llvm-project/llvm/lib/Target/RISCV/RISCVISelDAGToDAG.cpp

547 lines
19 KiB
C++

//===-- RISCVISelDAGToDAG.cpp - A dag to dag inst selector for RISCV ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the RISCV target.
//
//===----------------------------------------------------------------------===//
#include "RISCVISelDAGToDAG.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "Utils/RISCVMatInt.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "riscv-isel"
void RISCVDAGToDAGISel::PostprocessISelDAG() {
doPeepholeLoadStoreADDI();
}
static SDNode *selectImm(SelectionDAG *CurDAG, const SDLoc &DL, int64_t Imm,
MVT XLenVT) {
RISCVMatInt::InstSeq Seq;
RISCVMatInt::generateInstSeq(Imm, XLenVT == MVT::i64, Seq);
SDNode *Result = nullptr;
SDValue SrcReg = CurDAG->getRegister(RISCV::X0, XLenVT);
for (RISCVMatInt::Inst &Inst : Seq) {
SDValue SDImm = CurDAG->getTargetConstant(Inst.Imm, DL, XLenVT);
if (Inst.Opc == RISCV::LUI)
Result = CurDAG->getMachineNode(RISCV::LUI, DL, XLenVT, SDImm);
else
Result = CurDAG->getMachineNode(Inst.Opc, DL, XLenVT, SrcReg, SDImm);
// Only the first instruction has X0 as its source.
SrcReg = SDValue(Result, 0);
}
return Result;
}
// Returns true if the Node is an ISD::AND with a constant argument. If so,
// set Mask to that constant value.
static bool isConstantMask(SDNode *Node, uint64_t &Mask) {
if (Node->getOpcode() == ISD::AND &&
Node->getOperand(1).getOpcode() == ISD::Constant) {
Mask = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
return true;
}
return false;
}
void RISCVDAGToDAGISel::Select(SDNode *Node) {
// If we have a custom node, we have already selected.
if (Node->isMachineOpcode()) {
LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n");
Node->setNodeId(-1);
return;
}
// Instruction Selection not handled by the auto-generated tablegen selection
// should be handled here.
unsigned Opcode = Node->getOpcode();
MVT XLenVT = Subtarget->getXLenVT();
SDLoc DL(Node);
EVT VT = Node->getValueType(0);
switch (Opcode) {
case ISD::ADD: {
// Optimize (add r, imm) to (addi (addi r, imm0) imm1) if applicable. The
// immediate must be in specific ranges and have a single use.
if (auto *ConstOp = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
if (!(ConstOp->hasOneUse()))
break;
// The imm must be in range [-4096,-2049] or [2048,4094].
int64_t Imm = ConstOp->getSExtValue();
if (!(-4096 <= Imm && Imm <= -2049) && !(2048 <= Imm && Imm <= 4094))
break;
// Break the imm to imm0+imm1.
SDLoc DL(Node);
EVT VT = Node->getValueType(0);
const SDValue ImmOp0 = CurDAG->getTargetConstant(Imm - Imm / 2, DL, VT);
const SDValue ImmOp1 = CurDAG->getTargetConstant(Imm / 2, DL, VT);
auto *NodeAddi0 = CurDAG->getMachineNode(RISCV::ADDI, DL, VT,
Node->getOperand(0), ImmOp0);
auto *NodeAddi1 = CurDAG->getMachineNode(RISCV::ADDI, DL, VT,
SDValue(NodeAddi0, 0), ImmOp1);
ReplaceNode(Node, NodeAddi1);
return;
}
break;
}
case ISD::Constant: {
auto ConstNode = cast<ConstantSDNode>(Node);
if (VT == XLenVT && ConstNode->isNullValue()) {
SDValue New = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
RISCV::X0, XLenVT);
ReplaceNode(Node, New.getNode());
return;
}
int64_t Imm = ConstNode->getSExtValue();
if (XLenVT == MVT::i64) {
ReplaceNode(Node, selectImm(CurDAG, SDLoc(Node), Imm, XLenVT));
return;
}
break;
}
case ISD::FrameIndex: {
SDValue Imm = CurDAG->getTargetConstant(0, DL, XLenVT);
int FI = cast<FrameIndexSDNode>(Node)->getIndex();
SDValue TFI = CurDAG->getTargetFrameIndex(FI, VT);
ReplaceNode(Node, CurDAG->getMachineNode(RISCV::ADDI, DL, VT, TFI, Imm));
return;
}
case ISD::SRL: {
if (!Subtarget->is64Bit())
break;
SDNode *Op0 = Node->getOperand(0).getNode();
uint64_t Mask;
// Match (srl (and val, mask), imm) where the result would be a
// zero-extended 32-bit integer. i.e. the mask is 0xffffffff or the result
// is equivalent to this (SimplifyDemandedBits may have removed lower bits
// from the mask that aren't necessary due to the right-shifting).
