forked from OSchip/llvm-project
493 lines
18 KiB
C++
493 lines
18 KiB
C++
//===--- UseNullptrCheck.cpp - clang-tidy----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "UseNullptrCheck.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::ast_matchers;
|
|
using namespace llvm;
|
|
|
|
namespace clang {
|
|
namespace tidy {
|
|
namespace modernize {
|
|
namespace {
|
|
|
|
const char CastSequence[] = "sequence";
|
|
|
|
AST_MATCHER(Type, sugaredNullptrType) {
|
|
const Type *DesugaredType = Node.getUnqualifiedDesugaredType();
|
|
if (const auto *BT = dyn_cast<BuiltinType>(DesugaredType))
|
|
return BT->getKind() == BuiltinType::NullPtr;
|
|
return false;
|
|
}
|
|
|
|
/// Create a matcher that finds implicit casts as well as the head of a
|
|
/// sequence of zero or more nested explicit casts that have an implicit cast
|
|
/// to null within.
|
|
/// Finding sequences of explicit casts is necessary so that an entire sequence
|
|
/// can be replaced instead of just the inner-most implicit cast.
|
|
StatementMatcher makeCastSequenceMatcher() {
|
|
StatementMatcher ImplicitCastToNull = implicitCastExpr(
|
|
anyOf(hasCastKind(CK_NullToPointer), hasCastKind(CK_NullToMemberPointer)),
|
|
unless(hasImplicitDestinationType(qualType(substTemplateTypeParmType()))),
|
|
unless(hasSourceExpression(hasType(sugaredNullptrType()))));
|
|
|
|
return traverse(
|
|
TK_AsIs,
|
|
castExpr(anyOf(ImplicitCastToNull,
|
|
explicitCastExpr(hasDescendant(ImplicitCastToNull))),
|
|
unless(hasAncestor(explicitCastExpr())))
|
|
.bind(CastSequence));
|
|
}
|
|
|
|
bool isReplaceableRange(SourceLocation StartLoc, SourceLocation EndLoc,
|
|
const SourceManager &SM) {
|
|
return SM.isWrittenInSameFile(StartLoc, EndLoc);
|
|
}
|
|
|
|
/// Replaces the provided range with the text "nullptr", but only if
|
|
/// the start and end location are both in main file.
|
|
/// Returns true if and only if a replacement was made.
|
|
void replaceWithNullptr(ClangTidyCheck &Check, SourceManager &SM,
|
|
SourceLocation StartLoc, SourceLocation EndLoc) {
|
|
CharSourceRange Range(SourceRange(StartLoc, EndLoc), true);
|
|
// Add a space if nullptr follows an alphanumeric character. This happens
|
|
// whenever there is an c-style explicit cast to nullptr not surrounded by
|
|
// parentheses and right beside a return statement.
|
|
SourceLocation PreviousLocation = StartLoc.getLocWithOffset(-1);
|
|
bool NeedsSpace = isAlphanumeric(*SM.getCharacterData(PreviousLocation));
|
|
Check.diag(Range.getBegin(), "use nullptr") << FixItHint::CreateReplacement(
|
|
Range, NeedsSpace ? " nullptr" : "nullptr");
|
|
}
|
|
|
|
/// Returns the name of the outermost macro.
|
|
///
|
|
/// Given
|
|
/// \code
|
|
/// #define MY_NULL NULL
|
|
/// \endcode
|
|
/// If \p Loc points to NULL, this function will return the name MY_NULL.
|
|
StringRef getOutermostMacroName(SourceLocation Loc, const SourceManager &SM,
|
|
const LangOptions &LO) {
|
|
assert(Loc.isMacroID());
|
|
SourceLocation OutermostMacroLoc;
|
|
|
|
while (Loc.isMacroID()) {
|
|
OutermostMacroLoc = Loc;
|
|
Loc = SM.getImmediateMacroCallerLoc(Loc);
|
|
}
|
|
|
|
return Lexer::getImmediateMacroName(OutermostMacroLoc, SM, LO);
|
|
}
|
|
|
|
/// RecursiveASTVisitor for ensuring all nodes rooted at a given AST
|
|
/// subtree that have file-level source locations corresponding to a macro
|
|
/// argument have implicit NullTo(Member)Pointer nodes as ancestors.
