCInstKind::InitWeak:
|
|
case ARCInstKind::StoreWeak:
|
|
case ARCInstKind::DestroyWeak:
|
|
continue;
|
|
default:
|
|
goto done;
|
|
}
|
|
}
|
|
Changed = true;
|
|
for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
|
|
CallInst *UserInst = cast<CallInst>(*UI++);
|
|
switch (GetBasicARCInstKind(UserInst)) {
|
|
case ARCInstKind::InitWeak:
|
|
case ARCInstKind::StoreWeak:
|
|
// These functions return their second argument.
|
|
UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
|
|
break;
|
|
case ARCInstKind::DestroyWeak:
|
|
// No return value.
|
|
break;
|
|
default:
|
|
llvm_unreachable("alloca really is used!");
|
|
}
|
|
UserInst->eraseFromParent();
|
|
}
|
|
Alloca->eraseFromParent();
|
|
done:;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Identify program paths which execute sequences of retains and releases which
|
|
/// can be eliminated.
|
|
bool ObjCARCOpt::OptimizeSequences(Function &F) {
|
|
// Releases, Retains - These are used to store the results of the main flow
|
|
// analysis. These use Value* as the key instead of Instruction* so that the
|
|
// map stays valid when we get around to rewriting code and calls get
|
|
// replaced by arguments.
|
|
DenseMap<Value *, RRInfo> Releases;
|
|
BlotMapVector<Value *, RRInfo> Retains;
|
|
|
|
// This is used during the traversal of the function to track the
|
|
// states for each identified object at each block.
|
|
DenseMap<const BasicBlock *, BBState> BBStates;
|
|
|
|
// Analyze the CFG of the function, and all instructions.
|
|
bool NestingDetected = Visit(F, BBStates, Retains, Releases);
|
|
|
|
if (DisableRetainReleasePairing)
|
|
return false;
|
|
|
|
// Transform.
|
|
bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
|
|
Releases,
|
|
F.getParent());
|
|
|
|
return AnyPairsCompletelyEliminated && NestingDetected;
|
|
}
|
|
|
|
/// Check if there is a dependent call earlier that does not have anything in
|
|
/// between the Retain and the call that can affect the reference count of their
|
|
/// shared pointer argument. Note that Retain need not be in BB.
|
|
static bool
|
|
HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
|
|
SmallPtrSetImpl<Instruction *> &DepInsts,
|
|
SmallPtrSetImpl<const BasicBlock *> &Visited,
|
|
ProvenanceAnalysis &PA) {
|
|
FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
|
|
DepInsts, Visited, PA);
|
|
if (DepInsts.size() != 1)
|
|
return false;
|
|
|
|
auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin());
|
|
|
|
// Check that the pointer is the return value of the call.
|
|
if (!Call || Arg != Call)
|
|
return false;
|
|
|
|
// Check that the call is a regular call.
|
|
ARCInstKind Class = GetBasicARCInstKind(Call);
|
|
return Class == ARCInstKind::CallOrUser || Class == ARCInstKind::Call;
|
|
}
|
|
|
|
/// Find a dependent retain that precedes the given autorelease for which there
|
|
/// is nothing in between the two instructions that can affect the ref count of
|
|
/// Arg.
|
|
static CallInst *
|
|
FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
|
|
Instruction *Autorelease,
|
|
SmallPtrSetImpl<const BasicBlock *> &Visited,
|
|
ProvenanceAnalysis &PA) {
|
|
SmallPtrSet<Instruction *, 4> DepInsts;
|
|
FindDependencies(CanChangeRetainCount, Arg,
|
|
BB, Autorelease, DepInsts, Visited, PA);
|
|
if (DepInsts.size() != 1)
|
|
return nullptr;
|
|
|
|
auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin());
|
|
|
|
// Check that we found a retain with the same argument.
|
|
if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) ||
|
|
GetArgRCIdentityRoot(Retain) != Arg) {
|
|
return nullptr;
|
|
}
|
|
|
|
return Retain;
|
|
}
|
|
|
|
/// Look for an ``autorelease'' instruction dependent on Arg such that there are
|
|
/// no instructions dependent on Arg that need a positive ref count in between
|
|
/// the autorelease and the ret.