if (isa<ConstantSDNode>(Node->getOperand(1)) && isConstantMask(Op0, Mask)) {
uint64_t ShAmt = Node->getConstantOperandVal(1);
if ((Mask | maskTrailingOnes<uint64_t>(ShAmt)) == 0xffffffff) {
SDValue ShAmtVal =
CurDAG->getTargetConstant(ShAmt, SDLoc(Node), XLenVT);
CurDAG->SelectNodeTo(Node, RISCV::SRLIW, XLenVT, Op0->getOperand(0),
ShAmtVal);
return;
}
}
break;
}
case RISCVISD::READ_CYCLE_WIDE:
assert(!Subtarget->is64Bit() && "READ_CYCLE_WIDE is only used on riscv32");
ReplaceNode(Node, CurDAG->getMachineNode(RISCV::ReadCycleWide, DL, MVT::i32,
MVT::i32, MVT::Other,
Node->getOperand(0)));
return;
}
// Select the default instruction.
SelectCode(Node);
}
bool RISCVDAGToDAGISel::SelectInlineAsmMemoryOperand(
const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
switch (ConstraintID) {
case InlineAsm::Constraint_m:
// We just support simple memory operands that have a single address
// operand and need no special handling.
OutOps.push_back(Op);
return false;
case InlineAsm::Constraint_A:
OutOps.push_back(Op);
return false;
default:
break;
}
return true;
}
bool RISCVDAGToDAGISel::SelectAddrFI(SDValue Addr, SDValue &Base) {
if (auto FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), Subtarget->getXLenVT());
return true;
}
return false;
}
// Check that it is a SLOI (Shift Left Ones Immediate). We first check that
// it is the right node tree:
//
// (OR (SHL RS1, VC2), VC1)
//
// and then we check that VC1, the mask used to fill with ones, is compatible
// with VC2, the shamt:
//
// VC1 == maskTrailingOnes<uint64_t>(VC2)
bool RISCVDAGToDAGISel::SelectSLOI(SDValue N, SDValue &RS1, SDValue &Shamt) {
MVT XLenVT = Subtarget->getXLenVT();
if (N.getOpcode() == ISD::OR) {
SDValue Or = N;
if (Or.getOperand(0).getOpcode() == ISD::SHL) {
SDValue Shl = Or.getOperand(0);
if (isa<ConstantSDNode>(Shl.getOperand(1)) &&
isa<ConstantSDNode>(Or.getOperand(1))) {
if (XLenVT == MVT::i64) {
uint64_t VC1 = Or.getConstantOperandVal(1);
uint64_t VC2 = Shl.getConstantOperandVal(1);
if (VC1 == maskTrailingOnes<uint64_t>(VC2)) {
RS1 = Shl.getOperand(0);
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
Shl.getOperand(1).getValueType());
return true;
}
}
if (XLenVT == MVT::i32) {
uint32_t VC1 = Or.getConstantOperandVal(1);
uint32_t VC2 = Shl.getConstantOperandVal(1);
if (VC1 == maskTrailingOnes<uint32_t>(VC2)) {
RS1 = Shl.getOperand(0);
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
Shl.getOperand(1).getValueType());
return true;
}
}
}
}
}
return false;
}
// Check that it is a SROI (Shift Right Ones Immediate). We first check that
// it is the right node tree:
//
// (OR (SRL RS1, VC2), VC1)
//
// and then we check that VC1, the mask used to fill with ones, is compatible
// with VC2, the shamt:
//
// VC1 == maskLeadingOnes<uint64_t>(VC2)
bool RISCVDAGToDAGISel::SelectSROI(SDValue N, SDValue &RS1, SDValue &Shamt) {
MVT XLenVT = Subtarget->getXLenVT();
if (N.getOpcode() == ISD::OR) {
SDValue Or = N;
if (Or.getOperand(0).getOpcode() == ISD::SRL) {
SDValue Srl = Or.getOperand(0);