|
|
class MacroArgUsageVisitor : public RecursiveASTVisitor<MacroArgUsageVisitor> {
|
|
public:
|
|
MacroArgUsageVisitor(SourceLocation CastLoc, const SourceManager &SM)
|
|
: CastLoc(CastLoc), SM(SM), Visited(false), CastFound(false),
|
|
InvalidFound(false) {
|
|
assert(CastLoc.isFileID());
|
|
}
|
|
|
|
bool TraverseStmt(Stmt *S) {
|
|
bool VisitedPreviously = Visited;
|
|
|
|
if (!RecursiveASTVisitor<MacroArgUsageVisitor>::TraverseStmt(S))
|
|
return false;
|
|
|
|
// The point at which VisitedPreviously is false and Visited is true is the
|
|
// root of a subtree containing nodes whose locations match CastLoc. It's
|
|
// at this point we test that the Implicit NullTo(Member)Pointer cast was
|
|
// found or not.
|
|
if (!VisitedPreviously) {
|
|
if (Visited && !CastFound) {
|
|
// Found nodes with matching SourceLocations but didn't come across a
|
|
// cast. This is an invalid macro arg use. Can stop traversal
|
|
// completely now.
|
|
InvalidFound = true;
|
|
return false;
|
|
}
|
|
// Reset state as we unwind back up the tree.
|
|
CastFound = false;
|
|
Visited = false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VisitStmt(Stmt *S) {
|
|
if (SM.getFileLoc(S->getBeginLoc()) != CastLoc)
|
|
return true;
|
|
Visited = true;
|
|
|
|
const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(S);
|
|
if (Cast && (Cast->getCastKind() == CK_NullToPointer ||
|
|
Cast->getCastKind() == CK_NullToMemberPointer))
|
|
CastFound = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool TraverseInitListExpr(InitListExpr *S) {
|
|
// Only go through the semantic form of the InitListExpr, because
|
|
// ImplicitCast might not appear in the syntactic form, and this results in
|
|
// finding usages of the macro argument that don't have a ImplicitCast as an
|
|
// ancestor (thus invalidating the replacement) when they actually have.
|
|
return RecursiveASTVisitor<MacroArgUsageVisitor>::
|
|
TraverseSynOrSemInitListExpr(
|
|
S->isSemanticForm() ? S : S->getSemanticForm());
|
|
}
|
|
|
|
bool foundInvalid() const { return InvalidFound; }
|
|
|
|
private:
|
|
SourceLocation CastLoc;
|
|
const SourceManager &SM;
|
|
|
|
bool Visited;
|
|
bool CastFound;
|
|
bool InvalidFound;
|
|
};
|
|
|
|
/// Looks for implicit casts as well as sequences of 0 or more explicit
|
|
/// casts with an implicit null-to-pointer cast within.
|
|
///
|
|
/// The matcher this visitor is used with will find a single implicit cast or a
|
|
/// top-most explicit cast (i.e. it has no explicit casts as an ancestor) where
|
|
/// an implicit cast is nested within. However, there is no guarantee that only
|
|
/// explicit casts exist between the found top-most explicit cast and the
|
|
/// possibly more than one nested implicit cast. This visitor finds all cast
|
|
/// sequences with an implicit cast to null within and creates a replacement
|
|
/// leaving the outermost explicit cast unchanged to avoid introducing
|
|
/// ambiguities.
|
|
class CastSequenceVisitor : public RecursiveASTVisitor<CastSequenceVisitor> {
|
|
public:
|
|
CastSequenceVisitor(ASTContext &Context, ArrayRef<StringRef> NullMacros,
|
|
ClangTidyCheck &check)
|
|
: SM(Context.getSourceManager()), Context(Context),
|
|
NullMacros(NullMacros), Check(check), FirstSubExpr(nullptr),
|
|
PruneSubtree(false) {}
|
|
|
|
bool TraverseStmt(Stmt *S) {
|
|
// Stop traversing down the tree if requested.
|
|
if (PruneSubtree) {
|
|
PruneSubtree = false;
|
|
return true;
|
|
}
|
|
return RecursiveASTVisitor<CastSequenceVisitor>::TraverseStmt(S);
|
|
}
|
|
|
|
// Only VisitStmt is overridden as we shouldn't find other base AST types
|
|
// within a cast expression.
