forked from OSchip/llvm-project
1199 lines
47 KiB
C++
1199 lines
47 KiB
C++
//=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file lowers exception-related instructions and setjmp/longjmp
|
|
/// function calls in order to use Emscripten's JavaScript try and catch
|
|
/// mechanism.
|
|
///
|
|
/// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
|
|
/// try and catch syntax and relevant exception-related libraries implemented
|
|
/// in JavaScript glue code that will be produced by Emscripten. This is similar
|
|
/// to the current Emscripten asm.js exception handling in fastcomp. For
|
|
/// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
|
|
/// (Location: https://github.com/kripken/emscripten-fastcomp)
|
|
/// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
|
|
/// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
|
|
/// lib/Target/JSBackend/JSBackend.cpp
|
|
/// lib/Target/JSBackend/CallHandlers.h
|
|
///
|
|
/// * Exception handling
|
|
/// This pass lowers invokes and landingpads into library functions in JS glue
|
|
/// code. Invokes are lowered into function wrappers called invoke wrappers that
|
|
/// exist in JS side, which wraps the original function call with JS try-catch.
|
|
/// If an exception occurred, cxa_throw() function in JS side sets some
|
|
/// variables (see below) so we can check whether an exception occurred from
|
|
/// wasm code and handle it appropriately.
|
|
///
|
|
/// * Setjmp-longjmp handling
|
|
/// This pass lowers setjmp to a reasonably-performant approach for emscripten.
|
|
/// The idea is that each block with a setjmp is broken up into two parts: the
|
|
/// part containing setjmp and the part right after the setjmp. The latter part
|
|
/// is either reached from the setjmp, or later from a longjmp. To handle the
|
|
/// longjmp, all calls that might longjmp are also called using invoke wrappers
|
|
/// and thus JS / try-catch. JS longjmp() function also sets some variables so
|
|
/// we can check / whether a longjmp occurred from wasm code. Each block with a
|
|
/// function call that might longjmp is also split up after the longjmp call.
|
|
/// After the longjmp call, we check whether a longjmp occurred, and if it did,
|
|
/// which setjmp it corresponds to, and jump to the right post-setjmp block.
|
|
/// We assume setjmp-longjmp handling always run after EH handling, which means
|
|
/// we don't expect any exception-related instructions when SjLj runs.
|
|
/// FIXME Currently this scheme does not support indirect call of setjmp,
|
|
/// because of the limitation of the scheme itself. fastcomp does not support it
|
|
/// either.
|
|
///
|
|
/// In detail, this pass does following things:
|
|
///
|
|
/// 1) Assumes the existence of global variables: __THREW__, __threwValue
|
|
/// __THREW__ and __threwValue will be set in invoke wrappers
|
|
/// in JS glue code. For what invoke wrappers are, refer to 3). These
|
|
/// variables are used for both exceptions and setjmp/longjmps.
|
|
/// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
|
|
/// means nothing occurred, 1 means an exception occurred, and other numbers
|
|
/// mean a longjmp occurred. In the case of longjmp, __threwValue variable
|
|
/// indicates the corresponding setjmp buffer the longjmp corresponds to.
|
|
///
|
|
/// * Exception handling
|
|
///
|
|
/// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
|
|
/// at link time.
|
|
/// The global variables in 1) will exist in wasm address space,
|
|
/// but their values should be set in JS code, so these functions
|
|
/// as interfaces to JS glue code. These functions are equivalent to the
|
|
/// following JS functions, which actually exist in asm.js version of JS
|
|
/// library.
|
|
///
|
|
/// function setThrew(threw, value) {
|
|
/// if (__THREW__ == 0) {
|
|
/// __THREW__ = threw;
|
|
/// __threwValue = value;
|
|
/// }
|
|
/// }
|
|
//
|
|
/// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
|
|
///
|
|
/// In exception handling, getTempRet0 indicates the type of an exception
|
|
/// caught, and in setjmp/longjmp, it means the second argument to longjmp
|
|
/// function.
|
|
///
|
|
/// 3) Lower
|
|
/// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
|
|
/// into
|
|
/// __THREW__ = 0;
|
|
/// call @__invoke_SIG(func, arg1, arg2)
|
|
/// %__THREW__.val = __THREW__;
|
|
/// __THREW__ = 0;
|
|
/// if (%__THREW__.val == 1)
|
|
/// goto %lpad
|
|
/// else
|
|
/// goto %invoke.cont
|
|
/// SIG is a mangled string generated based on the LLVM IR-level function
|
|
/// signature. After LLVM IR types are lowered to the target wasm types,
|
|
/// the names for these wrappers will change based on wasm types as well,
|
|
/// as in invoke_vi (function takes an int and returns void). The bodies of
|
|
/// these wrappers will be generated in JS glue code, and inside those
|
|
/// wrappers we use JS try-catch to generate actual exception effects. It
|
|
/// also calls the original callee function. An example wrapper in JS code
|
|
/// would look like this:
|
|
/// function invoke_vi(index,a1) {
|
|
/// try {
|
|
/// Module["dynCall_vi"](index,a1); // This calls original callee
|
|
/// } catch(e) {
|
|
/// if (typeof e !== 'number' && e !== 'longjmp') throw e;
|
|
/// asm["setThrew"](1, 0); // setThrew is called here
|
|
/// }
|
|
/// }
|
|
/// If an exception is thrown, __THREW__ will be set to true in a wrapper,
|
|
/// so we can jump to the right BB based on this value.
|
|
///
|
|
/// 4) Lower
|
|
/// %val = landingpad catch c1 catch c2 catch c3 ...
|
|
/// ... use %val ...
|
|
/// into
|
|
/// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
|
|
/// %val = {%fmc, getTempRet0()}
|
|
/// ... use %val ...
|
|
/// Here N is a number calculated based on the number of clauses.
|
|
/// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
|
|
///
|
|
/// 5) Lower
|
|
/// resume {%a, %b}
|
|
/// into
|
|
/// call @__resumeException(%a)
|
|
/// where __resumeException() is a function in JS glue code.