if (isa<ConstantSDNode>(Srl.getOperand(1)) &&
isa<ConstantSDNode>(Or.getOperand(1))) {
if (XLenVT == MVT::i64) {
uint64_t VC1 = Or.getConstantOperandVal(1);
uint64_t VC2 = Srl.getConstantOperandVal(1);
if (VC1 == maskLeadingOnes<uint64_t>(VC2)) {
RS1 = Srl.getOperand(0);
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
Srl.getOperand(1).getValueType());
return true;
}
}
if (XLenVT == MVT::i32) {
uint32_t VC1 = Or.getConstantOperandVal(1);
uint32_t VC2 = Srl.getConstantOperandVal(1);
if (VC1 == maskLeadingOnes<uint32_t>(VC2)) {
RS1 = Srl.getOperand(0);
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
Srl.getOperand(1).getValueType());
return true;
}
}
}
}
}
return false;
}
// Check that it is a SLLIUW (Shift Logical Left Immediate Unsigned i32
// on RV64).
// SLLIUW is the same as SLLI except for the fact that it clears the bits
// XLEN-1:32 of the input RS1 before shifting.
// We first check that it is the right node tree:
//
// (AND (SHL RS1, VC2), VC1)
//
// We check that VC2, the shamt is less than 32, otherwise the pattern is
// exactly the same as SLLI and we give priority to that.
// Eventually we check that that VC1, the mask used to clear the upper 32 bits
// of RS1, is correct:
//
// VC1 == (0xFFFFFFFF << VC2)
bool RISCVDAGToDAGISel::SelectSLLIUW(SDValue N, SDValue &RS1, SDValue &Shamt) {
if (N.getOpcode() == ISD::AND && Subtarget->getXLenVT() == MVT::i64) {
SDValue And = N;
if (And.getOperand(0).getOpcode() == ISD::SHL) {
SDValue Shl = And.getOperand(0);
if (isa<ConstantSDNode>(Shl.getOperand(1)) &&
isa<ConstantSDNode>(And.getOperand(1))) {
uint64_t VC1 = And.getConstantOperandVal(1);
uint64_t VC2 = Shl.getConstantOperandVal(1);
if (VC2 < 32 && VC1 == ((uint64_t)0xFFFFFFFF << VC2)) {
RS1 = Shl.getOperand(0);
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
Shl.getOperand(1).getValueType());
return true;
}
}
}
}
return false;
}
// Check that it is a SLOIW (Shift Left Ones Immediate i32 on RV64).
// We first check that it is the right node tree:
//
// (SIGN_EXTEND_INREG (OR (SHL RS1, VC2), VC1))
//
// and then we check that VC1, the mask used to fill with ones, is compatible
// with VC2, the shamt:
//
// VC1 == maskTrailingOnes<uint32_t>(VC2)
bool RISCVDAGToDAGISel::SelectSLOIW(SDValue N, SDValue &RS1, SDValue &Shamt) {
if (Subtarget->getXLenVT() == MVT::i64 &&
N.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N.getOperand(1))->getVT() == MVT::i32) {
if (N.getOperand(0).getOpcode() == ISD::OR) {
SDValue Or = N.getOperand(0);
if (Or.getOperand(0).getOpcode() == ISD::SHL) {
SDValue Shl = Or.getOperand(0);
if (isa<ConstantSDNode>(Shl.getOperand(1)) &&
isa<ConstantSDNode>(Or.getOperand(1))) {
uint32_t VC1 = Or.getConstantOperandVal(1);
uint32_t VC2 = Shl.getConstantOperandVal(1);
if (VC1 == maskTrailingOnes<uint32_t>(VC2)) {
RS1 = Shl.getOperand(0);
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
Shl.getOperand(1).getValueType());
return true;
}
}
}
}
}
return false;
}
// Check that it is a SROIW (Shift Right Ones Immediate i32 on RV64).