|
|
bool VisitStmt(Stmt *S) {
|
|
auto *C = dyn_cast<CastExpr>(S);
|
|
// Catch the castExpr inside cxxDefaultArgExpr.
|
|
if (auto *E = dyn_cast<CXXDefaultArgExpr>(S)) {
|
|
C = dyn_cast<CastExpr>(E->getExpr());
|
|
FirstSubExpr = nullptr;
|
|
}
|
|
if (!C) {
|
|
FirstSubExpr = nullptr;
|
|
return true;
|
|
}
|
|
|
|
auto* CastSubExpr = C->getSubExpr()->IgnoreParens();
|
|
// Ignore cast expressions which cast nullptr literal.
|
|
if (isa<CXXNullPtrLiteralExpr>(CastSubExpr)) {
|
|
return true;
|
|
}
|
|
|
|
if (!FirstSubExpr)
|
|
FirstSubExpr = CastSubExpr;
|
|
|
|
if (C->getCastKind() != CK_NullToPointer &&
|
|
C->getCastKind() != CK_NullToMemberPointer) {
|
|
return true;
|
|
}
|
|
|
|
SourceLocation StartLoc = FirstSubExpr->getBeginLoc();
|
|
SourceLocation EndLoc = FirstSubExpr->getEndLoc();
|
|
|
|
// If the location comes from a macro arg expansion, *all* uses of that
|
|
// arg must be checked to result in NullTo(Member)Pointer casts.
|
|
//
|
|
// If the location comes from a macro body expansion, check to see if its
|
|
// coming from one of the allowed 'NULL' macros.
|
|
if (SM.isMacroArgExpansion(StartLoc) && SM.isMacroArgExpansion(EndLoc)) {
|
|
SourceLocation FileLocStart = SM.getFileLoc(StartLoc),
|
|
FileLocEnd = SM.getFileLoc(EndLoc);
|
|
SourceLocation ImmediateMacroArgLoc, MacroLoc;
|
|
// Skip NULL macros used in macro.
|
|
if (!getMacroAndArgLocations(StartLoc, ImmediateMacroArgLoc, MacroLoc) ||
|
|
ImmediateMacroArgLoc != FileLocStart)
|
|
return skipSubTree();
|
|
|
|
if (isReplaceableRange(FileLocStart, FileLocEnd, SM) &&
|
|
allArgUsesValid(C)) {
|
|
replaceWithNullptr(Check, SM, FileLocStart, FileLocEnd);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (SM.isMacroBodyExpansion(StartLoc) && SM.isMacroBodyExpansion(EndLoc)) {
|
|
StringRef OutermostMacroName =
|
|
getOutermostMacroName(StartLoc, SM, Context.getLangOpts());
|
|
|
|
// Check to see if the user wants to replace the macro being expanded.
|
|
if (!llvm::is_contained(NullMacros, OutermostMacroName))
|
|
return skipSubTree();
|
|
|
|
StartLoc = SM.getFileLoc(StartLoc);
|
|
EndLoc = SM.getFileLoc(EndLoc);
|
|
}
|
|
|
|
if (!isReplaceableRange(StartLoc, EndLoc, SM)) {
|
|
return skipSubTree();
|
|
}
|
|
replaceWithNullptr(Check, SM, StartLoc, EndLoc);
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
bool skipSubTree() {
|
|
PruneSubtree = true;
|
|
return true;
|
|
}
|
|
|
|
/// Tests that all expansions of a macro arg, one of which expands to
|
|
/// result in \p CE, yield NullTo(Member)Pointer casts.
|
|
bool allArgUsesValid(const CastExpr *CE) {
|
|
SourceLocation CastLoc = CE->getBeginLoc();
|
|
|
|
// Step 1: Get location of macro arg and location of the macro the arg was
|
|
// provided to.
|
|
SourceLocation ArgLoc, MacroLoc;
|
|
if (!getMacroAndArgLocations(CastLoc, ArgLoc, MacroLoc))
|
|
return false;
|
|
|
|
// Step 2: Find the first ancestor that doesn't expand from this macro.
|
|
DynTypedNode ContainingAncestor;
|
|
if (!findContainingAncestor(DynTypedNode::create<Stmt>(*CE), MacroLoc,
|
|
ContainingAncestor))
|
|
return false;
|
|
|
|
// Step 3:
|
|
// Visit children of this containing parent looking for the least-descended
|
|
// nodes of the containing parent which are macro arg expansions that expand
|
|
// from the given arg location.