|
|
///
|
|
/// 6) Lower
|
|
/// call @llvm.eh.typeid.for(type) (intrinsic)
|
|
/// into
|
|
/// call @llvm_eh_typeid_for(type)
|
|
/// llvm_eh_typeid_for function will be generated in JS glue code.
|
|
///
|
|
/// * Setjmp / Longjmp handling
|
|
///
|
|
/// In case calls to longjmp() exists
|
|
///
|
|
/// 1) Lower
|
|
/// longjmp(buf, value)
|
|
/// into
|
|
/// emscripten_longjmp(buf, value)
|
|
///
|
|
/// In case calls to setjmp() exists
|
|
///
|
|
/// 2) In the function entry that calls setjmp, initialize setjmpTable and
|
|
/// sejmpTableSize as follows:
|
|
/// setjmpTableSize = 4;
|
|
/// setjmpTable = (int *) malloc(40);
|
|
/// setjmpTable[0] = 0;
|
|
/// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
|
|
/// code.
|
|
///
|
|
/// 3) Lower
|
|
/// setjmp(buf)
|
|
/// into
|
|
/// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
|
|
/// setjmpTableSize = getTempRet0();
|
|
/// For each dynamic setjmp call, setjmpTable stores its ID (a number which
|
|
/// is incrementally assigned from 0) and its label (a unique number that
|
|
/// represents each callsite of setjmp). When we need more entries in
|
|
/// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
|
|
/// return the new table address, and assign the new table size in
|
|
/// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
|
|
/// buf. A BB with setjmp is split into two after setjmp call in order to
|
|
/// make the post-setjmp BB the possible destination of longjmp BB.
|
|
///
|
|
///
|
|
/// 4) Lower every call that might longjmp into
|
|
/// __THREW__ = 0;
|
|
/// call @__invoke_SIG(func, arg1, arg2)
|
|
/// %__THREW__.val = __THREW__;
|
|
/// __THREW__ = 0;
|
|
/// if (%__THREW__.val != 0 & __threwValue != 0) {
|
|
/// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
|
|
/// setjmpTableSize);
|
|
/// if (%label == 0)
|
|
/// emscripten_longjmp(%__THREW__.val, __threwValue);
|
|
/// setTempRet0(__threwValue);
|
|
/// } else {
|
|
/// %label = -1;
|
|
/// }
|
|
/// longjmp_result = getTempRet0();
|
|
/// switch label {
|
|
/// label 1: goto post-setjmp BB 1
|
|
/// label 2: goto post-setjmp BB 2
|
|
/// ...
|
|
/// default: goto splitted next BB
|
|
/// }
|
|
/// testSetjmp examines setjmpTable to see if there is a matching setjmp
|
|
/// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
|
|
/// will be the address of matching jmp_buf buffer and __threwValue be the
|
|
/// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
|
|
/// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
|
|
/// each setjmp callsite. Label 0 means this longjmp buffer does not
|
|
/// correspond to one of the setjmp callsites in this function, so in this
|
|
/// case we just chain the longjmp to the caller. Label -1 means no longjmp
|
|
/// occurred. Otherwise we jump to the right post-setjmp BB based on the
|
|
/// label.
|
|
///
|
|
///===----------------------------------------------------------------------===//
|
|
|
|
#include "WebAssembly.h"
|
|
#include "WebAssemblyTargetMachine.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "wasm-lower-em-ehsjlj"
|
|
|
|
static cl::list<std::string>
|
|
EHAllowlist("emscripten-cxx-exceptions-allowed",
|
|
cl::desc("The list of function names in which Emscripten-style "
|
|
"exception handling is enabled (see emscripten "
|
|
"EMSCRIPTEN_CATCHING_ALLOWED options)"),
|
|
cl::CommaSeparated);
|
|
|
|
namespace {
|
|
class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
|
|
bool EnableEH; // Enable exception handling
|
|
bool EnableSjLj; // Enable setjmp/longjmp handling
|
|
|
|
GlobalVariable *ThrewGV = nullptr;
|
|
GlobalVariable *ThrewValueGV = nullptr;
|
|
Function *GetTempRet0Func = nullptr;
|
|
Function *SetTempRet0Func = nullptr;
|
|
Function *ResumeF = nullptr;
|
|
Function *EHTypeIDF = nullptr;
|
|
Function *EmLongjmpF = nullptr;
|
|
Function *SaveSetjmpF = nullptr;
|
|
Function *TestSetjmpF = nullptr;
|
|
|
|
// __cxa_find_matching_catch_N functions.
|
|
// Indexed by the number of clauses in an original landingpad instruction.
|
|
DenseMap<int, Function *> FindMatchingCatches;
|
|
// Map of <function signature string, invoke_ wrappers>
|
|
StringMap<Function *> InvokeWrappers;
|
|
// Set of allowed function names for exception handling
|
|
std::set<std::string> EHAllowlistSet;
|
|
|
|
StringRef getPassName() const override {
|
|
return "WebAssembly Lower Emscripten Exceptions";
|
|
}
|
|
|
|
bool runEHOnFunction(Function &F);
|
|
bool runSjLjOnFunction(Function &F);
|
|
Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
|
|
|
|
Value *wrapInvoke(CallBase *CI);
|
|
void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
|
|
Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
|
|
Value *&LongjmpResult, BasicBlock *&EndBB);
|
|
Function *getInvokeWrapper(CallBase *CI);
|
|
|
|
bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
|
|
bool canLongjmp(Module &M, const Value *Callee) const;
|
|
bool isEmAsmCall(Module &M, const Value *Callee) const;
|
|
|
|
void rebuildSSA(Function &F);
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
|
|
: ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
|
|
EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
|
|
}
|
|
bool runOnModule(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
}
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
|
|
INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
|
|
"WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
|
|
false, false)
|
|
|
|
ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
|
|
bool EnableSjLj) {
|
|
return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
|
|
}
|
|
|
|
static bool canThrow(const Value *V) {
|
|
if (const auto *F = dyn_cast<const Function>(V)) {
|
|
// Intrinsics cannot throw
|
|
if (F->isIntrinsic())
|
|
return false;
|
|
StringRef Name = F->getName();
|
|
// leave setjmp and longjmp (mostly) alone, we process them properly later
|
|
if (Name == "setjmp" || Name == "longjmp")
|
|
return false;
|
|
return !F->doesNotThrow();
|
|
}
|
|
// not a function, so an indirect call - can throw, we can't tell
|
|
return true;
|
|
}
|
|
|
|
// Get a global variable with the given name. If it doesn't exist declare it,
|
|
// which will generate an import and asssumes that it will exist at link time.
