forked from OSchip/llvm-project
1771 lines
69 KiB
C++
1771 lines
69 KiB
C++
//===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass (at IR level) to replace atomic instructions with
|
|
// __atomic_* library calls, or target specific instruction which implement the
|
|
// same semantics in a way which better fits the target backend. This can
|
|
// include the use of (intrinsic-based) load-linked/store-conditional loops,
|
|
// AtomicCmpXchg, or type coercions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/AtomicExpandUtils.h"
|
|
#include "llvm/CodeGen/RuntimeLibcalls.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "atomic-expand"
|
|
|
|
namespace {
|
|
|
|
class AtomicExpand: public FunctionPass {
|
|
const TargetLowering *TLI = nullptr;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
AtomicExpand() : FunctionPass(ID) {
|
|
initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
|
|
IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
|
|
LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
|
|
bool tryExpandAtomicLoad(LoadInst *LI);
|
|
bool expandAtomicLoadToLL(LoadInst *LI);
|
|
bool expandAtomicLoadToCmpXchg(LoadInst *LI);
|
|
StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
|
|
bool expandAtomicStore(StoreInst *SI);
|
|
bool tryExpandAtomicRMW(AtomicRMWInst *AI);
|
|
Value *
|
|
insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
|
|
AtomicOrdering MemOpOrder,
|
|
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
|
|
void expandAtomicOpToLLSC(
|
|
Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
|
|
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
|
|
void expandPartwordAtomicRMW(
|
|
AtomicRMWInst *I,
|
|
TargetLoweringBase::AtomicExpansionKind ExpansionKind);
|
|
AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
|
|
void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
|
|
void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
|
|
void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
|
|
|
|
AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
|
|
static Value *insertRMWCmpXchgLoop(
|
|
IRBuilder<> &Builder, Type *ResultType, Value *Addr,
|
|
AtomicOrdering MemOpOrder,
|
|
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
|
|
CreateCmpXchgInstFun CreateCmpXchg);
|
|
bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
|
|
|
|
bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
|
|
bool isIdempotentRMW(AtomicRMWInst *RMWI);
|
|
bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
|
|
|
|
bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align,
|
|
Value *PointerOperand, Value *ValueOperand,
|
|
Value *CASExpected, AtomicOrdering Ordering,
|
|
AtomicOrdering Ordering2,
|
|
ArrayRef<RTLIB::Libcall> Libcalls);
|
|
void expandAtomicLoadToLibcall(LoadInst *LI);
|
|
void expandAtomicStoreToLibcall(StoreInst *LI);
|
|
void expandAtomicRMWToLibcall(AtomicRMWInst *I);
|
|
void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
|
|
|
|
friend bool
|
|
llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
|
|
CreateCmpXchgInstFun CreateCmpXchg);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char AtomicExpand::ID = 0;
|
|
|
|
char &llvm::AtomicExpandID = AtomicExpand::ID;
|
|
|
|
INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
|
|
|
|
// Helper functions to retrieve the size of atomic instructions.
|
|
static unsigned getAtomicOpSize(LoadInst *LI) {
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
return DL.getTypeStoreSize(LI->getType());
|
|
}
|
|
|
|
static unsigned getAtomicOpSize(StoreInst *SI) {
|
|
const DataLayout &DL = SI->getModule()->getDataLayout();
|
|
return DL.getTypeStoreSize(SI->getValueOperand()->getType());
|
|
}
|
|
|
|
static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
|
|
const DataLayout &DL = RMWI->getModule()->getDataLayout();
|
|
return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
|
|
}
|
|
|
|
static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
|
|
const DataLayout &DL = CASI->getModule()->getDataLayout();
|
|
return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
|
|
}
|
|
|
|
// Helper functions to retrieve the alignment of atomic instructions.
|
|
static unsigned getAtomicOpAlign(LoadInst *LI) {
|
|
unsigned Align = LI->getAlignment();
|
|
// In the future, if this IR restriction is relaxed, we should
|
|
// return DataLayout::getABITypeAlignment when there's no align
|
|
// value.
|
|
assert(Align != 0 && "An atomic LoadInst always has an explicit alignment");
|
|
return Align;
|
|
}
|
|
|
|
static unsigned getAtomicOpAlign(StoreInst *SI) {
|
|
unsigned Align = SI->getAlignment();
|
|
// In the future, if this IR restriction is relaxed, we should
|
|
// return DataLayout::getABITypeAlignment when there's no align
|
|
// value.
|
|
assert(Align != 0 && "An atomic StoreInst always has an explicit alignment");
|
|
return Align;
|
|
}
|
|
|
|
static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) {
|
|
// TODO(PR27168): This instruction has no alignment attribute, but unlike the
|
|
// default alignment for load/store, the default here is to assume
|
|
// it has NATURAL alignment, not DataLayout-specified alignment.
|
|
const DataLayout &DL = RMWI->getModule()->getDataLayout();
|
|
return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
|
|
}
|
|
|
|
static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) {
|
|
// TODO(PR27168): same comment as above.
|
|
const DataLayout &DL = CASI->getModule()->getDataLayout();
|
|
return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
|
|
}
|
|
|
|
// Determine if a particular atomic operation has a supported size,
|
|
// and is of appropriate alignment, to be passed through for target
|
|
// lowering. (Versus turning into a __atomic libcall)
|
|
template <typename Inst>
|
|
static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
|
|
unsigned Size = getAtomicOpSize(I);
|
|
unsigned Align = getAtomicOpAlign(I);
|
|
return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
|
|
}
|
|
|
|
bool AtomicExpand::runOnFunction(Function &F) {
|
|
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
|
|
if (!TPC)
|
|
return false;
|
|
|
|
auto &TM = TPC->getTM<TargetMachine>();
|
|
if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
|
|
return false;
|
|
TLI = TM.getSubtargetImpl(F)->getTargetLowering();
|
|
|
|
SmallVector<Instruction *, 1> AtomicInsts;
|
|
|
|
// Changing control-flow while iterating through it is a bad idea, so gather a
|
|
// list of all atomic instructions before we start.
|
|
for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
|
|
Instruction *I = &*II;
|
|
if (I->isAtomic() && !isa<FenceInst>(I))
|
|
AtomicInsts.push_back(I);
|
|
}
|
|
|
|
bool MadeChange = false;
|
|
for (auto I : AtomicInsts) {
|
|
auto LI = dyn_cast<LoadInst>(I);
|
|
auto SI = dyn_cast<StoreInst>(I);
|
|
auto RMWI = dyn_cast<AtomicRMWInst>(I);
|
|
auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
|
|
assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
|
|
|
|
// If the Size/Alignment is not supported, replace with a libcall.
|
|
if (LI) {
|
|
if (!atomicSizeSupported(TLI, LI)) {
|
|
expandAtomicLoadToLibcall(LI);
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
} else if (SI) {
|
|
if (!atomicSizeSupported(TLI, SI)) {
|
|
expandAtomicStoreToLibcall(SI);
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
} else if (RMWI) {
|
|
if (!atomicSizeSupported(TLI, RMWI)) {
|
|
expandAtomicRMWToLibcall(RMWI);
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
} else if (CASI) {
|
|
if (!atomicSizeSupported(TLI, CASI)) {
|
|
expandAtomicCASToLibcall(CASI);
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (TLI->shouldInsertFencesForAtomic(I)) {
|
|
auto FenceOrdering = AtomicOrdering::Monotonic;
|
|
if (LI && isAcquireOrStronger(LI->getOrdering())) {
|
|
FenceOrdering = LI->getOrdering();
|
|
LI->setOrdering(AtomicOrdering::Monotonic);
|
|
} else if (SI && isReleaseOrStronger(SI->getOrdering())) {
|
|
FenceOrdering = SI->getOrdering();
|
|
SI->setOrdering(AtomicOrdering::Monotonic);
|
|
} else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
|
|
isAcquireOrStronger(RMWI->getOrdering()))) {
|
|
FenceOrdering = RMWI->getOrdering();
|
|
RMWI->setOrdering(AtomicOrdering::Monotonic);
|
|
} else if (CASI &&
|
|
TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
|
|
TargetLoweringBase::AtomicExpansionKind::None &&
|
|
(isReleaseOrStronger(CASI->getSuccessOrdering()) ||
|
|
isAcquireOrStronger(CASI->getSuccessOrdering()))) {
|
|
// If a compare and swap is lowered to LL/SC, we can do smarter fence
|
|
// insertion, with a stronger one on the success path than on the
|
|
// failure path. As a result, fence insertion is directly done by
|
|
// expandAtomicCmpXchg in that case.