|
|
// Visitor needs: arg loc.
|
|
MacroArgUsageVisitor ArgUsageVisitor(SM.getFileLoc(CastLoc), SM);
|
|
if (const auto *D = ContainingAncestor.get<Decl>())
|
|
ArgUsageVisitor.TraverseDecl(const_cast<Decl *>(D));
|
|
else if (const auto *S = ContainingAncestor.get<Stmt>())
|
|
ArgUsageVisitor.TraverseStmt(const_cast<Stmt *>(S));
|
|
else
|
|
llvm_unreachable("Unhandled ContainingAncestor node type");
|
|
|
|
return !ArgUsageVisitor.foundInvalid();
|
|
}
|
|
|
|
/// Given the SourceLocation for a macro arg expansion, finds the
|
|
/// non-macro SourceLocation of the macro the arg was passed to and the
|
|
/// non-macro SourceLocation of the argument in the arg list to that macro.
|
|
/// These results are returned via \c MacroLoc and \c ArgLoc respectively.
|
|
/// These values are undefined if the return value is false.
|
|
///
|
|
/// \returns false if one of the returned SourceLocations would be a
|
|
/// SourceLocation pointing within the definition of another macro.
|
|
bool getMacroAndArgLocations(SourceLocation Loc, SourceLocation &ArgLoc,
|
|
SourceLocation &MacroLoc) {
|
|
assert(Loc.isMacroID() && "Only reasonable to call this on macros");
|
|
|
|
ArgLoc = Loc;
|
|
|
|
// Find the location of the immediate macro expansion.
|
|
while (true) {
|
|
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(ArgLoc);
|
|
const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
|
|
const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
|
|
|
|
SourceLocation OldArgLoc = ArgLoc;
|
|
ArgLoc = Expansion.getExpansionLocStart();
|
|
if (!Expansion.isMacroArgExpansion()) {
|
|
if (!MacroLoc.isFileID())
|
|
return false;
|
|
|
|
StringRef Name =
|
|
Lexer::getImmediateMacroName(OldArgLoc, SM, Context.getLangOpts());
|
|
return llvm::is_contained(NullMacros, Name);
|
|
}
|
|
|
|
MacroLoc = SM.getExpansionRange(ArgLoc).getBegin();
|
|
|
|
ArgLoc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
|
|
if (ArgLoc.isFileID())
|
|
return true;
|
|
|
|
// If spelling location resides in the same FileID as macro expansion
|
|
// location, it means there is no inner macro.
|
|
FileID MacroFID = SM.getFileID(MacroLoc);
|
|
if (SM.isInFileID(ArgLoc, MacroFID)) {
|
|
// Don't transform this case. If the characters that caused the
|
|
// null-conversion come from within a macro, they can't be changed.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("getMacroAndArgLocations");
|
|
}
|
|
|
|
/// Tests if TestMacroLoc is found while recursively unravelling
|
|
/// expansions starting at TestLoc. TestMacroLoc.isFileID() must be true.
|
|
/// Implementation is very similar to getMacroAndArgLocations() except in this
|
|
/// case, it's not assumed that TestLoc is expanded from a macro argument.
|
|
/// While unravelling expansions macro arguments are handled as with
|
|
/// getMacroAndArgLocations() but in this function macro body expansions are
|
|
/// also handled.
|
|
///
|
|
/// False means either:
|
|
/// - TestLoc is not from a macro expansion.
|
|
/// - TestLoc is from a different macro expansion.
|
|
bool expandsFrom(SourceLocation TestLoc, SourceLocation TestMacroLoc) {
|
|
if (TestLoc.isFileID()) {
|
|
return false;
|
|
}
|
|
|
|
SourceLocation Loc = TestLoc, MacroLoc;
|
|
|
|
while (true) {
|
|
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
|
|
const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
|
|
const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
|
|
|
|
Loc = Expansion.getExpansionLocStart();
|
|
|
|
if (!Expansion.isMacroArgExpansion()) {
|
|
if (Loc.isFileID()) {
|
|
return Loc == TestMacroLoc;
|
|
}
|
|
// Since Loc is still a macro ID and it's not an argument expansion, we
|
|
// don't need to do the work of handling an argument expansion. Simply
|
|
// keep recursively expanding until we hit a FileID or a macro arg
|
|
// expansion or a macro arg expansion.
