llvm-project/llvm/utils/TableGen/CodeGenSchedule.cpp

2276 lines
86 KiB
C++

//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines structures to encapsulate the machine model as described in
// the target description.
//
//===----------------------------------------------------------------------===//
#include "CodeGenSchedule.h"
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include <algorithm>
#include <iterator>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "subtarget-emitter"
#ifndef NDEBUG
static void dumpIdxVec(ArrayRef<unsigned> V) {
for (unsigned Idx : V)
dbgs() << Idx << ", ";
}
#endif
namespace {
// (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
struct InstrsOp : public SetTheory::Operator {
void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
ArrayRef<SMLoc> Loc) override {
ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
}
};
// (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
struct InstRegexOp : public SetTheory::Operator {
const CodeGenTarget &Target;
InstRegexOp(const CodeGenTarget &t): Target(t) {}
/// Remove any text inside of parentheses from S.
static std::string removeParens(llvm::StringRef S) {
std::string Result;
unsigned Paren = 0;
// NB: We don't care about escaped parens here.
for (char C : S) {
switch (C) {
case '(':
++Paren;
break;
case ')':
--Paren;
break;
default:
if (Paren == 0)
Result += C;
}
}
return Result;
}
void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
ArrayRef<SMLoc> Loc) override {
ArrayRef<const CodeGenInstruction *> Instructions =
Target.getInstructionsByEnumValue();
unsigned NumGeneric = Target.getNumFixedInstructions();
unsigned NumPseudos = Target.getNumPseudoInstructions();
auto Generics = Instructions.slice(0, NumGeneric);
auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
for (Init *Arg : Expr->getArgs()) {
StringInit *SI = dyn_cast<StringInit>(Arg);
if (!SI)
PrintFatalError(Loc, "instregex requires pattern string: " +
Expr->getAsString());
StringRef Original = SI->getValue();
// Extract a prefix that we can binary search on.
static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
auto FirstMeta = Original.find_first_of(RegexMetachars);
// Look for top-level | or ?. We cannot optimize them to binary search.
if (removeParens(Original).find_first_of("|?") != std::string::npos)
FirstMeta = 0;
Optional<Regex> Regexpr = None;
StringRef Prefix = Original.substr(0, FirstMeta);
StringRef PatStr = Original.substr(FirstMeta);
if (!PatStr.empty()) {
// For the rest use a python-style prefix match.
std::string pat = std::string(PatStr);
if (pat[0] != '^') {
pat.insert(0, "^(");
pat.insert(pat.end(), ')');
}
Regexpr = Regex(pat);
}
int NumMatches = 0;
// The generic opcodes are unsorted, handle them manually.
for (auto *Inst : Generics) {
StringRef InstName = Inst->TheDef->getName();
if (InstName.startswith(Prefix) &&
(!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
Elts.insert(Inst->TheDef);
NumMatches++;
}
}
// Target instructions are split into two ranges: pseudo instructions
// first, than non-pseudos. Each range is in lexicographical order
// sorted by name. Find the sub-ranges that start with our prefix.
struct Comp {
bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
return LHS->TheDef->getName() < RHS;
}
bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
return LHS < RHS->TheDef->getName() &&
!RHS->TheDef->getName().startswith(LHS);
}
};
auto Range1 =
std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
Prefix, Comp());
// For these ranges we know that instruction names start with the prefix.
// Check if there's a regex that needs to be checked.
const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
StringRef InstName = Inst->TheDef->getName();
if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
Elts.insert(Inst->TheDef);
NumMatches++;
}
};
std::for_each(Range1.first, Range1.second, HandleNonGeneric);
std::for_each(Range2.first, Range2.second, HandleNonGeneric);
if (0 == NumMatches)
PrintFatalError(Loc, "instregex has no matches: " + Original);
}
}
};
} // end anonymous namespace
/// CodeGenModels ctor interprets machine model records and populates maps.
CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
const CodeGenTarget &TGT):
Records(RK), Target(TGT) {
Sets.addFieldExpander("InstRW", "Instrs");
// Allow Set evaluation to recognize the dags used in InstRW records:
// (instrs Op1, Op1...)