|
|
FenceOrdering = CASI->getSuccessOrdering();
|
|
CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
|
|
CASI->setFailureOrdering(AtomicOrdering::Monotonic);
|
|
}
|
|
|
|
if (FenceOrdering != AtomicOrdering::Monotonic) {
|
|
MadeChange |= bracketInstWithFences(I, FenceOrdering);
|
|
}
|
|
}
|
|
|
|
if (LI) {
|
|
if (LI->getType()->isFloatingPointTy()) {
|
|
// TODO: add a TLI hook to control this so that each target can
|
|
// convert to lowering the original type one at a time.
|
|
LI = convertAtomicLoadToIntegerType(LI);
|
|
assert(LI->getType()->isIntegerTy() && "invariant broken");
|
|
MadeChange = true;
|
|
}
|
|
|
|
MadeChange |= tryExpandAtomicLoad(LI);
|
|
} else if (SI) {
|
|
if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
|
|
// TODO: add a TLI hook to control this so that each target can
|
|
// convert to lowering the original type one at a time.
|
|
SI = convertAtomicStoreToIntegerType(SI);
|
|
assert(SI->getValueOperand()->getType()->isIntegerTy() &&
|
|
"invariant broken");
|
|
MadeChange = true;
|
|
}
|
|
|
|
if (TLI->shouldExpandAtomicStoreInIR(SI))
|
|
MadeChange |= expandAtomicStore(SI);
|
|
} else if (RMWI) {
|
|
// There are two different ways of expanding RMW instructions:
|
|
// - into a load if it is idempotent
|
|
// - into a Cmpxchg/LL-SC loop otherwise
|
|
// we try them in that order.
|
|
|
|
if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
|
|
MadeChange = true;
|
|
} else {
|
|
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
|
|
unsigned ValueSize = getAtomicOpSize(RMWI);
|
|
AtomicRMWInst::BinOp Op = RMWI->getOperation();
|
|
if (ValueSize < MinCASSize &&
|
|
(Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
|
|
Op == AtomicRMWInst::And)) {
|
|
RMWI = widenPartwordAtomicRMW(RMWI);
|
|
MadeChange = true;
|
|
}
|
|
|
|
MadeChange |= tryExpandAtomicRMW(RMWI);
|
|
}
|
|
} else if (CASI) {
|
|
// TODO: when we're ready to make the change at the IR level, we can
|
|
// extend convertCmpXchgToInteger for floating point too.
|
|
assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
|
|
"unimplemented - floating point not legal at IR level");
|
|
if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
|
|
// TODO: add a TLI hook to control this so that each target can
|
|
// convert to lowering the original type one at a time.
|
|
CASI = convertCmpXchgToIntegerType(CASI);
|
|
assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
|
|
"invariant broken");
|
|
MadeChange = true;
|
|
}
|
|
|
|
MadeChange |= tryExpandAtomicCmpXchg(CASI);
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
|
|
IRBuilder<> Builder(I);
|
|
|
|
auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
|
|
|
|
auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
|
|
// We have a guard here because not every atomic operation generates a
|
|
// trailing fence.
|
|
if (TrailingFence)
|
|
TrailingFence->moveAfter(I);
|
|
|
|
return (LeadingFence || TrailingFence);
|
|
}
|
|
|
|
/// Get the iX type with the same bitwidth as T.
|
|
IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
|
|
const DataLayout &DL) {
|
|
EVT VT = TLI->getValueType(DL, T);
|
|
unsigned BitWidth = VT.getStoreSizeInBits();
|
|
assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
|
|
return IntegerType::get(T->getContext(), BitWidth);
|
|
}
|
|
|
|
/// Convert an atomic load of a non-integral type to an integer load of the
|
|
/// equivalent bitwidth. See the function comment on
|
|
/// convertAtomicStoreToIntegerType for background.
|
|
LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
|
|
auto *M = LI->getModule();
|
|
Type *NewTy = getCorrespondingIntegerType(LI->getType(),
|
|
M->getDataLayout());
|
|
|
|
IRBuilder<> Builder(LI);
|
|
|
|
Value *Addr = LI->getPointerOperand();
|
|
Type *PT = PointerType::get(NewTy,
|
|
Addr->getType()->getPointerAddressSpace());
|
|
Value *NewAddr = Builder.CreateBitCast(Addr, PT);
|
|
|
|
auto *NewLI = Builder.CreateLoad(NewAddr);
|
|
NewLI->setAlignment(LI->getAlignment());
|
|
NewLI->setVolatile(LI->isVolatile());
|
|
NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
|
|
LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
|
|
|
|
Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
|
|
LI->replaceAllUsesWith(NewVal);
|
|
LI->eraseFromParent();
|
|
return NewLI;
|
|
}
|
|
|
|
bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
|
|
switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
|
|
case TargetLoweringBase::AtomicExpansionKind::None:
|
|
return false;
|
|
case TargetLoweringBase::AtomicExpansionKind::LLSC:
|
|
expandAtomicOpToLLSC(
|
|
LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
|
|
[](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
|
|
return true;
|
|
case TargetLoweringBase::AtomicExpansionKind::LLOnly:
|
|
return expandAtomicLoadToLL(LI);
|
|
case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
|
|
return expandAtomicLoadToCmpXchg(LI);
|
|
default:
|
|
llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
|
|
}
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
|
|
IRBuilder<> Builder(LI);
|
|
|
|
// On some architectures, load-linked instructions are atomic for larger
|
|
// sizes than normal loads. For example, the only 64-bit load guaranteed
|
|
// to be single-copy atomic by ARM is an ldrexd (A3.5.3).
|
|
Value *Val =
|
|
TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
|
|
TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
|
|
|
|
LI->replaceAllUsesWith(Val);
|
|
LI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
|
|
IRBuilder<> Builder(LI);
|
|
AtomicOrdering Order = LI->getOrdering();
|
|
Value *Addr = LI->getPointerOperand();
|
|
Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
|
|
Constant *DummyVal = Constant::getNullValue(Ty);
|
|
|
|
Value *Pair = Builder.CreateAtomicCmpXchg(
|
|
Addr, DummyVal, DummyVal, Order,
|
|
AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
|
|
Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
|
|
|
|
LI->replaceAllUsesWith(Loaded);
|
|
LI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Convert an atomic store of a non-integral type to an integer store of the
|
|
/// equivalent bitwidth. We used to not support floating point or vector
|
|
/// atomics in the IR at all. The backends learned to deal with the bitcast
|
|
/// idiom because that was the only way of expressing the notion of a atomic
|
|
/// float or vector store. The long term plan is to teach each backend to
|
|
/// instruction select from the original atomic store, but as a migration
|
|
/// mechanism, we convert back to the old format which the backends understand.
|
|
/// Each backend will need individual work to recognize the new format.
