llvm-project/llvm/utils/TableGen/DFAEmitter.cpp

396 lines
13 KiB
C++

//===- DFAEmitter.cpp - Finite state automaton emitter --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class can produce a generic deterministic finite state automaton (DFA),
// given a set of possible states and transitions.
//
// The input transitions can be nondeterministic - this class will produce the
// deterministic equivalent state machine.
//
// The generated code can run the DFA and produce an accepted / not accepted
// state and also produce, given a sequence of transitions that results in an
// accepted state, the sequence of intermediate states. This is useful if the
// initial automaton was nondeterministic - it allows mapping back from the DFA
// to the NFA.
//
//===----------------------------------------------------------------------===//
#include "DFAEmitter.h"
#include "SequenceToOffsetTable.h"
#include "TableGenBackends.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Record.h"
#include <cassert>
#include <cstdint>
#include <deque>
#include <map>
#include <set>
#include <string>
#include <vector>
#define DEBUG_TYPE "dfa-emitter"
using namespace llvm;
//===----------------------------------------------------------------------===//
// DfaEmitter implementation. This is independent of the GenAutomaton backend.
//===----------------------------------------------------------------------===//
void DfaEmitter::addTransition(state_type From, state_type To, action_type A) {
Actions.insert(A);
NfaStates.insert(From);
NfaStates.insert(To);
NfaTransitions[{From, A}].push_back(To);
++NumNfaTransitions;
}
void DfaEmitter::visitDfaState(const DfaState &DS) {
// For every possible action...
auto FromId = DfaStates.idFor(DS);
for (action_type A : Actions) {
DfaState NewStates;
DfaTransitionInfo TI;
// For every represented state, word pair in the original NFA...
for (state_type FromState : DS) {
// If this action is possible from this state add the transitioned-to
// states to NewStates.
auto I = NfaTransitions.find({FromState, A});
if (I == NfaTransitions.end())
continue;
for (state_type &ToState : I->second) {
NewStates.push_back(ToState);
TI.emplace_back(FromState, ToState);
}
}
if (NewStates.empty())
continue;
// Sort and unique.
sort(NewStates);
NewStates.erase(std::unique(NewStates.begin(), NewStates.end()),
NewStates.end());
sort(TI);
TI.erase(std::unique(TI.begin(), TI.end()), TI.end());
unsigned ToId = DfaStates.insert(NewStates);
DfaTransitions.emplace(std::make_pair(FromId, A), std::make_pair(ToId, TI));
}
}
void DfaEmitter::constructDfa() {
DfaState Initial(1, /*NFA initial state=*/0);
DfaStates.insert(Initial);
// Note that UniqueVector starts indices at 1, not zero.
unsigned DfaStateId = 1;
while (DfaStateId <= DfaStates.size()) {
DfaState S = DfaStates[DfaStateId];
visitDfaState(S);
DfaStateId++;
}
}
void DfaEmitter::emit(StringRef Name, raw_ostream &OS) {
constructDfa();
OS << "// Input NFA has " << NfaStates.size() << " states with "
<< NumNfaTransitions << " transitions.\n";
OS << "// Generated DFA has " << DfaStates.size() << " states with "
<< DfaTransitions.size() << " transitions.\n\n";
// Implementation note: We don't bake a simple std::pair<> here as it requires
// significantly more effort to parse. A simple test with a large array of
// struct-pairs (N=100000) took clang-10 6s to parse. The same array of
// std::pair<uint64_t, uint64_t> took 242s. Instead we allow the user to
// define the pair type.
//
// FIXME: It may make sense to emit these as ULEB sequences instead of
// pairs of uint64_t.