Sets.addOperator("instrs", std::make_unique<InstrsOp>());
Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
// Instantiate a CodeGenProcModel for each SchedMachineModel with the values
// that are explicitly referenced in tablegen records. Resources associated
// with each processor will be derived later. Populate ProcModelMap with the
// CodeGenProcModel instances.
collectProcModels();
// Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
// defined, and populate SchedReads and SchedWrites vectors. Implicit
// SchedReadWrites that represent sequences derived from expanded variant will
// be inferred later.
collectSchedRW();
// Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
// required by an instruction definition, and populate SchedClassIdxMap. Set
// NumItineraryClasses to the number of explicit itinerary classes referenced
// by instructions. Set NumInstrSchedClasses to the number of itinerary
// classes plus any classes implied by instructions that derive from class
// Sched and provide SchedRW list. This does not infer any new classes from
// SchedVariant.
collectSchedClasses();
// Find instruction itineraries for each processor. Sort and populate
// CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
// all itinerary classes to be discovered.
collectProcItins();
// Find ItinRW records for each processor and itinerary class.
// (For per-operand resources mapped to itinerary classes).
collectProcItinRW();
// Find UnsupportedFeatures records for each processor.
// (For per-operand resources mapped to itinerary classes).
collectProcUnsupportedFeatures();
// Infer new SchedClasses from SchedVariant.
inferSchedClasses();
// Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
// ProcResourceDefs.
LLVM_DEBUG(
dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
collectProcResources();
// Collect optional processor description.
collectOptionalProcessorInfo();
// Check MCInstPredicate definitions.
checkMCInstPredicates();
// Check STIPredicate definitions.
checkSTIPredicates();
// Find STIPredicate definitions for each processor model, and construct
// STIPredicateFunction objects.
collectSTIPredicates();
checkCompleteness();
}
void CodeGenSchedModels::checkSTIPredicates() const {
DenseMap<StringRef, const Record *> Declarations;
// There cannot be multiple declarations with the same name.
const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
for (const Record *R : Decls) {
StringRef Name = R->getValueAsString("Name");
const auto It = Declarations.find(Name);
if (It == Declarations.end()) {
Declarations[Name] = R;
continue;
}
PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
}
// Disallow InstructionEquivalenceClasses with an empty instruction list.
const RecVec Defs =
Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
for (const Record *R : Defs) {
RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
if (Opcodes.empty()) {
PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
"defined with an empty opcode list.");
}
}
}
// Used by function `processSTIPredicate` to construct a mask of machine
// instruction operands.
static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
APInt OperandMask;
if (Indices.empty())
return OperandMask;
int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
assert(MaxIndex >= 0 && "Invalid negative indices in input!");
OperandMask = OperandMask.zext(MaxIndex + 1);
for (const int64_t Index : Indices) {
assert(Index >= 0 && "Invalid negative indices!");
OperandMask.setBit(Index);
}
return OperandMask;
}
static void
processSTIPredicate(STIPredicateFunction &Fn,
const ProcModelMapTy &ProcModelMap) {
DenseMap<const Record *, unsigned> Opcode2Index;
using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
std::vector<OpcodeMapPair> OpcodeMappings;
std::vector<std::pair<APInt, APInt>> OpcodeMasks;
DenseMap<const Record *, unsigned> Predicate2Index;
unsigned NumUniquePredicates = 0;
// Number unique predicates and opcodes used by InstructionEquivalenceClass
// definitions. Each unique opcode will be associated with an OpcodeInfo
// object.
for (const Record *Def : Fn.getDefinitions()) {
RecVec Classes = Def->getValueAsListOfDefs("Classes");
for (const Record *EC : Classes) {
const Record *Pred = EC->getValueAsDef("Predicate");
if (Predicate2Index.find(Pred) == Predicate2Index.end())
Predicate2Index[Pred] = NumUniquePredicates++;
RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
for (const Record *Opcode : Opcodes) {
if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
Opcode2Index[Opcode] = OpcodeMappings.size();
OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
}
}
}
}
// Initialize vector `OpcodeMasks` with default values. We want to keep track
// of which processors "use" which opcodes. We also want to be able to
// identify predicates that are used by different processors for a same
// opcode.
// This information is used later on by this algorithm to sort OpcodeMapping
// elements based on their processor and predicate sets.