|
|
StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
|
|
IRBuilder<> Builder(SI);
|
|
auto *M = SI->getModule();
|
|
Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
|
|
M->getDataLayout());
|
|
Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
|
|
|
|
Value *Addr = SI->getPointerOperand();
|
|
Type *PT = PointerType::get(NewTy,
|
|
Addr->getType()->getPointerAddressSpace());
|
|
Value *NewAddr = Builder.CreateBitCast(Addr, PT);
|
|
|
|
StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
|
|
NewSI->setAlignment(SI->getAlignment());
|
|
NewSI->setVolatile(SI->isVolatile());
|
|
NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
|
|
LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
|
|
SI->eraseFromParent();
|
|
return NewSI;
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
|
|
// This function is only called on atomic stores that are too large to be
|
|
// atomic if implemented as a native store. So we replace them by an
|
|
// atomic swap, that can be implemented for example as a ldrex/strex on ARM
|
|
// or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
|
|
// It is the responsibility of the target to only signal expansion via
|
|
// shouldExpandAtomicRMW in cases where this is required and possible.
|
|
IRBuilder<> Builder(SI);
|
|
AtomicRMWInst *AI =
|
|
Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
|
|
SI->getValueOperand(), SI->getOrdering());
|
|
SI->eraseFromParent();
|
|
|
|
// Now we have an appropriate swap instruction, lower it as usual.
|
|
return tryExpandAtomicRMW(AI);
|
|
}
|
|
|
|
static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
|
|
Value *Loaded, Value *NewVal,
|
|
AtomicOrdering MemOpOrder,
|
|
Value *&Success, Value *&NewLoaded) {
|
|
Value* Pair = Builder.CreateAtomicCmpXchg(
|
|
Addr, Loaded, NewVal, MemOpOrder,
|
|
AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
|
|
Success = Builder.CreateExtractValue(Pair, 1, "success");
|
|
NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
|
|
}
|
|
|
|
/// Emit IR to implement the given atomicrmw operation on values in registers,
|
|
/// returning the new value.
|
|
static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
|
|
Value *Loaded, Value *Inc) {
|
|
Value *NewVal;
|
|
switch (Op) {
|
|
case AtomicRMWInst::Xchg:
|
|
return Inc;
|
|
case AtomicRMWInst::Add:
|
|
return Builder.CreateAdd(Loaded, Inc, "new");
|
|
case AtomicRMWInst::Sub:
|
|
return Builder.CreateSub(Loaded, Inc, "new");
|
|
case AtomicRMWInst::And:
|
|
return Builder.CreateAnd(Loaded, Inc, "new");
|
|
case AtomicRMWInst::Nand:
|
|
return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
|
|
case AtomicRMWInst::Or:
|
|
return Builder.CreateOr(Loaded, Inc, "new");
|
|
case AtomicRMWInst::Xor:
|
|
return Builder.CreateXor(Loaded, Inc, "new");
|
|
case AtomicRMWInst::Max:
|
|
NewVal = Builder.CreateICmpSGT(Loaded, Inc);
|
|
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
|
|
case AtomicRMWInst::Min:
|
|
NewVal = Builder.CreateICmpSLE(Loaded, Inc);
|
|
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
|
|
case AtomicRMWInst::UMax:
|
|
NewVal = Builder.CreateICmpUGT(Loaded, Inc);
|
|
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
|
|
case AtomicRMWInst::UMin:
|
|
NewVal = Builder.CreateICmpULE(Loaded, Inc);
|
|
return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
|
|
default:
|
|
llvm_unreachable("Unknown atomic op");
|
|
}
|
|
}
|
|
|
|
bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
|
|
switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
|
|
case TargetLoweringBase::AtomicExpansionKind::None:
|
|
return false;
|
|
case TargetLoweringBase::AtomicExpansionKind::LLSC: {
|
|
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
|
|
unsigned ValueSize = getAtomicOpSize(AI);
|
|
if (ValueSize < MinCASSize) {
|
|
llvm_unreachable(
|
|
"MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
|
|
} else {
|
|
auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
|
|
return performAtomicOp(AI->getOperation(), Builder, Loaded,
|
|
AI->getValOperand());
|
|
};
|
|
expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
|
|
AI->getOrdering(), PerformOp);
|
|
}
|
|
return true;
|
|
}
|
|
case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
|
|
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
|
|
unsigned ValueSize = getAtomicOpSize(AI);
|
|
if (ValueSize < MinCASSize) {
|
|
expandPartwordAtomicRMW(AI,
|
|
TargetLoweringBase::AtomicExpansionKind::CmpXChg);
|
|
} else {
|
|
expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
|
|
}
|
|
return true;
|
|
}
|
|
case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
|
|
expandAtomicRMWToMaskedIntrinsic(AI);
|
|
return true;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Result values from createMaskInstrs helper.
|
|
struct PartwordMaskValues {
|
|
Type *WordType;
|
|
Type *ValueType;
|
|
Value *AlignedAddr;
|
|
Value *ShiftAmt;
|
|
Value *Mask;
|
|
Value *Inv_Mask;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// This is a helper function which builds instructions to provide
|
|
/// values necessary for partword atomic operations. It takes an
|
|
/// incoming address, Addr, and ValueType, and constructs the address,
|
|
/// shift-amounts and masks needed to work with a larger value of size
|
|
/// WordSize.
|
|
///
|
|
/// AlignedAddr: Addr rounded down to a multiple of WordSize
|
|
///
|
|
/// ShiftAmt: Number of bits to right-shift a WordSize value loaded
|
|
/// from AlignAddr for it to have the same value as if
|
|
/// ValueType was loaded from Addr.
|
|
///
|
|
/// Mask: Value to mask with the value loaded from AlignAddr to
|
|
/// include only the part that would've been loaded from Addr.
|
|
///
|
|
/// Inv_Mask: The inverse of Mask.
|
|
static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
|
|
Type *ValueType, Value *Addr,
|
|
unsigned WordSize) {
|
|
PartwordMaskValues Ret;
|
|
|
|
BasicBlock *BB = I->getParent();
|
|
Function *F = BB->getParent();
|
|
Module *M = I->getModule();
|
|
|
|
LLVMContext &Ctx = F->getContext();
|
|
const DataLayout &DL = M->getDataLayout();
|
|
|
|
unsigned ValueSize = DL.getTypeStoreSize(ValueType);
|
|
|
|
assert(ValueSize < WordSize);
|
|
|
|
Ret.ValueType = ValueType;
|
|
Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8);
|
|
|
|
Type *WordPtrType =
|
|
Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
|
|
|
|
Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
|
|
Ret.AlignedAddr = Builder.CreateIntToPtr(
|
|
Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType,
|
|
"AlignedAddr");
|
|
|
|
Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB");
|
|
if (DL.isLittleEndian()) {
|
|
// turn bytes into bits
|
|
Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
|
|
} else {
|
|
// turn bytes into bits, and count from the other side.
|
|
Ret.ShiftAmt =
|
|
Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3);
|
|
}
|
|
|
|
Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt");
|
|
Ret.Mask = Builder.CreateShl(
|
|
ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt,
|
|
"Mask");
|
|
Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask");
|
|
|
|
return Ret;
|
|
}
|
|
|
|
/// Emit IR to implement a masked version of a given atomicrmw
|
|
/// operation. (That is, only the bits under the Mask should be
|
|
/// affected by the operation)
|
|
static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
|
|
IRBuilder<> &Builder, Value *Loaded,
|
|
Value *Shifted_Inc, Value *Inc,
|
|
const PartwordMaskValues &PMV) {
|
|
// TODO: update to use
|
|
// https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
|
|
// to merge bits from two values without requiring PMV.Inv_Mask.
|
|
switch (Op) {
|
|
case AtomicRMWInst::Xchg: {
|
|
Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
|
|
Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
|
|
return FinalVal;
|
|
}
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Xor:
|
|
case AtomicRMWInst::And:
|
|
llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
case AtomicRMWInst::Nand: {
|
|
// The other arithmetic ops need to be masked into place.