|
|
static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
|
|
WebAssemblyTargetMachine &TM,
|
|
const char *Name) {
|
|
auto Int32Ty = IRB.getInt32Ty();
|
|
auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Int32Ty));
|
|
if (!GV)
|
|
report_fatal_error(Twine("unable to create global: ") + Name);
|
|
|
|
// If the target supports TLS, make this variable thread-local. We can't just
|
|
// unconditionally make it thread-local and depend on
|
|
// CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
|
|
// the side effect of disallowing the object from being linked into a
|
|
// shared-memory module, which we don't want to be responsible for.
|
|
auto *Subtarget = TM.getSubtargetImpl();
|
|
auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
|
|
? GlobalValue::LocalExecTLSModel
|
|
: GlobalValue::NotThreadLocal;
|
|
GV->setThreadLocalMode(TLS);
|
|
return GV;
|
|
}
|
|
|
|
// Simple function name mangler.
|
|
// This function simply takes LLVM's string representation of parameter types
|
|
// and concatenate them with '_'. There are non-alphanumeric characters but llc
|
|
// is ok with it, and we need to postprocess these names after the lowering
|
|
// phase anyway.
|
|
static std::string getSignature(FunctionType *FTy) {
|
|
std::string Sig;
|
|
raw_string_ostream OS(Sig);
|
|
OS << *FTy->getReturnType();
|
|
for (Type *ParamTy : FTy->params())
|
|
OS << "_" << *ParamTy;
|
|
if (FTy->isVarArg())
|
|
OS << "_...";
|
|
Sig = OS.str();
|
|
Sig.erase(remove_if(Sig, isSpace), Sig.end());
|
|
// When s2wasm parses .s file, a comma means the end of an argument. So a
|
|
// mangled function name can contain any character but a comma.
|
|
std::replace(Sig.begin(), Sig.end(), ',', '.');
|
|
return Sig;
|
|
}
|
|
|
|
static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
|
|
Module *M) {
|
|
Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
|
|
// Tell the linker that this function is expected to be imported from the
|
|
// 'env' module.
|
|
if (!F->hasFnAttribute("wasm-import-module")) {
|
|
llvm::AttrBuilder B;
|
|
B.addAttribute("wasm-import-module", "env");
|
|
F->addAttributes(llvm::AttributeList::FunctionIndex, B);
|
|
}
|
|
if (!F->hasFnAttribute("wasm-import-name")) {
|
|
llvm::AttrBuilder B;
|
|
B.addAttribute("wasm-import-name", F->getName());
|
|
F->addAttributes(llvm::AttributeList::FunctionIndex, B);
|
|
}
|
|
return F;
|
|
}
|
|
|
|
// Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
|
|
// This is because a landingpad instruction contains two more arguments, a
|
|
// personality function and a cleanup bit, and __cxa_find_matching_catch_N
|
|
// functions are named after the number of arguments in the original landingpad
|
|
// instruction.
|
|
Function *
|
|
WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
|
|
unsigned NumClauses) {
|
|
if (FindMatchingCatches.count(NumClauses))
|
|
return FindMatchingCatches[NumClauses];
|
|
PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
|
|
SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
|
|
FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
|
|
Function *F = getEmscriptenFunction(
|
|
FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
|
|
FindMatchingCatches[NumClauses] = F;
|
|
return F;
|
|
}
|
|
|
|
// Generate invoke wrapper seqence with preamble and postamble
|
|
// Preamble:
|
|
// __THREW__ = 0;
|
|
// Postamble:
|
|
// %__THREW__.val = __THREW__; __THREW__ = 0;
|
|
// Returns %__THREW__.val, which indicates whether an exception is thrown (or
|
|
// whether longjmp occurred), for future use.
|
|
Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
|
|
LLVMContext &C = CI->getModule()->getContext();
|
|
|
|
// If we are calling a function that is noreturn, we must remove that
|
|
// attribute. The code we insert here does expect it to return, after we
|
|
// catch the exception.
|
|
if (CI->doesNotReturn()) {
|
|
if (auto *F = CI->getCalledFunction())
|
|
F->removeFnAttr(Attribute::NoReturn);
|
|
CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
|
|
}
|
|
|
|
IRBuilder<> IRB(C);
|
|
IRB.SetInsertPoint(CI);
|
|
|
|
// Pre-invoke
|
|
// __THREW__ = 0;
|
|
IRB.CreateStore(IRB.getInt32(0), ThrewGV);
|
|
|
|
// Invoke function wrapper in JavaScript
|
|
SmallVector<Value *, 16> Args;
|
|
// Put the pointer to the callee as first argument, so it can be called
|
|
// within the invoke wrapper later
|
|
Args.push_back(CI->getCalledOperand());
|
|
Args.append(CI->arg_begin(), CI->arg_end());
|
|
CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
|
|
NewCall->takeName(CI);
|
|
NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
|
|
NewCall->setDebugLoc(CI->getDebugLoc());
|
|
|
|
// Because we added the pointer to the callee as first argument, all
|
|
// argument attribute indices have to be incremented by one.
|
|
SmallVector<AttributeSet, 8> ArgAttributes;
|
|
const AttributeList &InvokeAL = CI->getAttributes();
|
|
|
|
// No attributes for the callee pointer.