|
|
static CallInst *
|
|
FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
|
|
ReturnInst *Ret,
|
|
SmallPtrSetImpl<const BasicBlock *> &V,
|
|
ProvenanceAnalysis &PA) {
|
|
SmallPtrSet<Instruction *, 4> DepInsts;
|
|
FindDependencies(NeedsPositiveRetainCount, Arg,
|
|
BB, Ret, DepInsts, V, PA);
|
|
if (DepInsts.size() != 1)
|
|
return nullptr;
|
|
|
|
auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin());
|
|
if (!Autorelease)
|
|
return nullptr;
|
|
ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease);
|
|
if (!IsAutorelease(AutoreleaseClass))
|
|
return nullptr;
|
|
if (GetArgRCIdentityRoot(Autorelease) != Arg)
|
|
return nullptr;
|
|
|
|
return Autorelease;
|
|
}
|
|
|
|
/// Look for this pattern:
|
|
/// \code
|
|
/// %call = call i8* @something(...)
|
|
/// %2 = call i8* @objc_retain(i8* %call)
|
|
/// %3 = call i8* @objc_autorelease(i8* %2)
|
|
/// ret i8* %3
|
|
/// \endcode
|
|
/// And delete the retain and autorelease.
|
|
void ObjCARCOpt::OptimizeReturns(Function &F) {
|
|
if (!F.getReturnType()->isPointerTy())
|
|
return;
|
|
|
|
LLVM_DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
|
|
|
|
SmallPtrSet<Instruction *, 4> DependingInstructions;
|
|
SmallPtrSet<const BasicBlock *, 4> Visited;
|
|
for (BasicBlock &BB: F) {
|
|
ReturnInst *Ret = dyn_cast<ReturnInst>(&BB.back());
|
|
if (!Ret)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
|
|
|
|
const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0));
|
|
|
|
// Look for an ``autorelease'' instruction that is a predecessor of Ret and
|
|
// dependent on Arg such that there are no instructions dependent on Arg
|
|
// that need a positive ref count in between the autorelease and Ret.
|
|
CallInst *Autorelease =
|
|
FindPredecessorAutoreleaseWithSafePath(Arg, &BB, Ret, Visited, PA);
|
|
Visited.clear();
|
|
|
|
if (!Autorelease)
|
|
continue;
|
|
|
|
CallInst *Retain = FindPredecessorRetainWithSafePath(
|
|
Arg, Autorelease->getParent(), Autorelease, Visited, PA);
|
|
Visited.clear();
|
|
|
|
if (!Retain)
|
|
continue;
|
|
|
|
// Check that there is nothing that can affect the reference count
|
|
// between the retain and the call. Note that Retain need not be in BB.
|
|
bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
|
|
DependingInstructions,
|
|
Visited, PA);
|
|
|
|
// Don't remove retainRV/autoreleaseRV pairs if the call isn't a tail call.
|
|
if (HasSafePathToCall &&
|
|
GetBasicARCInstKind(Retain) == ARCInstKind::RetainRV &&
|
|
GetBasicARCInstKind(Autorelease) == ARCInstKind::AutoreleaseRV &&
|
|
!cast<CallInst>(*DependingInstructions.begin())->isTailCall()) {
|
|
DependingInstructions.clear();
|
|
Visited.clear();
|
|
continue;
|
|
}
|
|
|
|
DependingInstructions.clear();
|
|
Visited.clear();
|
|
|
|
if (!HasSafePathToCall)
|
|
continue;
|
|
|
|
// If so, we can zap the retain and autorelease.