|
|
Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
|
|
Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
|
|
Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
|
|
Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
|
|
return FinalVal;
|
|
}
|
|
case AtomicRMWInst::Max:
|
|
case AtomicRMWInst::Min:
|
|
case AtomicRMWInst::UMax:
|
|
case AtomicRMWInst::UMin: {
|
|
// Finally, comparison ops will operate on the full value, so
|
|
// truncate down to the original size, and expand out again after
|
|
// doing the operation.
|
|
Value *Loaded_Shiftdown = Builder.CreateTrunc(
|
|
Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType);
|
|
Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc);
|
|
Value *NewVal_Shiftup = Builder.CreateShl(
|
|
Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
|
|
Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
|
|
Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup);
|
|
return FinalVal;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unknown atomic op");
|
|
}
|
|
}
|
|
|
|
/// Expand a sub-word atomicrmw operation into an appropriate
|
|
/// word-sized operation.
|
|
///
|
|
/// It will create an LL/SC or cmpxchg loop, as appropriate, the same
|
|
/// way as a typical atomicrmw expansion. The only difference here is
|
|
/// that the operation inside of the loop must operate only upon a
|
|
/// part of the value.
|
|
void AtomicExpand::expandPartwordAtomicRMW(
|
|
AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
|
|
assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg);
|
|
|
|
AtomicOrdering MemOpOrder = AI->getOrdering();
|
|
|
|
IRBuilder<> Builder(AI);
|
|
|
|
PartwordMaskValues PMV =
|
|
createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
|
|
TLI->getMinCmpXchgSizeInBits() / 8);
|
|
|
|
Value *ValOperand_Shifted =
|
|
Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
|
|
PMV.ShiftAmt, "ValOperand_Shifted");
|
|
|
|
auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
|
|
return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
|
|
ValOperand_Shifted, AI->getValOperand(), PMV);
|
|
};
|
|
|
|
// TODO: When we're ready to support LLSC conversions too, use
|
|
// insertRMWLLSCLoop here for ExpansionKind==LLSC.
|
|
Value *OldResult =
|
|
insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
|
|
PerformPartwordOp, createCmpXchgInstFun);
|
|
Value *FinalOldResult = Builder.CreateTrunc(
|
|
Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
|
|
AI->replaceAllUsesWith(FinalOldResult);
|
|
AI->eraseFromParent();
|
|
}
|
|
|
|
// Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
|
|
AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
|
|
IRBuilder<> Builder(AI);
|
|
AtomicRMWInst::BinOp Op = AI->getOperation();
|
|
|
|
assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
|
|
Op == AtomicRMWInst::And) &&
|
|
"Unable to widen operation");
|
|
|
|
PartwordMaskValues PMV =
|
|
createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
|
|
TLI->getMinCmpXchgSizeInBits() / 8);
|
|
|
|
Value *ValOperand_Shifted =
|
|
Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
|
|
PMV.ShiftAmt, "ValOperand_Shifted");
|
|
|
|
Value *NewOperand;
|
|
|
|
if (Op == AtomicRMWInst::And)
|
|
NewOperand =
|
|
Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
|
|
else
|
|
NewOperand = ValOperand_Shifted;
|
|
|
|
AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
|
|
NewOperand, AI->getOrdering());
|
|
|
|
Value *FinalOldResult = Builder.CreateTrunc(
|
|
Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType);
|
|
AI->replaceAllUsesWith(FinalOldResult);
|
|
AI->eraseFromParent();
|
|
return NewAI;
|
|
}
|
|
|
|
void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
|
|
// The basic idea here is that we're expanding a cmpxchg of a
|
|
// smaller memory size up to a word-sized cmpxchg. To do this, we
|
|
// need to add a retry-loop for strong cmpxchg, so that
|
|
// modifications to other parts of the word don't cause a spurious
|
|
// failure.
|
|
|
|
// This generates code like the following:
|
|
// [[Setup mask values PMV.*]]
|
|
// %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
|
|
// %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
|
|
// %InitLoaded = load i32* %addr
|
|
// %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
|
|
// br partword.cmpxchg.loop
|
|
// partword.cmpxchg.loop:
|
|
// %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
|
|
// [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
|
|
// %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
|
|
// %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
|
|
// %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
|
|
// i32 %FullWord_NewVal success_ordering failure_ordering
|
|
// %OldVal = extractvalue { i32, i1 } %NewCI, 0
|
|
// %Success = extractvalue { i32, i1 } %NewCI, 1
|
|
// br i1 %Success, label %partword.cmpxchg.end,
|
|
// label %partword.cmpxchg.failure
|
|
// partword.cmpxchg.failure:
|
|
// %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
|
|
// %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
|
|
// br i1 %ShouldContinue, label %partword.cmpxchg.loop,
|
|
// label %partword.cmpxchg.end
|
|
// partword.cmpxchg.end:
|
|
// %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
|
|
// %FinalOldVal = trunc i32 %tmp1 to i8
|
|
// %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
|
|
// %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
|
|
|
|
Value *Addr = CI->getPointerOperand();
|
|
Value *Cmp = CI->getCompareOperand();
|
|
Value *NewVal = CI->getNewValOperand();
|
|
|
|
BasicBlock *BB = CI->getParent();
|
|
Function *F = BB->getParent();
|
|
IRBuilder<> Builder(CI);
|
|
LLVMContext &Ctx = Builder.getContext();
|
|
|
|
const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
|
|
|
|
BasicBlock *EndBB =
|
|
BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
|
|
auto FailureBB =
|
|
BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
|
|
auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB
|
|
// (to the wrong place).
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
|
|
PartwordMaskValues PMV = createMaskInstrs(
|
|
Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
|
|
|
|
// Shift the incoming values over, into the right location in the word.
|
|
Value *NewVal_Shifted =
|
|
Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
|
|
Value *Cmp_Shifted =
|
|
Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
|
|
|
|
// Load the entire current word, and mask into place the expected and new
|
|
// values
|
|
LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
|
|
InitLoaded->setVolatile(CI->isVolatile());
|
|
Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// partword.cmpxchg.loop:
|
|
Builder.SetInsertPoint(LoopBB);
|
|
PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
|
|
Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
|
|
|
|
// Mask/Or the expected and new values into place in the loaded word.
|
|
Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
|
|
Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
|
|
AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
|
|
PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
|
|
CI->getFailureOrdering(), CI->getSyncScopeID());
|
|
NewCI->setVolatile(CI->isVolatile());
|
|
// When we're building a strong cmpxchg, we need a loop, so you
|
|
// might think we could use a weak cmpxchg inside. But, using strong
|
|
// allows the below comparison for ShouldContinue, and we're
|
|
// expecting the underlying cmpxchg to be a machine instruction,
|
|
// which is strong anyways.
|
|
NewCI->setWeak(CI->isWeak());
|
|
|
|
Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
|
|
Value *Success = Builder.CreateExtractValue(NewCI, 1);
|
|
|
|
if (CI->isWeak())
|
|
Builder.CreateBr(EndBB);
|
|
else
|
|
Builder.CreateCondBr(Success, EndBB, FailureBB);
|
|
|
|
// partword.cmpxchg.failure:
|
|
Builder.SetInsertPoint(FailureBB);
|
|
// Upon failure, verify that the masked-out part of the loaded value
|
|
// has been modified. If it didn't, abort the cmpxchg, since the
|
|
// masked-in part must've.
