llvm-project/openmp/libomptarget/plugins/amdgpu/impl/msgpack.h

283 lines
8.2 KiB
C++

//===--- amdgpu/impl/msgpack.h ------------------------------------ C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MSGPACK_H
#define MSGPACK_H
#include <functional>
namespace msgpack {
// The message pack format is dynamically typed, schema-less. Format is:
// message: [type][header][payload]
// where type is one byte, header length is a fixed length function of type
// payload is zero to N bytes, with the length encoded in [type][header]
// Scalar fields include boolean, signed integer, float, string etc
// Composite types are sequences of messages
// Array field is [header][element][element]...
// Map field is [header][key][value][key][value]...
// Multibyte integer fields are big endian encoded
// The map key can be any message type
// Maps may contain duplicate keys
// Data is not uniquely encoded, e.g. integer "8" may be stored as one byte or
// in as many as nine, as signed or unsigned. Implementation defined.
// Similarly "foo" may embed the length in the type field or in multiple bytes
// This parser is structured as an iterator over a sequence of bytes.
// It calls a user provided function on each message in order to extract fields
// The default implementation for each scalar type is to do nothing. For map or
// arrays, the default implementation returns just after that message to support
// iterating to the next message, but otherwise has no effect.
struct byte_range {
const unsigned char *start;
const unsigned char *end;
};
const unsigned char *skip_next_message(const unsigned char *start,
const unsigned char *end);
template <typename Derived> class functors_defaults {
public:
void cb_string(size_t N, const unsigned char *str) {
derived().handle_string(N, str);
}
void cb_boolean(bool x) { derived().handle_boolean(x); }
void cb_signed(int64_t x) { derived().handle_signed(x); }
void cb_unsigned(uint64_t x) { derived().handle_unsigned(x); }
void cb_array_elements(byte_range bytes) {
derived().handle_array_elements(bytes);
}
void cb_map_elements(byte_range key, byte_range value) {
derived().handle_map_elements(key, value);
}
const unsigned char *cb_array(uint64_t N, byte_range bytes) {
return derived().handle_array(N, bytes);
}
const unsigned char *cb_map(uint64_t N, byte_range bytes) {
return derived().handle_map(N, bytes);
}
private:
Derived &derived() { return *static_cast<Derived *>(this); }
// Default implementations for scalar ops are no-ops
void handle_string(size_t, const unsigned char *) {}
void handle_boolean(bool) {}
void handle_signed(int64_t) {}
void handle_unsigned(uint64_t) {}
void handle_array_elements(byte_range) {}
void handle_map_elements(byte_range, byte_range) {}
// Default implementation for sequences is to skip over the messages
const unsigned char *handle_array(uint64_t N, byte_range bytes) {
for (uint64_t i = 0; i < N; i++) {
const unsigned char *next = skip_next_message(bytes.start, bytes.end);
if (!next) {
return nullptr;
}
cb_array_elements(bytes);
bytes.start = next;
}
return bytes.start;
}
const unsigned char *handle_map(uint64_t N, byte_range bytes) {
for (uint64_t i = 0; i < N; i++) {
const unsigned char *start_key = bytes.start;
const unsigned char *end_key = skip_next_message(start_key, bytes.end);
if (!end_key) {
return nullptr;
}
const unsigned char *start_value = end_key;
const unsigned char *end_value =
skip_next_message(start_value, bytes.end);
if (!end_value) {
return nullptr;
}
cb_map_elements({start_key, end_key}, {start_value, end_value});
bytes.start = end_value;
}
return bytes.start;
}
};
typedef enum : uint8_t {
#define X(NAME, WIDTH, PAYLOAD, LOWER, UPPER) NAME,
#include "msgpack.def"
#undef X
} type;
[[noreturn]] void internal_error();