|
|
Changed = true;
|
|
++NumRets;
|
|
LLVM_DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " << *Autorelease
|
|
<< "\n");
|
|
EraseInstruction(Retain);
|
|
EraseInstruction(Autorelease);
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void
|
|
ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
|
|
Statistic &NumRetains =
|
|
AfterOptimization ? NumRetainsAfterOpt : NumRetainsBeforeOpt;
|
|
Statistic &NumReleases =
|
|
AfterOptimization ? NumReleasesAfterOpt : NumReleasesBeforeOpt;
|
|
|
|
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
|
|
Instruction *Inst = &*I++;
|
|
switch (GetBasicARCInstKind(Inst)) {
|
|
default:
|
|
break;
|
|
case ARCInstKind::Retain:
|
|
++NumRetains;
|
|
break;
|
|
case ARCInstKind::Release:
|
|
++NumReleases;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void ObjCARCOpt::init(Module &M) {
|
|
if (!EnableARCOpts)
|
|
return;
|
|
|
|
// If nothing in the Module uses ARC, don't do anything.
|
|
Run = ModuleHasARC(M);
|
|
if (!Run)
|
|
return;
|
|
|
|
// Intuitively, objc_retain and others are nocapture, however in practice
|
|
// they are not, because they return their argument value. And objc_release
|
|
// calls finalizers which can have arbitrary side effects.
|
|
MDKindCache.init(&M);
|
|
|
|
// Initialize our runtime entry point cache.
|
|
EP.init(&M);
|
|
}
|
|
|
|
bool ObjCARCOpt::run(Function &F, AAResults &AA) {
|
|
if (!EnableARCOpts)
|
|
return false;
|
|
|
|
// If nothing in the Module uses ARC, don't do anything.
|
|
if (!Run)
|
|
return false;
|
|
|
|
Changed = false;
|
|
|
|
LLVM_DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName()
|
|
<< " >>>"
|
|
"\n");
|
|
|
|
PA.setAA(&AA);
|
|
|
|
#ifndef NDEBUG
|
|
if (AreStatisticsEnabled()) {
|
|
GatherStatistics(F, false);
|
|
}
|
|
#endif
|
|
|
|
// This pass performs several distinct transformations. As a compile-time aid
|
|
// when compiling code that isn't ObjC, skip these if the relevant ObjC
|
|
// library functions aren't declared.
|
|
|
|
// Preliminary optimizations. This also computes UsedInThisFunction.
|
|
OptimizeIndividualCalls(F);
|
|
|
|
// Optimizations for weak pointers.
|
|
if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) |
|
|
(1 << unsigned(ARCInstKind::LoadWeakRetained)) |
|
|
(1 << unsigned(ARCInstKind::StoreWeak)) |
|
|
(1 << unsigned(ARCInstKind::InitWeak)) |
|
|
(1 << unsigned(ARCInstKind::CopyWeak)) |
|
|
(1 << unsigned(ARCInstKind::MoveWeak)) |
|
|
(1 << unsigned(ARCInstKind::DestroyWeak))))
|
|
OptimizeWeakCalls(F);
|
|
|
|
// Optimizations for retain+release pairs.
|
|
if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) |
|
|
(1 << unsigned(ARCInstKind::RetainRV)) |
|
|
(1 << unsigned(ARCInstKind::RetainBlock))))
|
|
if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release)))
|
|
// Run OptimizeSequences until it either stops making changes or
|
|
// no retain+release pair nesting is detected.
|
|
while (OptimizeSequences(F)) {}
|
|
|
|
// Optimizations if objc_autorelease is used.
|
|
if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) |
|
|
(1 << unsigned(ARCInstKind::AutoreleaseRV))))
|
|
OptimizeReturns(F);
|
|
|
|
// Gather statistics after optimization.
|
|
#ifndef NDEBUG
|
|
if (AreStatisticsEnabled()) {
|
|
GatherStatistics(F, true);
|
|
}
|
|
#endif
|
|
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void ObjCARCOpt::releaseMemory() {
|
|
PA.clear();
|
|
}
|
|
|
|
/// @}
|
|
///
|
|
|
|
PreservedAnalyses ObjCARCOptPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
ObjCARCOpt OCAO;
|
|
OCAO.init(M);
|
|
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
bool Changed = false;
|
|
for (Function &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
Changed |= OCAO.run(F, FAM.getResult<AAManager>(F));
|
|
}
|
|
if (Changed) {
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
return PreservedAnalyses::all();
|
|
}
|