|
|
Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
|
|
Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
|
|
Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
|
|
|
|
// Add the second value to the phi from above
|
|
Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
|
|
|
|
// partword.cmpxchg.end:
|
|
Builder.SetInsertPoint(CI);
|
|
|
|
Value *FinalOldVal = Builder.CreateTrunc(
|
|
Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
|
|
Value *Res = UndefValue::get(CI->getType());
|
|
Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
|
|
Res = Builder.CreateInsertValue(Res, Success, 1);
|
|
|
|
CI->replaceAllUsesWith(Res);
|
|
CI->eraseFromParent();
|
|
}
|
|
|
|
void AtomicExpand::expandAtomicOpToLLSC(
|
|
Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
|
|
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
|
|
IRBuilder<> Builder(I);
|
|
Value *Loaded =
|
|
insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
|
|
|
|
I->replaceAllUsesWith(Loaded);
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
|
|
IRBuilder<> Builder(AI);
|
|
|
|
PartwordMaskValues PMV =
|
|
createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
|
|
TLI->getMinCmpXchgSizeInBits() / 8);
|
|
|
|
// The value operand must be sign-extended for signed min/max so that the
|
|
// target's signed comparison instructions can be used. Otherwise, just
|
|
// zero-ext.
|
|
Instruction::CastOps CastOp = Instruction::ZExt;
|
|
AtomicRMWInst::BinOp RMWOp = AI->getOperation();
|
|
if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
|
|
CastOp = Instruction::SExt;
|
|
|
|
Value *ValOperand_Shifted = Builder.CreateShl(
|
|
Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
|
|
PMV.ShiftAmt, "ValOperand_Shifted");
|
|
Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
|
|
Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
|
|
AI->getOrdering());
|
|
Value *FinalOldResult = Builder.CreateTrunc(
|
|
Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
|
|
AI->replaceAllUsesWith(FinalOldResult);
|
|
AI->eraseFromParent();
|
|
}
|
|
|
|
void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
|
|
IRBuilder<> Builder(CI);
|
|
|
|
PartwordMaskValues PMV = createMaskInstrs(
|
|
Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
|
|
TLI->getMinCmpXchgSizeInBits() / 8);
|
|
|
|
Value *CmpVal_Shifted = Builder.CreateShl(
|
|
Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
|
|
"CmpVal_Shifted");
|
|
Value *NewVal_Shifted = Builder.CreateShl(
|
|
Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
|
|
"NewVal_Shifted");
|
|
Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
|
|
Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
|
|
CI->getSuccessOrdering());
|
|
Value *FinalOldVal = Builder.CreateTrunc(
|
|
Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
|
|
|
|
Value *Res = UndefValue::get(CI->getType());
|
|
Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
|
|
Value *Success = Builder.CreateICmpEQ(
|
|
CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
|
|
Res = Builder.CreateInsertValue(Res, Success, 1);
|
|
|
|
CI->replaceAllUsesWith(Res);
|
|
CI->eraseFromParent();
|
|
}
|
|
|
|
Value *AtomicExpand::insertRMWLLSCLoop(
|
|
IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
|
|
AtomicOrdering MemOpOrder,
|
|
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
|
|
LLVMContext &Ctx = Builder.getContext();
|
|
BasicBlock *BB = Builder.GetInsertBlock();
|
|
Function *F = BB->getParent();
|
|
|
|
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
|
|
//
|
|
// The standard expansion we produce is:
|
|
// [...]
|
|
// atomicrmw.start:
|
|
// %loaded = @load.linked(%addr)
|
|
// %new = some_op iN %loaded, %incr
|
|
// %stored = @store_conditional(%new, %addr)
|
|
// %try_again = icmp i32 ne %stored, 0
|
|
// br i1 %try_again, label %loop, label %atomicrmw.end
|
|
// atomicrmw.end:
|
|
// [...]
|
|
BasicBlock *ExitBB =
|
|
BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
|
|
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB (to the
|
|
// wrong place).
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start the main loop block now that we've taken care of the preliminaries.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
|
|
|
|
Value *NewVal = PerformOp(Builder, Loaded);
|
|
|
|
Value *StoreSuccess =
|
|
TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
|
|
Value *TryAgain = Builder.CreateICmpNE(
|
|
StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
|
|
Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
|
|
|
|
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
|
|
return Loaded;
|
|
}
|
|
|
|
/// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
|
|
/// the equivalent bitwidth. We used to not support pointer cmpxchg in the
|
|
/// IR. As a migration step, we convert back to what use to be the standard
|
|
/// way to represent a pointer cmpxchg so that we can update backends one by
|
|
/// one.
|
|
AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
|
|
auto *M = CI->getModule();
|
|
Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
|
|
M->getDataLayout());
|
|
|
|
IRBuilder<> Builder(CI);
|
|
|
|
Value *Addr = CI->getPointerOperand();
|
|
Type *PT = PointerType::get(NewTy,
|
|
Addr->getType()->getPointerAddressSpace());
|
|
Value *NewAddr = Builder.CreateBitCast(Addr, PT);
|
|
|
|
Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
|
|
Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
|
|
|
|
|
|
auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
|
|
CI->getSuccessOrdering(),
|
|
CI->getFailureOrdering(),
|
|
CI->getSyncScopeID());
|
|
NewCI->setVolatile(CI->isVolatile());
|
|
NewCI->setWeak(CI->isWeak());
|
|
LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
|
|
|
|
Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
|
|
Value *Succ = Builder.CreateExtractValue(NewCI, 1);
|
|
|
|
OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
|
|
|
|
Value *Res = UndefValue::get(CI->getType());
|
|
Res = Builder.CreateInsertValue(Res, OldVal, 0);
|
|
Res = Builder.CreateInsertValue(Res, Succ, 1);
|
|
|
|
CI->replaceAllUsesWith(Res);
|
|
CI->eraseFromParent();
|
|
return NewCI;
|
|
}
|
|
|
|
bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
|
|
AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
|
|
AtomicOrdering FailureOrder = CI->getFailureOrdering();
|
|
Value *Addr = CI->getPointerOperand();
|
|
BasicBlock *BB = CI->getParent();
|
|
Function *F = BB->getParent();
|
|
LLVMContext &Ctx = F->getContext();
|
|
// If shouldInsertFencesForAtomic() returns true, then the target does not
|
|
// want to deal with memory orders, and emitLeading/TrailingFence should take
|
|
// care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
|
|
// should preserve the ordering.
|
|
bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
|
|
AtomicOrdering MemOpOrder =
|
|
ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
|
|
|
|
// In implementations which use a barrier to achieve release semantics, we can
|
|
// delay emitting this barrier until we know a store is actually going to be
|
|
// attempted. The cost of this delay is that we need 2 copies of the block
|
|
// emitting the load-linked, affecting code size.
|
|
//
|
|
// Ideally, this logic would be unconditional except for the minsize check
|
|
// since in other cases the extra blocks naturally collapse down to the
|
|
// minimal loop. Unfortunately, this puts too much stress on later
|
|
// optimisations so we avoid emitting the extra logic in those cases too.
|
|
bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
|
|
SuccessOrder != AtomicOrdering::Monotonic &&
|
|
SuccessOrder != AtomicOrdering::Acquire &&
|
|
!F->optForMinSize();
|
|
|
|
// There's no overhead for sinking the release barrier in a weak cmpxchg, so
|
|
// do it even on minsize.
|
|
bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak();
|
|
|
|
// Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
|
|
//
|
|
// The full expansion we produce is:
|
|
// [...]
|
|
// cmpxchg.start:
|
|
// %unreleasedload = @load.linked(%addr)
|
|
// %should_store = icmp eq %unreleasedload, %desired
|
|
// br i1 %should_store, label %cmpxchg.fencedstore,
|
|
// label %cmpxchg.nostore
|
|
// cmpxchg.releasingstore:
|
|
// fence?
|
|
// br label cmpxchg.trystore
|
|
// cmpxchg.trystore:
|
|
// %loaded.trystore = phi [%unreleasedload, %releasingstore],
|
|
// [%releasedload, %cmpxchg.releasedload]
|
|
// %stored = @store_conditional(%new, %addr)
|
|
// %success = icmp eq i32 %stored, 0
|
|
// br i1 %success, label %cmpxchg.success,
|
|
// label %cmpxchg.releasedload/%cmpxchg.failure
|
|
// cmpxchg.releasedload:
|
|
// %releasedload = @load.linked(%addr)
|
|
// %should_store = icmp eq %releasedload, %desired
|
|
// br i1 %should_store, label %cmpxchg.trystore,
|
|
// label %cmpxchg.failure
|
|
// cmpxchg.success:
|
|
// fence?