|
|
ArgAttributes.push_back(AttributeSet());
|
|
// Copy the argument attributes from the original
|
|
for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
|
|
ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
|
|
|
|
AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
|
|
if (FnAttrs.contains(Attribute::AllocSize)) {
|
|
// The allocsize attribute (if any) referes to parameters by index and needs
|
|
// to be adjusted.
|
|
unsigned SizeArg;
|
|
Optional<unsigned> NEltArg;
|
|
std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
|
|
SizeArg += 1;
|
|
if (NEltArg.hasValue())
|
|
NEltArg = NEltArg.getValue() + 1;
|
|
FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
|
|
}
|
|
|
|
// Reconstruct the AttributesList based on the vector we constructed.
|
|
AttributeList NewCallAL =
|
|
AttributeList::get(C, AttributeSet::get(C, FnAttrs),
|
|
InvokeAL.getRetAttributes(), ArgAttributes);
|
|
NewCall->setAttributes(NewCallAL);
|
|
|
|
CI->replaceAllUsesWith(NewCall);
|
|
|
|
// Post-invoke
|
|
// %__THREW__.val = __THREW__; __THREW__ = 0;
|
|
Value *Threw =
|
|
IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
|
|
IRB.CreateStore(IRB.getInt32(0), ThrewGV);
|
|
return Threw;
|
|
}
|
|
|
|
// Get matching invoke wrapper based on callee signature
|
|
Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
|
|
Module *M = CI->getModule();
|
|
SmallVector<Type *, 16> ArgTys;
|
|
FunctionType *CalleeFTy = CI->getFunctionType();
|
|
|
|
std::string Sig = getSignature(CalleeFTy);
|
|
if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
|
|
return InvokeWrappers[Sig];
|
|
|
|
// Put the pointer to the callee as first argument
|
|
ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
|
|
// Add argument types
|
|
ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
|
|
|
|
FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
|
|
CalleeFTy->isVarArg());
|
|
Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
|
|
InvokeWrappers[Sig] = F;
|
|
return F;
|
|
}
|
|
|
|
bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
|
|
const Value *Callee) const {
|
|
if (auto *CalleeF = dyn_cast<Function>(Callee))
|
|
if (CalleeF->isIntrinsic())
|
|
return false;
|
|
|
|
// Attempting to transform inline assembly will result in something like:
|
|
// call void @__invoke_void(void ()* asm ...)
|
|
// which is invalid because inline assembly blocks do not have addresses
|
|
// and can't be passed by pointer. The result is a crash with illegal IR.
|
|
if (isa<InlineAsm>(Callee))
|
|
return false;
|
|
StringRef CalleeName = Callee->getName();
|
|
|
|
// The reason we include malloc/free here is to exclude the malloc/free
|
|
// calls generated in setjmp prep / cleanup routines.
|
|
if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
|
|
return false;
|
|
|
|
// There are functions in JS glue code
|
|
if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
|
|
CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
|
|
CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
|
|
return false;
|
|
|
|
// __cxa_find_matching_catch_N functions cannot longjmp
|
|
if (Callee->getName().startswith("__cxa_find_matching_catch_"))
|
|
return false;
|
|
|
|
// Exception-catching related functions
|
|
if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
|
|
CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
|
|
CalleeName == "__clang_call_terminate")
|
|
return false;
|
|
|
|
// Otherwise we don't know
|
|
return true;
|
|
}
|
|
|
|
bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
|
|
const Value *Callee) const {
|
|
StringRef CalleeName = Callee->getName();
|
|
// This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
|
|
return CalleeName == "emscripten_asm_const_int" ||
|
|
CalleeName == "emscripten_asm_const_double" ||
|
|
CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
|
|
CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
|
|
CalleeName == "emscripten_asm_const_async_on_main_thread";
|
|
}
|
|
|
|
// Generate testSetjmp function call seqence with preamble and postamble.
|
|
// The code this generates is equivalent to the following JavaScript code:
|
|
// if (%__THREW__.val != 0 & threwValue != 0) {
|
|
// %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
|
|
// if (%label == 0)
|
|
// emscripten_longjmp(%__THREW__.val, threwValue);
|
|
// setTempRet0(threwValue);
|
|
// } else {
|
|
// %label = -1;
|
|
// }
|
|
// %longjmp_result = getTempRet0();
|
|
//
|
|
// As output parameters. returns %label, %longjmp_result, and the BB the last
|
|
// instruction (%longjmp_result = ...) is in.
|
|
void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
|
|
BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
|
|
Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
|
|
BasicBlock *&EndBB) {
|
|
Function *F = BB->getParent();
|
|
LLVMContext &C = BB->getModule()->getContext();
|
|
IRBuilder<> IRB(C);
|
|
IRB.SetCurrentDebugLocation(DL);
|
|
|
|
// if (%__THREW__.val != 0 & threwValue != 0)
|
|
IRB.SetInsertPoint(BB);
|
|
BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
|
|
BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
|
|
BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
|
|
Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
|
|
Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
|
|
ThrewValueGV->getName() + ".val");
|
|
Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
|
|
Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
|
|
IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
|
|
|
|
// %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
|
|
// if (%label == 0)
|
|
IRB.SetInsertPoint(ThenBB1);
|
|
BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
|
|
BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
|
|
Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
|
|
Threw->getName() + ".i32p");
|
|
Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
|
|
ThrewInt->getName() + ".loaded");
|
|
Value *ThenLabel = IRB.CreateCall(
|
|
TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
|
|
Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
|
|
IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
|
|
|
|
// emscripten_longjmp(%__THREW__.val, threwValue);
|
|
IRB.SetInsertPoint(ThenBB2);
|
|
IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
|
|
IRB.CreateUnreachable();
|
|
|
|
// setTempRet0(threwValue);
|
|
IRB.SetInsertPoint(EndBB2);
|
|
IRB.CreateCall(SetTempRet0Func, ThrewValue);
|
|
IRB.CreateBr(EndBB1);
|
|
|
|
IRB.SetInsertPoint(ElseBB1);
|
|
IRB.CreateBr(EndBB1);
|
|
|
|
// longjmp_result = getTempRet0();
|
|
IRB.SetInsertPoint(EndBB1);
|
|
PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
|
|
LabelPHI->addIncoming(ThenLabel, EndBB2);
|
|
|
|
LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
|
|
|
|
// Output parameter assignment
|
|
Label = LabelPHI;
|
|
EndBB = EndBB1;
|
|
LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
|
|
}
|
|
|
|
void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
|
|
DT.recalculate(F); // CFG has been changed
|
|
SSAUpdater SSA;
|
|
for (BasicBlock &BB : F) {
|
|
for (Instruction &I : BB) {
|
|
SSA.Initialize(I.getType(), I.getName());
|
|
SSA.AddAvailableValue(&BB, &I);
|
|
for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
|
|
Use &U = *UI;
|
|
++UI;
|
|
auto *User = cast<Instruction>(U.getUser());
|
|
if (auto *UserPN = dyn_cast<PHINode>(User))
|
|
if (UserPN->getIncomingBlock(U) == &BB)
|
|
continue;
|
|
|
|
if (DT.dominates(&I, User))
|
|
continue;
|
|
SSA.RewriteUseAfterInsertions(U);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes
|
|
// arguments of type {i32, i32} and longjmp takes {jmp_buf*, i32}, so we need a
|
|
// ptrtoint instruction here to make the type match. jmp_buf* will eventually be
|
|
// lowered to i32 in the wasm backend.