OpcodeMasks.resize(OpcodeMappings.size());
APInt DefaultProcMask(ProcModelMap.size(), 0);
APInt DefaultPredMask(NumUniquePredicates, 0);
for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
// Construct a OpcodeInfo object for every unique opcode declared by an
// InstructionEquivalenceClass definition.
for (const Record *Def : Fn.getDefinitions()) {
RecVec Classes = Def->getValueAsListOfDefs("Classes");
const Record *SchedModel = Def->getValueAsDef("SchedModel");
unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
APInt ProcMask(ProcModelMap.size(), 0);
ProcMask.setBit(ProcIndex);
for (const Record *EC : Classes) {
RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
std::vector<int64_t> OpIndices =
EC->getValueAsListOfInts("OperandIndices");
APInt OperandMask = constructOperandMask(OpIndices);
const Record *Pred = EC->getValueAsDef("Predicate");
APInt PredMask(NumUniquePredicates, 0);
PredMask.setBit(Predicate2Index[Pred]);
for (const Record *Opcode : Opcodes) {
unsigned OpcodeIdx = Opcode2Index[Opcode];
if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
std::string Message =
"Opcode " + Opcode->getName().str() +
" used by multiple InstructionEquivalenceClass definitions.";
PrintFatalError(EC->getLoc(), Message);
}
OpcodeMasks[OpcodeIdx].first |= ProcMask;
OpcodeMasks[OpcodeIdx].second |= PredMask;
OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
}
}
}
// Sort OpcodeMappings elements based on their CPU and predicate masks.
// As a last resort, order elements by opcode identifier.
llvm::sort(OpcodeMappings,
[&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
unsigned LhsIdx = Opcode2Index[Lhs.first];
unsigned RhsIdx = Opcode2Index[Rhs.first];
const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
unsigned LhsCountPopulation = Lhs.countPopulation();
unsigned RhsCountPopulation = Rhs.countPopulation();
return ((LhsCountPopulation < RhsCountPopulation) ||
((LhsCountPopulation == RhsCountPopulation) &&
(Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
};
if (LhsMasks.first != RhsMasks.first)
return LessThan(LhsMasks.first, RhsMasks.first);
if (LhsMasks.second != RhsMasks.second)
return LessThan(LhsMasks.second, RhsMasks.second);
return LhsIdx < RhsIdx;
});
// Now construct opcode groups. Groups are used by the SubtargetEmitter when
// expanding the body of a STIPredicate function. In particular, each opcode
// group is expanded into a sequence of labels in a switch statement.
// It identifies opcodes for which different processors define same predicates
// and same opcode masks.
for (OpcodeMapPair &Info : OpcodeMappings)
Fn.addOpcode(Info.first, std::move(Info.second));
}
void CodeGenSchedModels::collectSTIPredicates() {
// Map STIPredicateDecl records to elements of vector
// CodeGenSchedModels::STIPredicates.
DenseMap<const Record *, unsigned> Decl2Index;
RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
for (const Record *R : RV) {
const Record *Decl = R->getValueAsDef("Declaration");
const auto It = Decl2Index.find(Decl);
if (It == Decl2Index.end()) {
Decl2Index[Decl] = STIPredicates.size();
STIPredicateFunction Predicate(Decl);
Predicate.addDefinition(R);
STIPredicates.emplace_back(std::move(Predicate));
continue;
}
STIPredicateFunction &PreviousDef = STIPredicates[It->second];
PreviousDef.addDefinition(R);
}
for (STIPredicateFunction &Fn : STIPredicates)
processSTIPredicate(Fn, ProcModelMap);
}
void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
const llvm::APInt &OperandMask,
const Record *Predicate) {
auto It = llvm::find_if(
Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
return P.Predicate == Predicate && P.OperandMask == OperandMask;
});
if (It == Predicates.end()) {
Predicates.emplace_back(CpuMask, OperandMask, Predicate);
return;
}
It->ProcModelMask |= CpuMask;
}
void CodeGenSchedModels::checkMCInstPredicates() const {
RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
if (MCPredicates.empty())
return;
// A target cannot have multiple TIIPredicate definitions with a same name.
llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
for (const Record *TIIPred : MCPredicates) {
StringRef Name = TIIPred->getValueAsString("FunctionName");
StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
if (It == TIIPredicates.end()) {
TIIPredicates[Name] = TIIPred;
continue;
}
PrintError(TIIPred->getLoc(),
"TIIPredicate " + Name + " is multiply defined.");
PrintFatalNote(It->second->getLoc(),
" Previous definition of " + Name + " was here.");
}
}
void CodeGenSchedModels::collectRetireControlUnits() {
RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
for (Record *RCU : Units) {
CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
if (PM.RetireControlUnit) {
PrintError(RCU->getLoc(),
"Expected a single RetireControlUnit definition");
PrintNote(PM.RetireControlUnit->getLoc(),
"Previous definition of RetireControlUnit was here");
}
PM.RetireControlUnit = RCU;
}
}
void CodeGenSchedModels::collectLoadStoreQueueInfo() {
RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
for (Record *Queue : Queues) {
CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
if (Queue->isSubClassOf("LoadQueue")) {
if (PM.LoadQueue) {
PrintError(Queue->getLoc(),
"Expected a single LoadQueue definition");
PrintNote(PM.LoadQueue->getLoc(),
"Previous definition of LoadQueue was here");
}
PM.LoadQueue = Queue;
}
if (Queue->isSubClassOf("StoreQueue")) {
if (PM.StoreQueue) {
PrintError(Queue->getLoc(),
"Expected a single StoreQueue definition");
PrintNote(PM.LoadQueue->getLoc(),
"Previous definition of StoreQueue was here");
}
PM.StoreQueue = Queue;
}
}
}
/// Collect optional processor information.