|
|
// br label %cmpxchg.end
|
|
// cmpxchg.nostore:
|
|
// %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
|
|
// [%releasedload,
|
|
// %cmpxchg.releasedload/%cmpxchg.trystore]
|
|
// @load_linked_fail_balance()?
|
|
// br label %cmpxchg.failure
|
|
// cmpxchg.failure:
|
|
// fence?
|
|
// br label %cmpxchg.end
|
|
// cmpxchg.end:
|
|
// %loaded = phi [%loaded.nostore, %cmpxchg.failure],
|
|
// [%loaded.trystore, %cmpxchg.trystore]
|
|
// %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
|
|
// %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
|
|
// %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
|
|
// [...]
|
|
BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
|
|
auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
|
|
auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
|
|
auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
|
|
auto ReleasedLoadBB =
|
|
BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
|
|
auto TryStoreBB =
|
|
BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
|
|
auto ReleasingStoreBB =
|
|
BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
|
|
auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
|
|
|
|
// This grabs the DebugLoc from CI
|
|
IRBuilder<> Builder(CI);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB (to the
|
|
// wrong place), but we might want a fence too. It's easiest to just remove
|
|
// the branch entirely.
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
|
|
TLI->emitLeadingFence(Builder, CI, SuccessOrder);
|
|
Builder.CreateBr(StartBB);
|
|
|
|
// Start the main loop block now that we've taken care of the preliminaries.
|
|
Builder.SetInsertPoint(StartBB);
|
|
Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
|
|
Value *ShouldStore = Builder.CreateICmpEQ(
|
|
UnreleasedLoad, CI->getCompareOperand(), "should_store");
|
|
|
|
// If the cmpxchg doesn't actually need any ordering when it fails, we can
|
|
// jump straight past that fence instruction (if it exists).
|
|
Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
|
|
|
|
Builder.SetInsertPoint(ReleasingStoreBB);
|
|
if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
|
|
TLI->emitLeadingFence(Builder, CI, SuccessOrder);
|
|
Builder.CreateBr(TryStoreBB);
|
|
|
|
Builder.SetInsertPoint(TryStoreBB);
|
|
Value *StoreSuccess = TLI->emitStoreConditional(
|
|
Builder, CI->getNewValOperand(), Addr, MemOpOrder);
|
|
StoreSuccess = Builder.CreateICmpEQ(
|
|
StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
|
|
BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
|
|
Builder.CreateCondBr(StoreSuccess, SuccessBB,
|
|
CI->isWeak() ? FailureBB : RetryBB);
|
|
|
|
Builder.SetInsertPoint(ReleasedLoadBB);
|
|
Value *SecondLoad;
|
|
if (HasReleasedLoadBB) {
|
|
SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
|
|
ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(),
|
|
"should_store");
|
|
|
|
// If the cmpxchg doesn't actually need any ordering when it fails, we can
|
|
// jump straight past that fence instruction (if it exists).
|
|
Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
|
|
} else
|
|
Builder.CreateUnreachable();
|
|
|
|
// Make sure later instructions don't get reordered with a fence if
|
|
// necessary.
|
|
Builder.SetInsertPoint(SuccessBB);
|
|
if (ShouldInsertFencesForAtomic)
|
|
TLI->emitTrailingFence(Builder, CI, SuccessOrder);
|
|
Builder.CreateBr(ExitBB);
|
|
|
|
Builder.SetInsertPoint(NoStoreBB);
|
|
// In the failing case, where we don't execute the store-conditional, the
|
|
// target might want to balance out the load-linked with a dedicated
|
|
// instruction (e.g., on ARM, clearing the exclusive monitor).
|
|
TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
|
|
Builder.CreateBr(FailureBB);
|
|
|
|
Builder.SetInsertPoint(FailureBB);
|
|
if (ShouldInsertFencesForAtomic)
|
|
TLI->emitTrailingFence(Builder, CI, FailureOrder);
|
|
Builder.CreateBr(ExitBB);
|
|
|
|
// Finally, we have control-flow based knowledge of whether the cmpxchg
|
|
// succeeded or not. We expose this to later passes by converting any
|
|
// subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
|
|
// PHI.
|
|
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
|
|
PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
|
|
Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
|
|
Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
|
|
|
|
// Setup the builder so we can create any PHIs we need.
|
|
Value *Loaded;
|
|
if (!HasReleasedLoadBB)
|
|
Loaded = UnreleasedLoad;
|
|
else {
|
|
Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin());
|
|
PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
|
|
TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB);
|
|
TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
|
|
|
|
Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin());
|
|
PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
|
|
NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB);
|
|
NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
|
|
|
|
Builder.SetInsertPoint(ExitBB, ++ExitBB->begin());
|
|
PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
|
|
ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB);
|
|
ExitLoaded->addIncoming(NoStoreLoaded, FailureBB);
|
|
|
|
Loaded = ExitLoaded;
|
|
}
|
|
|
|
// Look for any users of the cmpxchg that are just comparing the loaded value
|
|
// against the desired one, and replace them with the CFG-derived version.
|
|
SmallVector<ExtractValueInst *, 2> PrunedInsts;
|
|
for (auto User : CI->users()) {
|
|
ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
|
|
if (!EV)
|
|
continue;
|
|
|
|
assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
|
|
"weird extraction from { iN, i1 }");
|
|
|
|
if (EV->getIndices()[0] == 0)
|
|
EV->replaceAllUsesWith(Loaded);
|
|
else
|
|
EV->replaceAllUsesWith(Success);
|
|
|
|
PrunedInsts.push_back(EV);
|
|
}
|
|
|
|
// We can remove the instructions now we're no longer iterating through them.
|
|
for (auto EV : PrunedInsts)
|
|
EV->eraseFromParent();
|
|
|
|
if (!CI->use_empty()) {
|
|
// Some use of the full struct return that we don't understand has happened,
|
|
// so we've got to reconstruct it properly.
|
|
Value *Res;
|
|
Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
|
|
Res = Builder.CreateInsertValue(Res, Success, 1);
|
|
|
|
CI->replaceAllUsesWith(Res);
|
|
}
|
|
|
|
CI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
|
|
auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
|
|
if(!C)
|
|
return false;
|
|
|
|
AtomicRMWInst::BinOp Op = RMWI->getOperation();
|
|
switch(Op) {
|
|
case AtomicRMWInst::Add:
|
|
case AtomicRMWInst::Sub:
|
|
case AtomicRMWInst::Or:
|
|
case AtomicRMWInst::Xor:
|
|
return C->isZero();
|
|
case AtomicRMWInst::And:
|
|
return C->isMinusOne();
|
|
// FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
|
|
if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
|
|
tryExpandAtomicLoad(ResultingLoad);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Value *AtomicExpand::insertRMWCmpXchgLoop(
|
|
IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
|
|
AtomicOrdering MemOpOrder,
|
|
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
|
|
CreateCmpXchgInstFun CreateCmpXchg) {
|
|
LLVMContext &Ctx = Builder.getContext();
|
|
BasicBlock *BB = Builder.GetInsertBlock();
|
|
Function *F = BB->getParent();
|
|
|
|
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
|
|
//
|
|
// The standard expansion we produce is:
|
|
// [...]
|
|
// %init_loaded = load atomic iN* %addr
|
|
// br label %loop
|
|
// loop:
|
|
// %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
|
|
// %new = some_op iN %loaded, %incr
|
|
// %pair = cmpxchg iN* %addr, iN %loaded, iN %new
|
|
// %new_loaded = extractvalue { iN, i1 } %pair, 0
|
|
// %success = extractvalue { iN, i1 } %pair, 1
|
|
// br i1 %success, label %atomicrmw.end, label %loop
|
|
// atomicrmw.end:
|
|
// [...]
|
|
BasicBlock *ExitBB =
|
|
BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
|
|
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB (to the
|
|
// wrong place), but we want a load. It's easiest to just remove
|
|
// the branch entirely.