|
|
static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF,
|
|
Function *EmLongjmpF) {
|
|
SmallVector<CallInst *, 8> ToErase;
|
|
LLVMContext &C = LongjmpF->getParent()->getContext();
|
|
IRBuilder<> IRB(C);
|
|
|
|
// For calls to longjmp, replace it with emscripten_longjmp and cast its first
|
|
// argument (jmp_buf*) to int
|
|
for (User *U : LongjmpF->users()) {
|
|
auto *CI = dyn_cast<CallInst>(U);
|
|
if (CI && CI->getCalledFunction() == LongjmpF) {
|
|
IRB.SetInsertPoint(CI);
|
|
Value *Jmpbuf =
|
|
IRB.CreatePtrToInt(CI->getArgOperand(0), IRB.getInt32Ty(), "jmpbuf");
|
|
IRB.CreateCall(EmLongjmpF, {Jmpbuf, CI->getArgOperand(1)});
|
|
ToErase.push_back(CI);
|
|
}
|
|
}
|
|
for (auto *I : ToErase)
|
|
I->eraseFromParent();
|
|
|
|
// If we have any remaining uses of longjmp's function pointer, replace it
|
|
// with (int(*)(jmp_buf*, int))emscripten_longjmp.
|
|
if (!LongjmpF->uses().empty()) {
|
|
Value *EmLongjmp =
|
|
IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp");
|
|
LongjmpF->replaceAllUsesWith(EmLongjmp);
|
|
}
|
|
}
|
|
|
|
bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
|
|
LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
|
|
|
|
LLVMContext &C = M.getContext();
|
|
IRBuilder<> IRB(C);
|
|
|
|
Function *SetjmpF = M.getFunction("setjmp");
|
|
Function *LongjmpF = M.getFunction("longjmp");
|
|
bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
|
|
bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
|
|
bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
|
|
|
|
if ((EnableEH || DoSjLj) &&
|
|
Triple(M.getTargetTriple()).getArch() == Triple::wasm64)
|
|
report_fatal_error("Emscripten EH/SjLj is not supported with wasm64 yet");
|
|
|
|
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
|
|
assert(TPC && "Expected a TargetPassConfig");
|
|
auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
|
|
|
|
// Declare (or get) global variables __THREW__, __threwValue, and
|
|
// getTempRet0/setTempRet0 function which are used in common for both
|
|
// exception handling and setjmp/longjmp handling
|
|
ThrewGV = getGlobalVariableI32(M, IRB, TM, "__THREW__");
|
|
ThrewValueGV = getGlobalVariableI32(M, IRB, TM, "__threwValue");
|
|
GetTempRet0Func = getEmscriptenFunction(
|
|
FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
|
|
SetTempRet0Func = getEmscriptenFunction(
|
|
FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
|
|
"setTempRet0", &M);
|
|
GetTempRet0Func->setDoesNotThrow();
|
|
SetTempRet0Func->setDoesNotThrow();
|
|
|
|
bool Changed = false;
|
|
|
|
// Exception handling
|
|
if (EnableEH) {
|
|
// Register __resumeException function
|
|
FunctionType *ResumeFTy =
|
|
FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
|
|
ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
|
|
|
|
// Register llvm_eh_typeid_for function
|
|
FunctionType *EHTypeIDTy =
|
|
FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
|
|
EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
|
|
|
|
for (Function &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
Changed |= runEHOnFunction(F);
|
|
}
|
|
}
|
|
|
|
// Setjmp/longjmp handling
|
|
if (DoSjLj) {
|
|
Changed = true; // We have setjmp or longjmp somewhere
|
|
|
|
// Register emscripten_longjmp function
|
|
FunctionType *FTy = FunctionType::get(
|
|
IRB.getVoidTy(), {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
|
|
EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
|
|
|
|
if (LongjmpF)
|
|
replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF);
|
|
|
|
if (SetjmpF) {
|
|
// Register saveSetjmp function
|
|
FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
|
|
FTy = FunctionType::get(Type::getInt32PtrTy(C),
|
|
{SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
|
|
Type::getInt32PtrTy(C), IRB.getInt32Ty()},
|
|
false);
|
|
SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
|
|
|
|
// Register testSetjmp function
|
|
FTy = FunctionType::get(
|
|
IRB.getInt32Ty(),
|
|
{IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, false);
|
|
TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
|
|
|
|
// Only traverse functions that uses setjmp in order not to insert
|
|
// unnecessary prep / cleanup code in every function
|
|
SmallPtrSet<Function *, 8> SetjmpUsers;
|
|
for (User *U : SetjmpF->users()) {
|
|
auto *UI = cast<Instruction>(U);
|
|
SetjmpUsers.insert(UI->getFunction());
|
|
}
|
|
for (Function *F : SetjmpUsers)
|
|
runSjLjOnFunction(*F);
|
|
}
|
|
}
|
|
|
|
if (!Changed) {
|
|
// Delete unused global variables and functions
|
|
if (ResumeF)
|
|
ResumeF->eraseFromParent();
|
|
if (EHTypeIDF)
|
|
EHTypeIDF->eraseFromParent();
|
|
if (EmLongjmpF)
|
|
EmLongjmpF->eraseFromParent();
|
|
if (SaveSetjmpF)
|
|
SaveSetjmpF->eraseFromParent();
|
|
if (TestSetjmpF)
|
|
TestSetjmpF->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
|
|
Module &M = *F.getParent();
|
|
LLVMContext &C = F.getContext();
|
|
IRBuilder<> IRB(C);
|
|