OS << "// A zero-terminated sequence of NFA state transitions. Every DFA\n";
OS << "// transition implies a set of NFA transitions. These are referred\n";
OS << "// to by index in " << Name << "Transitions[].\n";
SequenceToOffsetTable<DfaTransitionInfo> Table;
std::map<DfaTransitionInfo, unsigned> EmittedIndices;
for (auto &T : DfaTransitions)
Table.add(T.second.second);
Table.layout();
OS << "const std::array<NfaStatePair, " << Table.size() << "> " << Name
<< "TransitionInfo = {{\n";
Table.emit(
OS,
[](raw_ostream &OS, std::pair<uint64_t, uint64_t> P) {
OS << "{" << P.first << ", " << P.second << "}";
},
"{0ULL, 0ULL}");
OS << "}};\n\n";
OS << "// A transition in the generated " << Name << " DFA.\n";
OS << "struct " << Name << "Transition {\n";
OS << " unsigned FromDfaState; // The transitioned-from DFA state.\n";
OS << " ";
printActionType(OS);
OS << " Action; // The input symbol that causes this transition.\n";
OS << " unsigned ToDfaState; // The transitioned-to DFA state.\n";
OS << " unsigned InfoIdx; // Start index into " << Name
<< "TransitionInfo.\n";
OS << "};\n\n";
OS << "// A table of DFA transitions, ordered by {FromDfaState, Action}.\n";
OS << "// The initial state is 1, not zero.\n";
OS << "const std::array<" << Name << "Transition, "
<< DfaTransitions.size() << "> " << Name << "Transitions = {{\n";
for (auto &KV : DfaTransitions) {
dfa_state_type From = KV.first.first;
dfa_state_type To = KV.second.first;
action_type A = KV.first.second;
unsigned InfoIdx = Table.get(KV.second.second);
OS << " {" << From << ", ";
printActionValue(A, OS);
OS << ", " << To << ", " << InfoIdx << "},\n";
}
OS << "\n}};\n\n";
}
void DfaEmitter::printActionType(raw_ostream &OS) { OS << "uint64_t"; }
void DfaEmitter::printActionValue(action_type A, raw_ostream &OS) { OS << A; }
//===----------------------------------------------------------------------===//
// AutomatonEmitter implementation
//===----------------------------------------------------------------------===//
namespace {
// FIXME: This entire discriminated union could be removed with c++17:
// using Action = std::variant<Record *, unsigned, std::string>;
struct Action {
Record *R = nullptr;
unsigned I = 0;
std::string S;
Action() = default;
Action(Record *R, unsigned I, std::string S) : R(R), I(I), S(S) {}
void print(raw_ostream &OS) const {
if (R)
OS << R->getName();
else if (!S.empty())
OS << '"' << S << '"';
else
OS << I;
}
bool operator<(const Action &Other) const {
return std::make_tuple(R, I, S) <
std::make_tuple(Other.R, Other.I, Other.S);
}
};
using ActionTuple = std::vector<Action>;
class Automaton;
class Transition {
uint64_t NewState;
// The tuple of actions that causes this transition.
ActionTuple Actions;
// The types of the actions; this is the same across all transitions.
SmallVector<std::string, 4> Types;
public:
Transition(Record *R, Automaton *Parent);
const ActionTuple &getActions() { return Actions; }
SmallVector<std::string, 4> getTypes() { return Types; }
bool canTransitionFrom(uint64_t State);
uint64_t transitionFrom(uint64_t State);
};
class Automaton {
RecordKeeper &Records;
Record *R;
std::vector<Transition> Transitions;
/// All possible action tuples, uniqued.
UniqueVector<ActionTuple> Actions;
/// The fields within each Transition object to find the action symbols.
std::vector<StringRef> ActionSymbolFields;
public:
Automaton(RecordKeeper &Records, Record *R);
void emit(raw_ostream &OS);
ArrayRef<StringRef> getActionSymbolFields() { return ActionSymbolFields; }
/// If the type of action A has been overridden (there exists a field
/// "TypeOf_A") return that, otherwise return the empty string.
StringRef getActionSymbolType(StringRef A);
};
class AutomatonEmitter {
RecordKeeper &Records;
public:
AutomatonEmitter(RecordKeeper &R) : Records(R) {}
void run(raw_ostream &OS);
};
/// A DfaEmitter implementation that can print our variant action type.
class CustomDfaEmitter : public DfaEmitter {
const UniqueVector<ActionTuple> &Actions;
std::string TypeName;
public:
CustomDfaEmitter(const UniqueVector<ActionTuple> &Actions, StringRef TypeName)
: Actions(Actions), TypeName(TypeName) {}
void printActionType(raw_ostream &OS) override;
void printActionValue(action_type A, raw_ostream &OS) override;
};
} // namespace
void AutomatonEmitter::run(raw_ostream &OS) {
for (Record *R : Records.getAllDerivedDefinitions("GenericAutomaton")) {
Automaton A(Records, R);
OS << "#ifdef GET_" << R->getName() << "_DECL\n";
A.emit(OS);
OS << "#endif // GET_" << R->getName() << "_DECL\n";
}
}
Automaton::Automaton(RecordKeeper &Records, Record *R)
: Records(Records), R(R) {
LLVM_DEBUG(dbgs() << "Emitting automaton for " << R->getName() << "\n");
ActionSymbolFields = R->getValueAsListOfStrings("SymbolFields");
}
void Automaton::emit(raw_ostream &OS) {
StringRef TransitionClass = R->getValueAsString("TransitionClass");
for (Record *T : Records.getAllDerivedDefinitions(TransitionClass)) {
assert(T->isSubClassOf("Transition"));
Transitions.emplace_back(T, this);
Actions.insert(Transitions.back().getActions());
}
LLVM_DEBUG(dbgs() << " Action alphabet cardinality: " << Actions.size()
<< "\n");
LLVM_DEBUG(dbgs() << " Each state has " << Transitions.size()
<< " potential transitions.\n");
StringRef Name = R->getName();
CustomDfaEmitter Emitter(Actions, std::string(Name) + "Action");
// Starting from the initial state, build up a list of possible states and
// transitions.