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
|
|
// Atomics require at least natural alignment.
|
|
InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8);
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start the main loop block now that we've taken care of the preliminaries.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
|
|
Loaded->addIncoming(InitLoaded, BB);
|
|
|
|
Value *NewVal = PerformOp(Builder, Loaded);
|
|
|
|
Value *NewLoaded = nullptr;
|
|
Value *Success = nullptr;
|
|
|
|
CreateCmpXchg(Builder, Addr, Loaded, NewVal,
|
|
MemOpOrder == AtomicOrdering::Unordered
|
|
? AtomicOrdering::Monotonic
|
|
: MemOpOrder,
|
|
Success, NewLoaded);
|
|
assert(Success && NewLoaded);
|
|
|
|
Loaded->addIncoming(NewLoaded, LoopBB);
|
|
|
|
Builder.CreateCondBr(Success, ExitBB, LoopBB);
|
|
|
|
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
|
|
return NewLoaded;
|
|
}
|
|
|
|
bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
|
|
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
|
|
unsigned ValueSize = getAtomicOpSize(CI);
|
|
|
|
switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
|
|
default:
|
|
llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
|
|
case TargetLoweringBase::AtomicExpansionKind::None:
|
|
if (ValueSize < MinCASSize)
|
|
expandPartwordCmpXchg(CI);
|
|
return false;
|
|
case TargetLoweringBase::AtomicExpansionKind::LLSC: {
|
|
assert(ValueSize >= MinCASSize &&
|
|
"MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
|
|
return expandAtomicCmpXchg(CI);
|
|
}
|
|
case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
|
|
expandAtomicCmpXchgToMaskedIntrinsic(CI);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Note: This function is exposed externally by AtomicExpandUtils.h
|
|
bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
|
|
CreateCmpXchgInstFun CreateCmpXchg) {
|
|
IRBuilder<> Builder(AI);
|
|
Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
|
|
Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
|
|
[&](IRBuilder<> &Builder, Value *Loaded) {
|
|
return performAtomicOp(AI->getOperation(), Builder, Loaded,
|
|
AI->getValOperand());
|
|
},
|
|
CreateCmpXchg);
|
|
|
|
AI->replaceAllUsesWith(Loaded);
|
|
AI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// In order to use one of the sized library calls such as
|
|
// __atomic_fetch_add_4, the alignment must be sufficient, the size
|
|
// must be one of the potentially-specialized sizes, and the value
|
|
// type must actually exist in C on the target (otherwise, the
|
|
// function wouldn't actually be defined.)
|
|
static bool canUseSizedAtomicCall(unsigned Size, unsigned Align,
|
|
const DataLayout &DL) {
|
|
// TODO: "LargestSize" is an approximation for "largest type that
|
|
// you can express in C". It seems to be the case that int128 is
|
|
// supported on all 64-bit platforms, otherwise only up to 64-bit
|
|
// integers are supported. If we get this wrong, then we'll try to
|
|
// call a sized libcall that doesn't actually exist. There should
|
|
// really be some more reliable way in LLVM of determining integer
|
|
// sizes which are valid in the target's C ABI...
|
|
unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
|
|
return Align >= Size &&
|
|
(Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
|
|
Size <= LargestSize;
|
|
}
|
|
|
|
void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
|
|
static const RTLIB::Libcall Libcalls[6] = {
|
|
RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
|
|
RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
|
|
unsigned Size = getAtomicOpSize(I);
|
|
unsigned Align = getAtomicOpAlign(I);
|
|
|
|
bool expanded = expandAtomicOpToLibcall(
|
|
I, Size, Align, I->getPointerOperand(), nullptr, nullptr,
|
|
I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
|
|
(void)expanded;
|
|
assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
|
|
}
|
|
|
|
void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
|
|
static const RTLIB::Libcall Libcalls[6] = {
|
|
RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
|
|
RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
|
|
unsigned Size = getAtomicOpSize(I);
|
|
unsigned Align = getAtomicOpAlign(I);
|
|
|
|
bool expanded = expandAtomicOpToLibcall(
|
|
I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr,
|
|
I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
|
|
(void)expanded;
|
|
assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
|
|
}
|
|
|
|
void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
|
|
static const RTLIB::Libcall Libcalls[6] = {
|
|
RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
|
|
RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
|
|
RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
|
|
unsigned Size = getAtomicOpSize(I);
|
|
unsigned Align = getAtomicOpAlign(I);
|
|
|
|
bool expanded = expandAtomicOpToLibcall(
|
|
I, Size, Align, I->getPointerOperand(), I->getNewValOperand(),
|
|
I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
|
|
Libcalls);
|
|
(void)expanded;
|
|
assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
|
|
}
|
|
|
|
static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
|
|
static const RTLIB::Libcall LibcallsXchg[6] = {
|
|
RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
|
|
RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
|
|
RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
|
|
static const RTLIB::Libcall LibcallsAdd[6] = {
|
|
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
|
|
RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
|
|
RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
|
|
static const RTLIB::Libcall LibcallsSub[6] = {
|
|
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
|
|
RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
|
|
RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
|
|
static const RTLIB::Libcall LibcallsAnd[6] = {
|
|
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
|
|
RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
|
|
RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
|
|
static const RTLIB::Libcall LibcallsOr[6] = {
|
|
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
|
|
RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
|
|
RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
|
|
static const RTLIB::Libcall LibcallsXor[6] = {
|
|
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
|
|
RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
|
|
RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
|
|
static const RTLIB::Libcall LibcallsNand[6] = {
|
|
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
|
|
RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
|
|
RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
|
|
|
|
switch (Op) {
|
|
case AtomicRMWInst::BAD_BINOP:
|
|
llvm_unreachable("Should not have BAD_BINOP.");
|
|
case AtomicRMWInst::Xchg:
|
|
return makeArrayRef(LibcallsXchg);
|
|
case AtomicRMWInst::Add:
|
|
return makeArrayRef(LibcallsAdd);
|
|
case AtomicRMWInst::Sub:
|
|
return makeArrayRef(LibcallsSub);
|
|
case AtomicRMWInst::And:
|
|
return makeArrayRef(LibcallsAnd);
|
|
case AtomicRMWInst::Or:
|
|
return makeArrayRef(LibcallsOr);
|
|
case AtomicRMWInst::Xor:
|
|
return makeArrayRef(LibcallsXor);
|
|
case AtomicRMWInst::Nand:
|
|
return makeArrayRef(LibcallsNand);
|
|
case AtomicRMWInst::Max:
|
|
case AtomicRMWInst::Min:
|
|
case AtomicRMWInst::UMax:
|
|
case AtomicRMWInst::UMin:
|
|
// No atomic libcalls are available for max/min/umax/umin.
|
|
return {};
|
|
}
|
|
llvm_unreachable("Unexpected AtomicRMW operation.");
|
|
}
|
|
|
|
void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
|
|
ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
|
|
|
|
unsigned Size = getAtomicOpSize(I);
|
|
unsigned Align = getAtomicOpAlign(I);
|
|
|
|
bool Success = false;
|
|
if (!Libcalls.empty())
|
|
Success = expandAtomicOpToLibcall(
|
|
I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr,
|
|
I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
|
|
|
|
// The expansion failed: either there were no libcalls at all for
|
|
// the operation (min/max), or there were only size-specialized
|
|
// libcalls (add/sub/etc) and we needed a generic. So, expand to a
|
|
// CAS libcall, via a CAS loop, instead.