bool Changed = false;
|
|
SmallVector<Instruction *, 64> ToErase;
|
|
SmallPtrSet<LandingPadInst *, 32> LandingPads;
|
|
bool AllowExceptions = areAllExceptionsAllowed() ||
|
|
EHAllowlistSet.count(std::string(F.getName()));
|
|
|
|
for (BasicBlock &BB : F) {
|
|
auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
|
|
if (!II)
|
|
continue;
|
|
Changed = true;
|
|
LandingPads.insert(II->getLandingPadInst());
|
|
IRB.SetInsertPoint(II);
|
|
|
|
bool NeedInvoke = AllowExceptions && canThrow(II->getCalledOperand());
|
|
if (NeedInvoke) {
|
|
// Wrap invoke with invoke wrapper and generate preamble/postamble
|
|
Value *Threw = wrapInvoke(II);
|
|
ToErase.push_back(II);
|
|
|
|
// Insert a branch based on __THREW__ variable
|
|
Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
|
|
IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
|
|
|
|
} else {
|
|
// This can't throw, and we don't need this invoke, just replace it with a
|
|
// call+branch
|
|
SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
|
|
CallInst *NewCall =
|
|
IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
|
|
NewCall->takeName(II);
|
|
NewCall->setCallingConv(II->getCallingConv());
|
|
NewCall->setDebugLoc(II->getDebugLoc());
|
|
NewCall->setAttributes(II->getAttributes());
|
|
II->replaceAllUsesWith(NewCall);
|
|
ToErase.push_back(II);
|
|
|
|
IRB.CreateBr(II->getNormalDest());
|
|
|
|
// Remove any PHI node entries from the exception destination
|
|
II->getUnwindDest()->removePredecessor(&BB);
|
|
}
|
|
}
|
|
|
|
// Process resume instructions
|
|
for (BasicBlock &BB : F) {
|
|
// Scan the body of the basic block for resumes
|
|
for (Instruction &I : BB) {
|
|
auto *RI = dyn_cast<ResumeInst>(&I);
|
|
if (!RI)
|
|
continue;
|
|
Changed = true;
|
|
|
|
// Split the input into legal values
|
|
Value *Input = RI->getValue();
|
|
IRB.SetInsertPoint(RI);
|
|
Value *Low = IRB.CreateExtractValue(Input, 0, "low");
|
|
// Create a call to __resumeException function
|
|
IRB.CreateCall(ResumeF, {Low});
|
|
// Add a terminator to the block
|
|
IRB.CreateUnreachable();
|
|
ToErase.push_back(RI);
|
|
}
|
|
}
|
|
|
|
// Process llvm.eh.typeid.for intrinsics
|
|
for (BasicBlock &BB : F) {
|
|
for (Instruction &I : BB) {
|
|
auto *CI = dyn_cast<CallInst>(&I);
|
|
if (!CI)
|
|
continue;
|
|
const Function *Callee = CI->getCalledFunction();
|
|
if (!Callee)
|
|
continue;
|
|
if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
|
|
continue;
|
|
Changed = true;
|
|
|
|
IRB.SetInsertPoint(CI);
|
|
CallInst *NewCI =
|
|
IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
|
|
CI->replaceAllUsesWith(NewCI);
|
|
ToErase.push_back(CI);
|
|
}
|
|
}
|
|
|
|
// Look for orphan landingpads, can occur in blocks with no predecessors
|
|
for (BasicBlock &BB : F) {
|
|
Instruction *I = BB.getFirstNonPHI();
|
|
if (auto *LPI = dyn_cast<LandingPadInst>(I))
|
|
LandingPads.insert(LPI);
|
|
}
|
|
Changed |= !LandingPads.empty();
|
|
|
|
// Handle all the landingpad for this function together, as multiple invokes
|
|
// may share a single lp
|
|
for (LandingPadInst *LPI : LandingPads) {
|
|
IRB.SetInsertPoint(LPI);
|
|
SmallVector<Value *, 16> FMCArgs;
|
|
for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
|
|
Constant *Clause = LPI->getClause(I);
|
|
// As a temporary workaround for the lack of aggregate varargs support
|
|
// in the interface between JS and wasm, break out filter operands into
|
|
// their component elements.
|
|
if (LPI->isFilter(I)) {
|
|
auto *ATy = cast<ArrayType>(Clause->getType());
|
|
for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
|
|
Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
|
|
FMCArgs.push_back(EV);
|
|
}
|
|
} else
|
|
FMCArgs.push_back(Clause);
|
|
}
|
|
|
|
// Create a call to __cxa_find_matching_catch_N function
|
|
Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
|
|
CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
|
|
Value *Undef = UndefValue::get(LPI->getType());
|
|
Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
|
|
Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
|
|
Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
|
|
|
|
LPI->replaceAllUsesWith(Pair1);
|
|
ToErase.push_back(LPI);
|
|
}
|
|
|
|
// Erase everything we no longer need in this function
|
|
for (Instruction *I : ToErase)
|
|
I->eraseFromParent();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// This tries to get debug info from the instruction before which a new
|
|
// instruction will be inserted, and if there's no debug info in that
|
|
// instruction, tries to get the info instead from the previous instruction (if
|
|
// any). If none of these has debug info and a DISubprogram is provided, it
|
|
// creates a dummy debug info with the first line of the function, because IR
|
|
// verifier requires all inlinable callsites should have debug info when both a
|
|
// caller and callee have DISubprogram. If none of these conditions are met,
|
|
// returns empty info.