std::deque<uint64_t> Worklist(1, 0);
std::set<uint64_t> SeenStates;
unsigned NumTransitions = 0;
SeenStates.insert(Worklist.front());
while (!Worklist.empty()) {
uint64_t State = Worklist.front();
Worklist.pop_front();
for (Transition &T : Transitions) {
if (!T.canTransitionFrom(State))
continue;
uint64_t NewState = T.transitionFrom(State);
if (SeenStates.emplace(NewState).second)
Worklist.emplace_back(NewState);
++NumTransitions;
Emitter.addTransition(State, NewState, Actions.idFor(T.getActions()));
}
}
LLVM_DEBUG(dbgs() << " NFA automaton has " << SeenStates.size()
<< " states with " << NumTransitions << " transitions.\n");
(void) NumTransitions;
const auto &ActionTypes = Transitions.back().getTypes();
OS << "// The type of an action in the " << Name << " automaton.\n";
if (ActionTypes.size() == 1) {
OS << "using " << Name << "Action = " << ActionTypes[0] << ";\n";
} else {
OS << "using " << Name << "Action = std::tuple<" << join(ActionTypes, ", ")
<< ">;\n";
}
OS << "\n";
Emitter.emit(Name, OS);
}
StringRef Automaton::getActionSymbolType(StringRef A) {
Twine Ty = "TypeOf_" + A;
if (!R->getValue(Ty.str()))
return "";
return R->getValueAsString(Ty.str());
}
Transition::Transition(Record *R, Automaton *Parent) {
BitsInit *NewStateInit = R->getValueAsBitsInit("NewState");
NewState = 0;
assert(NewStateInit->getNumBits() <= sizeof(uint64_t) * 8 &&
"State cannot be represented in 64 bits!");
for (unsigned I = 0; I < NewStateInit->getNumBits(); ++I) {
if (auto *Bit = dyn_cast<BitInit>(NewStateInit->getBit(I))) {
if (Bit->getValue())
NewState |= 1ULL << I;
}
}
for (StringRef A : Parent->getActionSymbolFields()) {
RecordVal *SymbolV = R->getValue(A);
if (auto *Ty = dyn_cast<RecordRecTy>(SymbolV->getType())) {
Actions.emplace_back(R->getValueAsDef(A), 0, "");
Types.emplace_back(Ty->getAsString());
} else if (isa<IntRecTy>(SymbolV->getType())) {
Actions.emplace_back(nullptr, R->getValueAsInt(A), "");
Types.emplace_back("unsigned");
} else if (isa<StringRecTy>(SymbolV->getType())) {
Actions.emplace_back(nullptr, 0, std::string(R->getValueAsString(A)));
Types.emplace_back("std::string");
} else {
report_fatal_error("Unhandled symbol type!");
}
StringRef TypeOverride = Parent->getActionSymbolType(A);
if (!TypeOverride.empty())
Types.back() = std::string(TypeOverride);
}
}
bool Transition::canTransitionFrom(uint64_t State) {
if ((State & NewState) == 0)
// The bits we want to set are not set;
return true;
return false;
}
uint64_t Transition::transitionFrom(uint64_t State) {
return State | NewState;
}
void CustomDfaEmitter::printActionType(raw_ostream &OS) { OS << TypeName; }
void CustomDfaEmitter::printActionValue(action_type A, raw_ostream &OS) {
const ActionTuple &AT = Actions[A];
if (AT.size() > 1)
OS << "std::make_tuple(";
ListSeparator LS;
for (const auto &SingleAction : AT) {
OS << LS;
SingleAction.print(OS);
}
if (AT.size() > 1)
OS << ")";
}
namespace llvm {
void EmitAutomata(RecordKeeper &RK, raw_ostream &OS) {
AutomatonEmitter(RK).run(OS);
}
} // namespace llvm