|
|
continue;
|
|
}
|
|
|
|
MacroLoc = SM.getImmediateExpansionRange(Loc).getBegin();
|
|
if (MacroLoc.isFileID() && MacroLoc == TestMacroLoc) {
|
|
// Match made.
|
|
return true;
|
|
}
|
|
|
|
Loc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
|
|
if (Loc.isFileID()) {
|
|
// If we made it this far without finding a match, there is no match to
|
|
// be made.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("expandsFrom");
|
|
}
|
|
|
|
/// Given a starting point \c Start in the AST, find an ancestor that
|
|
/// doesn't expand from the macro called at file location \c MacroLoc.
|
|
///
|
|
/// \pre MacroLoc.isFileID()
|
|
/// \returns true if such an ancestor was found, false otherwise.
|
|
bool findContainingAncestor(DynTypedNode Start, SourceLocation MacroLoc,
|
|
DynTypedNode &Result) {
|
|
// Below we're only following the first parent back up the AST. This should
|
|
// be fine since for the statements we care about there should only be one
|
|
// parent, except for the case specified below.
|
|
|
|
assert(MacroLoc.isFileID());
|
|
|
|
while (true) {
|
|
const auto &Parents = Context.getParents(Start);
|
|
if (Parents.empty())
|
|
return false;
|
|
if (Parents.size() > 1) {
|
|
// If there are more than one parents, don't do the replacement unless
|
|
// they are InitListsExpr (semantic and syntactic form). In this case we
|
|
// can choose any one here, and the ASTVisitor will take care of
|
|
// traversing the right one.
|
|
for (const auto &Parent : Parents) {
|
|
if (!Parent.get<InitListExpr>())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const DynTypedNode &Parent = Parents[0];
|
|
|
|
SourceLocation Loc;
|
|
if (const auto *D = Parent.get<Decl>())
|
|
Loc = D->getBeginLoc();
|
|
else if (const auto *S = Parent.get<Stmt>())
|
|
Loc = S->getBeginLoc();
|
|
|
|
// TypeLoc and NestedNameSpecifierLoc are members of the parent map. Skip
|
|
// them and keep going up.
|
|
if (Loc.isValid()) {
|
|
if (!expandsFrom(Loc, MacroLoc)) {
|
|
Result = Parent;
|
|
return true;
|
|
}
|
|
}
|
|
Start = Parent;
|
|
}
|
|
|
|
llvm_unreachable("findContainingAncestor");
|
|
}
|
|
|
|
private:
|
|
SourceManager &SM;
|
|
ASTContext &Context;
|
|
ArrayRef<StringRef> NullMacros;
|
|
ClangTidyCheck &Check;
|
|
Expr *FirstSubExpr;
|
|
bool PruneSubtree;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
UseNullptrCheck::UseNullptrCheck(StringRef Name, ClangTidyContext *Context)
|
|
: ClangTidyCheck(Name, Context),
|
|
NullMacrosStr(Options.get("NullMacros", "")) {
|
|
StringRef(NullMacrosStr).split(NullMacros, ",");
|
|
}
|
|
|
|
void UseNullptrCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) {
|
|
Options.store(Opts, "NullMacros", NullMacrosStr);
|
|
}
|
|
|
|
void UseNullptrCheck::registerMatchers(MatchFinder *Finder) {
|
|
Finder->addMatcher(makeCastSequenceMatcher(), this);
|
|
}
|
|
|
|
void UseNullptrCheck::check(const MatchFinder::MatchResult &Result) {
|
|
const auto *NullCast = Result.Nodes.getNodeAs<CastExpr>(CastSequence);
|
|
assert(NullCast && "Bad Callback. No node provided");
|
|
|
|
// Given an implicit null-ptr cast or an explicit cast with an implicit
|
|
// null-to-pointer cast within use CastSequenceVisitor to identify sequences
|
|
// of explicit casts that can be converted into 'nullptr'.
|
|
CastSequenceVisitor(*Result.Context, NullMacros, *this)
|
|
.TraverseStmt(const_cast<CastExpr *>(NullCast));
|
|
}
|
|
|
|
} // namespace modernize
|
|
} // namespace tidy
|
|
} // namespace clang
|