|
|
static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
|
|
DISubprogram *SP) {
|
|
assert(InsertBefore);
|
|
if (InsertBefore->getDebugLoc())
|
|
return InsertBefore->getDebugLoc();
|
|
const Instruction *Prev = InsertBefore->getPrevNode();
|
|
if (Prev && Prev->getDebugLoc())
|
|
return Prev->getDebugLoc();
|
|
if (SP)
|
|
return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
|
|
return DebugLoc();
|
|
}
|
|
|
|
bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
|
|
Module &M = *F.getParent();
|
|
LLVMContext &C = F.getContext();
|
|
IRBuilder<> IRB(C);
|
|
SmallVector<Instruction *, 64> ToErase;
|
|
// Vector of %setjmpTable values
|
|
std::vector<Instruction *> SetjmpTableInsts;
|
|
// Vector of %setjmpTableSize values
|
|
std::vector<Instruction *> SetjmpTableSizeInsts;
|
|
|
|
// Setjmp preparation
|
|
|
|
// This instruction effectively means %setjmpTableSize = 4.
|
|
// We create this as an instruction intentionally, and we don't want to fold
|
|
// this instruction to a constant 4, because this value will be used in
|
|
// SSAUpdater.AddAvailableValue(...) later.
|
|
BasicBlock &EntryBB = F.getEntryBlock();
|
|
DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram());
|
|
BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
|
|
Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
|
|
&*EntryBB.getFirstInsertionPt());
|
|
SetjmpTableSize->setDebugLoc(FirstDL);
|
|
// setjmpTable = (int *) malloc(40);
|
|
Instruction *SetjmpTable = CallInst::CreateMalloc(
|
|
SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
|
|
nullptr, nullptr, "setjmpTable");
|
|
SetjmpTable->setDebugLoc(FirstDL);
|
|
// CallInst::CreateMalloc may return a bitcast instruction if the result types
|
|
// mismatch. We need to set the debug loc for the original call too.
|
|
auto *MallocCall = SetjmpTable->stripPointerCasts();
|
|
if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
|
|
MallocCallI->setDebugLoc(FirstDL);
|
|
}
|
|
// setjmpTable[0] = 0;
|
|
IRB.SetInsertPoint(SetjmpTableSize);
|
|
IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
|
|
SetjmpTableInsts.push_back(SetjmpTable);
|
|
SetjmpTableSizeInsts.push_back(SetjmpTableSize);
|
|
|
|
// Setjmp transformation
|
|
std::vector<PHINode *> SetjmpRetPHIs;
|
|
Function *SetjmpF = M.getFunction("setjmp");
|
|
for (User *U : SetjmpF->users()) {
|
|
auto *CI = dyn_cast<CallInst>(U);
|
|
if (!CI)
|
|
report_fatal_error("Does not support indirect calls to setjmp");
|
|
|
|
BasicBlock *BB = CI->getParent();
|
|
if (BB->getParent() != &F) // in other function
|
|
continue;
|
|
|
|
// The tail is everything right after the call, and will be reached once
|
|
// when setjmp is called, and later when longjmp returns to the setjmp
|
|
BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
|
|
// Add a phi to the tail, which will be the output of setjmp, which
|
|
// indicates if this is the first call or a longjmp back. The phi directly
|
|
// uses the right value based on where we arrive from
|
|
IRB.SetInsertPoint(Tail->getFirstNonPHI());
|
|
PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
|
|
|
|
// setjmp initial call returns 0
|
|
SetjmpRet->addIncoming(IRB.getInt32(0), BB);
|
|
// The proper output is now this, not the setjmp call itself
|
|
CI->replaceAllUsesWith(SetjmpRet);
|
|
// longjmp returns to the setjmp will add themselves to this phi
|
|
SetjmpRetPHIs.push_back(SetjmpRet);
|
|
|
|
// Fix call target
|
|
// Our index in the function is our place in the array + 1 to avoid index
|
|
// 0, because index 0 means the longjmp is not ours to handle.
|
|
IRB.SetInsertPoint(CI);
|
|
Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
|
|
SetjmpTable, SetjmpTableSize};
|
|
Instruction *NewSetjmpTable =
|
|
IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
|
|
Instruction *NewSetjmpTableSize =
|
|
IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
|
|
SetjmpTableInsts.push_back(NewSetjmpTable);
|
|
SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
|
|
ToErase.push_back(CI);
|
|
}
|
|
|
|
// Update each call that can longjmp so it can return to a setjmp where
|
|
// relevant.
|
|
|
|
// Because we are creating new BBs while processing and don't want to make
|
|
// all these newly created BBs candidates again for longjmp processing, we
|
|
// first make the vector of candidate BBs.