// We first check that it is the right node tree:
//
// (OR (SHL RS1, VC2), VC1)
//
// and then we check that VC1, the mask used to fill with ones, is compatible
// with VC2, the shamt:
//
// VC1 == maskLeadingOnes<uint32_t>(VC2)
bool RISCVDAGToDAGISel::SelectSROIW(SDValue N, SDValue &RS1, SDValue &Shamt) {
if (N.getOpcode() == ISD::OR && Subtarget->getXLenVT() == MVT::i64) {
SDValue Or = N;
if (Or.getOperand(0).getOpcode() == ISD::SRL) {
SDValue Srl = Or.getOperand(0);
if (isa<ConstantSDNode>(Srl.getOperand(1)) &&
isa<ConstantSDNode>(Or.getOperand(1))) {
uint32_t VC1 = Or.getConstantOperandVal(1);
uint32_t VC2 = Srl.getConstantOperandVal(1);
if (VC1 == maskLeadingOnes<uint32_t>(VC2)) {
RS1 = Srl.getOperand(0);
Shamt = CurDAG->getTargetConstant(VC2, SDLoc(N),
Srl.getOperand(1).getValueType());
return true;
}
}
}
}
return false;
}
// Check that it is a RORIW (i32 Right Rotate Immediate on RV64).
// We first check that it is the right node tree:
//
// (SIGN_EXTEND_INREG (OR (SHL RS1, VC2),
// (SRL (AND RS1, VC3), VC1)))
//
// Then we check that the constant operands respect these constraints:
//
// VC2 == 32 - VC1
// VC3 | maskTrailingOnes<uint64_t>(VC1) == 0xffffffff
//
// being VC1 the Shamt we need, VC2 the complementary of Shamt over 32
// and VC3 being 0xffffffff after accounting for SimplifyDemandedBits removing
// some bits due to the right shift.
bool RISCVDAGToDAGISel::SelectRORIW(SDValue N, SDValue &RS1, SDValue &Shamt) {
if (N.getOpcode() == ISD::SIGN_EXTEND_INREG &&
Subtarget->getXLenVT() == MVT::i64 &&
cast<VTSDNode>(N.getOperand(1))->getVT() == MVT::i32) {
if (N.getOperand(0).getOpcode() == ISD::OR) {
SDValue Or = N.getOperand(0);
SDValue Shl = Or.getOperand(0);
SDValue Srl = Or.getOperand(1);
// OR is commutable so canonicalize SHL to LHS.
if (Srl.getOpcode() == ISD::SHL)
std::swap(Shl, Srl);
if (Shl.getOpcode() == ISD::SHL && Srl.getOpcode() == ISD::SRL) {
if (Srl.getOperand(0).getOpcode() == ISD::AND) {
SDValue And = Srl.getOperand(0);
if (And.getOperand(0) == Shl.getOperand(0) &&
isa<ConstantSDNode>(Srl.getOperand(1)) &&
isa<ConstantSDNode>(Shl.getOperand(1)) &&
isa<ConstantSDNode>(And.getOperand(1))) {
uint64_t VC1 = Srl.getConstantOperandVal(1);
uint64_t VC2 = Shl.getConstantOperandVal(1);
uint64_t VC3 = And.getConstantOperandVal(1);
// The mask needs to be 0xffffffff, but SimplifyDemandedBits may
// have removed lower bits that aren't necessary due to the right
// shift.
if (VC2 == (32 - VC1) &&
(VC3 | maskTrailingOnes<uint64_t>(VC1)) == 0xffffffff) {
RS1 = Shl.getOperand(0);
Shamt = CurDAG->getTargetConstant(VC1, SDLoc(N),
Srl.getOperand(1).getValueType());
return true;
}
}
}
}
}
}
return false;
}
// Merge an ADDI into the offset of a load/store instruction where possible.