type parse_type(unsigned char x);
unsigned bytes_used_fixed(type ty);
typedef uint64_t (*payload_info_t)(const unsigned char *);
payload_info_t payload_info(msgpack::type ty);
template <typename T, typename R> R bitcast(T x);
template <typename F, msgpack::type ty>
const unsigned char *handle_msgpack_given_type(byte_range bytes, F f) {
const unsigned char *start = bytes.start;
const unsigned char *end = bytes.end;
const uint64_t available = end - start;
assert(available != 0);
assert(ty == parse_type(*start));
const uint64_t bytes_used = bytes_used_fixed(ty);
if (available < bytes_used) {
return 0;
}
const uint64_t available_post_header = available - bytes_used;
const payload_info_t info = payload_info(ty);
const uint64_t N = info(start);
switch (ty) {
case msgpack::t:
case msgpack::f: {
// t is 0b11000010, f is 0b11000011, masked with 0x1
f.cb_boolean(N);
return start + bytes_used;
}
case msgpack::posfixint:
case msgpack::uint8:
case msgpack::uint16:
case msgpack::uint32:
case msgpack::uint64: {
f.cb_unsigned(N);
return start + bytes_used;
}
case msgpack::negfixint:
case msgpack::int8:
case msgpack::int16:
case msgpack::int32:
case msgpack::int64: {
f.cb_signed(bitcast<uint64_t, int64_t>(N));
return start + bytes_used;
}
case msgpack::fixstr:
case msgpack::str8:
case msgpack::str16:
case msgpack::str32: {
if (available_post_header < N) {
return 0;
} else {
f.cb_string(N, start + bytes_used);
return start + bytes_used + N;
}
}
case msgpack::fixarray:
case msgpack::array16:
case msgpack::array32: {
return f.cb_array(N, {start + bytes_used, end});
}
case msgpack::fixmap:
case msgpack::map16:
case msgpack::map32: {
return f.cb_map(N, {start + bytes_used, end});
}
case msgpack::nil:
case msgpack::bin8:
case msgpack::bin16:
case msgpack::bin32:
case msgpack::float32:
case msgpack::float64:
case msgpack::ext8:
case msgpack::ext16:
case msgpack::ext32:
case msgpack::fixext1:
case msgpack::fixext2:
case msgpack::fixext4:
case msgpack::fixext8:
case msgpack::fixext16:
case msgpack::never_used: {
if (available_post_header < N) {
return 0;
}
return start + bytes_used + N;
}
}
internal_error();
}
template <typename F>
const unsigned char *handle_msgpack(byte_range bytes, F f) {
const unsigned char *start = bytes.start;
const unsigned char *end = bytes.end;
const uint64_t available = end - start;
if (available == 0) {
return 0;
}
const type ty = parse_type(*start);
switch (ty) {
#define X(NAME, WIDTH, PAYLOAD, LOWER, UPPER) \
case msgpack::NAME: \
return handle_msgpack_given_type<F, msgpack::NAME>(bytes, f);
#include "msgpack.def"
#undef X
}
internal_error();
}
bool message_is_string(byte_range bytes, const char *str);
template <typename C> void foronly_string(byte_range bytes, C callback) {
struct inner : functors_defaults<inner> {
inner(C &cb) : cb(cb) {}
C &cb;
void handle_string(size_t N, const unsigned char *str) { cb(N, str); }
};
handle_msgpack<inner>(bytes, {callback});
}
template <typename C> void foronly_unsigned(byte_range bytes, C callback) {
struct inner : functors_defaults<inner> {
inner(C &cb) : cb(cb) {}
C &cb;
void handle_unsigned(uint64_t x) { cb(x); }
};
handle_msgpack<inner>(bytes, {callback});
}
template <typename C> void foreach_array(byte_range bytes, C callback) {
struct inner : functors_defaults<inner> {
inner(C &cb) : cb(cb) {}
C &cb;
void handle_array_elements(byte_range element) { cb(element); }
};
handle_msgpack<inner>(bytes, {callback});
}
template <typename C> void foreach_map(byte_range bytes, C callback) {
struct inner : functors_defaults<inner> {
inner(C &cb) : cb(cb) {}
C &cb;
void handle_map_elements(byte_range key, byte_range value) {
cb(key, value);
}
};
handle_msgpack<inner>(bytes, {callback});
}
// Crude approximation to json
void dump(byte_range);
} // namespace msgpack
#endif