|
|
std::vector<BasicBlock *> BBs;
|
|
for (BasicBlock &BB : F)
|
|
BBs.push_back(&BB);
|
|
|
|
// BBs.size() will change within the loop, so we query it every time
|
|
for (unsigned I = 0; I < BBs.size(); I++) {
|
|
BasicBlock *BB = BBs[I];
|
|
for (Instruction &I : *BB) {
|
|
assert(!isa<InvokeInst>(&I));
|
|
auto *CI = dyn_cast<CallInst>(&I);
|
|
if (!CI)
|
|
continue;
|
|
|
|
const Value *Callee = CI->getCalledOperand();
|
|
if (!canLongjmp(M, Callee))
|
|
continue;
|
|
if (isEmAsmCall(M, Callee))
|
|
report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
|
|
F.getName() +
|
|
". Please consider using EM_JS, or move the "
|
|
"EM_ASM into another function.",
|
|
false);
|
|
|
|
Value *Threw = nullptr;
|
|
BasicBlock *Tail;
|
|
if (Callee->getName().startswith("__invoke_")) {
|
|
// If invoke wrapper has already been generated for this call in
|
|
// previous EH phase, search for the load instruction
|
|
// %__THREW__.val = __THREW__;
|
|
// in postamble after the invoke wrapper call
|
|
LoadInst *ThrewLI = nullptr;
|
|
StoreInst *ThrewResetSI = nullptr;
|
|
for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
|
|
I != IE; ++I) {
|
|
if (auto *LI = dyn_cast<LoadInst>(I))
|
|
if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
|
|
if (GV == ThrewGV) {
|
|
Threw = ThrewLI = LI;
|
|
break;
|
|
}
|
|
}
|
|
// Search for the store instruction after the load above
|
|
// __THREW__ = 0;
|
|
for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
|
|
I != IE; ++I) {
|
|
if (auto *SI = dyn_cast<StoreInst>(I))
|
|
if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
|
|
if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
|
|
ThrewResetSI = SI;
|
|
break;
|
|
}
|
|
}
|
|
assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
|
|
assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
|
|
Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
|
|
|
|
} else {
|
|
// Wrap call with invoke wrapper and generate preamble/postamble
|
|
Threw = wrapInvoke(CI);
|
|
ToErase.push_back(CI);
|
|
Tail = SplitBlock(BB, CI->getNextNode());
|
|
}
|
|
|
|
// We need to replace the terminator in Tail - SplitBlock makes BB go
|
|
// straight to Tail, we need to check if a longjmp occurred, and go to the
|
|
// right setjmp-tail if so
|
|
ToErase.push_back(BB->getTerminator());
|
|
|
|
// Generate a function call to testSetjmp function and preamble/postamble
|
|
// code to figure out (1) whether longjmp occurred (2) if longjmp
|
|
// occurred, which setjmp it corresponds to
|
|
Value *Label = nullptr;
|
|
Value *LongjmpResult = nullptr;
|
|
BasicBlock *EndBB = nullptr;
|
|
wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
|
|
Label, LongjmpResult, EndBB);
|
|
assert(Label && LongjmpResult && EndBB);
|
|
|
|
// Create switch instruction
|
|
IRB.SetInsertPoint(EndBB);
|
|
IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
|
|
SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
|
|
// -1 means no longjmp happened, continue normally (will hit the default
|
|
// switch case). 0 means a longjmp that is not ours to handle, needs a
|
|
// rethrow. Otherwise the index is the same as the index in P+1 (to avoid
|
|
// 0).
|
|
for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
|
|
SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
|
|
SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
|
|
}
|
|
|
|
// We are splitting the block here, and must continue to find other calls
|
|
// in the block - which is now split. so continue to traverse in the Tail
|
|
BBs.push_back(Tail);
|
|
}
|
|
}
|
|
|
|
// Erase everything we no longer need in this function
|
|
for (Instruction *I : ToErase)
|
|
I->eraseFromParent();
|
|
|
|
// Free setjmpTable buffer before each return instruction
|
|
for (BasicBlock &BB : F) {
|
|
Instruction *TI = BB.getTerminator();
|
|
if (isa<ReturnInst>(TI)) {
|
|
DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram());
|
|
auto *Free = CallInst::CreateFree(SetjmpTable, TI);
|
|
Free->setDebugLoc(DL);
|
|
// CallInst::CreateFree may create a bitcast instruction if its argument
|
|
// types mismatch. We need to set the debug loc for the bitcast too.
|
|
if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
|
|
if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
|
|
BitCastI->setDebugLoc(DL);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Every call to saveSetjmp can change setjmpTable and setjmpTableSize
|
|
// (when buffer reallocation occurs)
|
|
// entry:
|
|
// setjmpTableSize = 4;
|
|
// setjmpTable = (int *) malloc(40);
|
|
// setjmpTable[0] = 0;
|
|
// ...
|
|
// somebb:
|
|
// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
|
|
// setjmpTableSize = getTempRet0();
|
|
// So we need to make sure the SSA for these variables is valid so that every
|
|
// saveSetjmp and testSetjmp calls have the correct arguments.
|
|
SSAUpdater SetjmpTableSSA;
|
|
SSAUpdater SetjmpTableSizeSSA;
|
|
SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
|
|
SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
|
|
for (Instruction *I : SetjmpTableInsts)
|
|
SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
|
|
for (Instruction *I : SetjmpTableSizeInsts)
|
|
SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
|
|
|
|
for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
|
|
UI != UE;) {
|
|
// Grab the use before incrementing the iterator.
|
|
Use &U = *UI;
|
|
// Increment the iterator before removing the use from the list.
|
|
++UI;
|
|
if (auto *I = dyn_cast<Instruction>(U.getUser()))
|
|
if (I->getParent() != &EntryBB)
|
|
SetjmpTableSSA.RewriteUse(U);
|
|
}
|
|
for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
|
|
UI != UE;) {
|
|
Use &U = *UI;
|
|
++UI;
|
|
if (auto *I = dyn_cast<Instruction>(U.getUser()))
|
|
if (I->getParent() != &EntryBB)
|
|
SetjmpTableSizeSSA.RewriteUse(U);
|
|
}
|
|
|
|
// Finally, our modifications to the cfg can break dominance of SSA variables.
|
|
// For example, in this code,
|
|
// if (x()) { .. setjmp() .. }
|
|
// if (y()) { .. longjmp() .. }
|
|
// We must split the longjmp block, and it can jump into the block splitted
|
|
// from setjmp one. But that means that when we split the setjmp block, it's
|
|
// first part no longer dominates its second part - there is a theoretically
|
|
// possible control flow path where x() is false, then y() is true and we
|
|
// reach the second part of the setjmp block, without ever reaching the first
|
|
// part. So, we rebuild SSA form here.
|
|
rebuildSSA(F);
|
|
return true;
|
|
}
|