|
|
if (!Success) {
|
|
expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
|
|
Value *Loaded, Value *NewVal,
|
|
AtomicOrdering MemOpOrder,
|
|
Value *&Success, Value *&NewLoaded) {
|
|
// Create the CAS instruction normally...
|
|
AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
|
|
Addr, Loaded, NewVal, MemOpOrder,
|
|
AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
|
|
Success = Builder.CreateExtractValue(Pair, 1, "success");
|
|
NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
|
|
|
|
// ...and then expand the CAS into a libcall.
|
|
expandAtomicCASToLibcall(Pair);
|
|
});
|
|
}
|
|
}
|
|
|
|
// A helper routine for the above expandAtomic*ToLibcall functions.
|
|
//
|
|
// 'Libcalls' contains an array of enum values for the particular
|
|
// ATOMIC libcalls to be emitted. All of the other arguments besides
|
|
// 'I' are extracted from the Instruction subclass by the
|
|
// caller. Depending on the particular call, some will be null.
|
|
bool AtomicExpand::expandAtomicOpToLibcall(
|
|
Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand,
|
|
Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
|
|
AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
|
|
assert(Libcalls.size() == 6);
|
|
|
|
LLVMContext &Ctx = I->getContext();
|
|
Module *M = I->getModule();
|
|
const DataLayout &DL = M->getDataLayout();
|
|
IRBuilder<> Builder(I);
|
|
IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
|
|
|
|
bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL);
|
|
Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
|
|
|
|
unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy);
|
|
|
|
// TODO: the "order" argument type is "int", not int32. So
|
|
// getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
|
|
ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
|
|
assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
|
|
Constant *OrderingVal =
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
|
|
Constant *Ordering2Val = nullptr;
|
|
if (CASExpected) {
|
|
assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
|
|
Ordering2Val =
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
|
|
}
|
|
bool HasResult = I->getType() != Type::getVoidTy(Ctx);
|
|
|
|
RTLIB::Libcall RTLibType;
|
|
if (UseSizedLibcall) {
|
|
switch (Size) {
|
|
case 1: RTLibType = Libcalls[1]; break;
|
|
case 2: RTLibType = Libcalls[2]; break;
|
|
case 4: RTLibType = Libcalls[3]; break;
|
|
case 8: RTLibType = Libcalls[4]; break;
|
|
case 16: RTLibType = Libcalls[5]; break;
|
|
}
|
|
} else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
|
|
RTLibType = Libcalls[0];
|
|
} else {
|
|
// Can't use sized function, and there's no generic for this
|
|
// operation, so give up.
|
|
return false;
|
|
}
|
|
|
|
// Build up the function call. There's two kinds. First, the sized
|
|
// variants. These calls are going to be one of the following (with
|
|
// N=1,2,4,8,16):
|
|
// iN __atomic_load_N(iN *ptr, int ordering)
|
|
// void __atomic_store_N(iN *ptr, iN val, int ordering)
|
|
// iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
|
|
// bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
|
|
// int success_order, int failure_order)
|
|
//
|
|
// Note that these functions can be used for non-integer atomic
|
|
// operations, the values just need to be bitcast to integers on the
|
|
// way in and out.
|
|
//
|
|
// And, then, the generic variants. They look like the following:
|
|
// void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
|
|
// void __atomic_store(size_t size, void *ptr, void *val, int ordering)
|
|
// void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
|
|
// int ordering)
|
|
// bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
|
|
// void *desired, int success_order,
|
|
// int failure_order)
|
|
//
|
|
// The different signatures are built up depending on the
|
|
// 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
|
|
// variables.
|
|
|
|
AllocaInst *AllocaCASExpected = nullptr;
|
|
Value *AllocaCASExpected_i8 = nullptr;
|
|
AllocaInst *AllocaValue = nullptr;
|
|
Value *AllocaValue_i8 = nullptr;
|
|
AllocaInst *AllocaResult = nullptr;
|
|
Value *AllocaResult_i8 = nullptr;
|
|
|
|
Type *ResultTy;
|
|
SmallVector<Value *, 6> Args;
|
|
AttributeList Attr;
|
|
|
|
// 'size' argument.
|
|
if (!UseSizedLibcall) {
|
|
// Note, getIntPtrType is assumed equivalent to size_t.
|
|
Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
|
|
}
|
|
|
|
// 'ptr' argument.
|
|
Value *PtrVal =
|
|
Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx));
|
|
Args.push_back(PtrVal);
|
|
|
|
// 'expected' argument, if present.
|
|
if (CASExpected) {
|
|
AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
|
|
AllocaCASExpected->setAlignment(AllocaAlignment);
|
|
AllocaCASExpected_i8 =
|
|
Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx));
|
|
Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
|
|
Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
|
|
Args.push_back(AllocaCASExpected_i8);
|
|
}
|
|
|
|
// 'val' argument ('desired' for cas), if present.
|
|
if (ValueOperand) {
|
|
if (UseSizedLibcall) {
|
|
Value *IntValue =
|
|
Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
|
|
Args.push_back(IntValue);
|
|
} else {
|
|
AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
|
|
AllocaValue->setAlignment(AllocaAlignment);
|
|
AllocaValue_i8 =
|
|
Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
|
|
Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
|
|
Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
|
|
Args.push_back(AllocaValue_i8);
|
|
}
|
|
}
|
|
|
|
// 'ret' argument.
|
|
if (!CASExpected && HasResult && !UseSizedLibcall) {
|
|
AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
|
|
AllocaResult->setAlignment(AllocaAlignment);
|
|
AllocaResult_i8 =
|
|
Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx));
|
|
Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
|
|
Args.push_back(AllocaResult_i8);
|
|
}
|
|
|
|
// 'ordering' ('success_order' for cas) argument.
|
|
Args.push_back(OrderingVal);
|
|
|
|
// 'failure_order' argument, if present.
|
|
if (Ordering2Val)
|
|
Args.push_back(Ordering2Val);
|
|
|
|
// Now, the return type.
|
|
if (CASExpected) {
|
|
ResultTy = Type::getInt1Ty(Ctx);
|
|
Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
|
|
} else if (HasResult && UseSizedLibcall)
|
|
ResultTy = SizedIntTy;
|
|
else
|
|
ResultTy = Type::getVoidTy(Ctx);
|
|
|
|
// Done with setting up arguments and return types, create the call:
|
|
SmallVector<Type *, 6> ArgTys;
|
|
for (Value *Arg : Args)
|
|
ArgTys.push_back(Arg->getType());
|
|
FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
|
|
Constant *LibcallFn =
|
|
M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
|
|
CallInst *Call = Builder.CreateCall(LibcallFn, Args);
|
|
Call->setAttributes(Attr);
|
|
Value *Result = Call;
|
|
|
|
// And then, extract the results...
|
|
if (ValueOperand && !UseSizedLibcall)
|
|
Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
|
|
|
|
if (CASExpected) {
|
|
// The final result from the CAS is {load of 'expected' alloca, bool result
|
|
// from call}
|
|
Type *FinalResultTy = I->getType();
|
|
Value *V = UndefValue::get(FinalResultTy);
|
|
Value *ExpectedOut =
|
|
Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment);
|
|
Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
|
|
V = Builder.CreateInsertValue(V, ExpectedOut, 0);
|
|
V = Builder.CreateInsertValue(V, Result, 1);
|
|
I->replaceAllUsesWith(V);
|
|
} else if (HasResult) {
|
|
Value *V;
|
|
if (UseSizedLibcall)
|
|
V = Builder.CreateBitOrPointerCast(Result, I->getType());
|
|
else {
|
|
V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment);
|
|
Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
|
|
}
|
|
I->replaceAllUsesWith(V);
|
|
}
|
|
I->eraseFromParent();
|
|
return true;
|
|
}
|