// (load (addi base, off1), off2) -> (load base, off1+off2)
// (store val, (addi base, off1), off2) -> (store val, base, off1+off2)
// This is possible when off1+off2 fits a 12-bit immediate.
void RISCVDAGToDAGISel::doPeepholeLoadStoreADDI() {
SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
++Position;
while (Position != CurDAG->allnodes_begin()) {
SDNode *N = &*--Position;
// Skip dead nodes and any non-machine opcodes.
if (N->use_empty() || !N->isMachineOpcode())
continue;
int OffsetOpIdx;
int BaseOpIdx;
// Only attempt this optimisation for I-type loads and S-type stores.
switch (N->getMachineOpcode()) {
default:
continue;
case RISCV::LB:
case RISCV::LH:
case RISCV::LW:
case RISCV::LBU:
case RISCV::LHU:
case RISCV::LWU:
case RISCV::LD:
case RISCV::FLW:
case RISCV::FLD:
BaseOpIdx = 0;
OffsetOpIdx = 1;
break;
case RISCV::SB:
case RISCV::SH:
case RISCV::SW:
case RISCV::SD:
case RISCV::FSW:
case RISCV::FSD:
BaseOpIdx = 1;
OffsetOpIdx = 2;
break;
}
if (!isa<ConstantSDNode>(N->getOperand(OffsetOpIdx)))
continue;
SDValue Base = N->getOperand(BaseOpIdx);
// If the base is an ADDI, we can merge it in to the load/store.
if (!Base.isMachineOpcode() || Base.getMachineOpcode() != RISCV::ADDI)
continue;
SDValue ImmOperand = Base.getOperand(1);
uint64_t Offset2 = N->getConstantOperandVal(OffsetOpIdx);
if (auto Const = dyn_cast<ConstantSDNode>(ImmOperand)) {
int64_t Offset1 = Const->getSExtValue();
int64_t CombinedOffset = Offset1 + Offset2;
if (!isInt<12>(CombinedOffset))
continue;
ImmOperand = CurDAG->getTargetConstant(CombinedOffset, SDLoc(ImmOperand),
ImmOperand.getValueType());
} else if (auto GA = dyn_cast<GlobalAddressSDNode>(ImmOperand)) {
// If the off1 in (addi base, off1) is a global variable's address (its
// low part, really), then we can rely on the alignment of that variable
// to provide a margin of safety before off1 can overflow the 12 bits.
// Check if off2 falls within that margin; if so off1+off2 can't overflow.
const DataLayout &DL = CurDAG->getDataLayout();
Align Alignment = GA->getGlobal()->getPointerAlignment(DL);
if (Offset2 != 0 && Alignment <= Offset2)
continue;
int64_t Offset1 = GA->getOffset();
int64_t CombinedOffset = Offset1 + Offset2;
ImmOperand = CurDAG->getTargetGlobalAddress(
GA->getGlobal(), SDLoc(ImmOperand), ImmOperand.getValueType(),
CombinedOffset, GA->getTargetFlags());
} else if (auto CP = dyn_cast<ConstantPoolSDNode>(ImmOperand)) {
// Ditto.
Align Alignment = CP->getAlign();
if (Offset2 != 0 && Alignment <= Offset2)
continue;
int64_t Offset1 = CP->getOffset();
int64_t CombinedOffset = Offset1 + Offset2;
ImmOperand = CurDAG->getTargetConstantPool(
CP->getConstVal(), ImmOperand.getValueType(), CP->getAlign(),
CombinedOffset, CP->getTargetFlags());
} else {
continue;
}
LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
LLVM_DEBUG(Base->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\nN: ");
LLVM_DEBUG(N->dump(CurDAG));
LLVM_DEBUG(dbgs() << "\n");
// Modify the offset operand of the load/store.
if (BaseOpIdx == 0) // Load
CurDAG->UpdateNodeOperands(N, Base.getOperand(0), ImmOperand,
N->getOperand(2));
else // Store
CurDAG->UpdateNodeOperands(N, N->getOperand(0), Base.getOperand(0),
ImmOperand, N->getOperand(3));
// The add-immediate may now be dead, in which case remove it.
if (Base.getNode()->use_empty())
CurDAG->RemoveDeadNode(Base.getNode());
}
}
// This pass converts a legalized DAG into a RISCV-specific DAG, ready
// for instruction scheduling.
FunctionPass *llvm::createRISCVISelDag(RISCVTargetMachine &TM) {
return new RISCVDAGToDAGISel(TM);
}