void CodeGenSchedModels::collectOptionalProcessorInfo() {
// Find register file definitions for each processor.
collectRegisterFiles();
// Collect processor RetireControlUnit descriptors if available.
collectRetireControlUnits();
// Collect information about load/store queues.
collectLoadStoreQueueInfo();
checkCompleteness();
}
/// Gather all processor models.
void CodeGenSchedModels::collectProcModels() {
RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
llvm::sort(ProcRecords, LessRecordFieldName());
// Check for duplicated names.
auto I = std::adjacent_find(ProcRecords.begin(), ProcRecords.end(),
[](const Record *Rec1, const Record *Rec2) {
return Rec1->getValueAsString("Name") == Rec2->getValueAsString("Name");
});
if (I != ProcRecords.end())
PrintFatalError((*I)->getLoc(), "Duplicate processor name " +
(*I)->getValueAsString("Name"));
// Reserve space because we can. Reallocation would be ok.
ProcModels.reserve(ProcRecords.size()+1);
// Use idx=0 for NoModel/NoItineraries.
Record *NoModelDef = Records.getDef("NoSchedModel");
Record *NoItinsDef = Records.getDef("NoItineraries");
ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
ProcModelMap[NoModelDef] = 0;
// For each processor, find a unique machine model.
LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
for (Record *ProcRecord : ProcRecords)
addProcModel(ProcRecord);
}
/// Get a unique processor model based on the defined MachineModel and
/// ProcessorItineraries.
void CodeGenSchedModels::addProcModel(Record *ProcDef) {
Record *ModelKey = getModelOrItinDef(ProcDef);
if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
return;
std::string Name = std::string(ModelKey->getName());
if (ModelKey->isSubClassOf("SchedMachineModel")) {
Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
}
else {
// An itinerary is defined without a machine model. Infer a new model.
if (!ModelKey->getValueAsListOfDefs("IID").empty())
Name = Name + "Model";
ProcModels.emplace_back(ProcModels.size(), Name,
ProcDef->getValueAsDef("SchedModel"), ModelKey);
}
LLVM_DEBUG(ProcModels.back().dump());
}
// Recursively find all reachable SchedReadWrite records.
static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
SmallPtrSet<Record*, 16> &RWSet) {
if (!RWSet.insert(RWDef).second)
return;
RWDefs.push_back(RWDef);
// Reads don't currently have sequence records, but it can be added later.
if (RWDef->isSubClassOf("WriteSequence")) {
RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
for (Record *WSRec : Seq)
scanSchedRW(WSRec, RWDefs, RWSet);
}
else if (RWDef->isSubClassOf("SchedVariant")) {
// Visit each variant (guarded by a different predicate).
RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
for (Record *Variant : Vars) {
// Visit each RW in the sequence selected by the current variant.
RecVec Selected = Variant->getValueAsListOfDefs("Selected");
for (Record *SelDef : Selected)
scanSchedRW(SelDef, RWDefs, RWSet);
}
}
}
// Collect and sort all SchedReadWrites reachable via tablegen records.
// More may be inferred later when inferring new SchedClasses from variants.
void CodeGenSchedModels::collectSchedRW() {
// Reserve idx=0 for invalid writes/reads.
SchedWrites.resize(1);
SchedReads.resize(1);
SmallPtrSet<Record*, 16> RWSet;
// Find all SchedReadWrites referenced by instruction defs.
RecVec SWDefs, SRDefs;
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
Record *SchedDef = Inst->TheDef;
if (SchedDef->isValueUnset("SchedRW"))
continue;
RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
for (Record *RW : RWs) {
if (RW->isSubClassOf("SchedWrite"))
scanSchedRW(RW, SWDefs, RWSet);
else {
assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
scanSchedRW(RW, SRDefs, RWSet);
}
}
}
// Find all ReadWrites referenced by InstRW.
RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
for (Record *InstRWDef : InstRWDefs) {
// For all OperandReadWrites.
RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
for (Record *RWDef : RWDefs) {
if (RWDef->isSubClassOf("SchedWrite"))
scanSchedRW(RWDef, SWDefs, RWSet);
else {
assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
scanSchedRW(RWDef, SRDefs, RWSet);
}
}
}
// Find all ReadWrites referenced by ItinRW.
RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
for (Record *ItinRWDef : ItinRWDefs) {
// For all OperandReadWrites.
RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
for (Record *RWDef : RWDefs) {
if (RWDef->isSubClassOf("SchedWrite"))
scanSchedRW(RWDef, SWDefs, RWSet);
else {
assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
scanSchedRW(RWDef, SRDefs, RWSet);
}
}
}
// Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
// for the loop below that initializes Alias vectors.
RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
llvm::sort(AliasDefs, LessRecord());
for (Record *ADef : AliasDefs) {
Record *MatchDef = ADef->getValueAsDef("MatchRW");
Record *AliasDef = ADef->getValueAsDef("AliasRW");
if (MatchDef->isSubClassOf("SchedWrite")) {
if (!AliasDef->isSubClassOf("SchedWrite"))
PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
scanSchedRW(AliasDef, SWDefs, RWSet);
}
else {
assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
if (!AliasDef->isSubClassOf("SchedRead"))
PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
scanSchedRW(AliasDef, SRDefs, RWSet);
}
}
// Sort and add the SchedReadWrites directly referenced by instructions or
// itinerary resources. Index reads and writes in separate domains.
llvm::sort(SWDefs, LessRecord());
for (Record *SWDef : SWDefs) {
assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
SchedWrites.emplace_back(SchedWrites.size(), SWDef);
}
llvm::sort(SRDefs, LessRecord());
for (Record *SRDef : SRDefs) {
assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
SchedReads.emplace_back(SchedReads.size(), SRDef);
}
// Initialize WriteSequence vectors.
for (CodeGenSchedRW &CGRW : SchedWrites) {
if (!CGRW.IsSequence)
continue;
findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
/*IsRead=*/false);
}
// Initialize Aliases vectors.
for (Record *ADef : AliasDefs) {
Record *AliasDef = ADef->getValueAsDef("AliasRW");
getSchedRW(AliasDef).IsAlias = true;
Record *MatchDef = ADef->getValueAsDef("MatchRW");
CodeGenSchedRW &RW = getSchedRW(MatchDef);
if (RW.IsAlias)
PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
RW.Aliases.push_back(ADef);
}
LLVM_DEBUG(
dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
dbgs() << WIdx << ": ";
SchedWrites[WIdx].dump();
dbgs() << '\n';
} for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
++RIdx) {
dbgs() << RIdx << ": ";
SchedReads[RIdx].dump();
dbgs() << '\n';
} RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
for (Record *RWDef
: RWDefs) {
if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
StringRef Name = RWDef->getName();
if (Name != "NoWrite" && Name != "ReadDefault")
dbgs() << "Unused SchedReadWrite " << Name << '\n';
}
});
}
/// Compute a SchedWrite name from a sequence of writes.
std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
std::string Name("(");
ListSeparator LS("_");
for (unsigned I : Seq) {
Name += LS;
Name += getSchedRW(I, IsRead).Name;
}
Name += ')';
return Name;
}
unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
bool IsRead) const {
const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
const auto I = find_if(
RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
}
bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
for (const CodeGenSchedRW &Read : SchedReads) {
Record *ReadDef = Read.TheDef;
if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
continue;
RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
if (is_contained(ValidWrites, WriteDef)) {
return true;
}
}
return false;
}
static void splitSchedReadWrites(const RecVec &RWDefs,
RecVec &WriteDefs, RecVec &ReadDefs) {
for (Record *RWDef : RWDefs) {
if (RWDef->isSubClassOf("SchedWrite"))
WriteDefs.push_back(RWDef);
else {
assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
ReadDefs.push_back(RWDef);
}
}
}
// Split the SchedReadWrites defs and call findRWs for each list.
void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
IdxVec &Writes, IdxVec &Reads) const {
RecVec WriteDefs;
RecVec ReadDefs;
splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
findRWs(WriteDefs, Writes, false);
findRWs(ReadDefs, Reads, true);
}
// Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
bool IsRead) const {
for (Record *RWDef : RWDefs) {
unsigned Idx = getSchedRWIdx(RWDef, IsRead);
assert(Idx && "failed to collect SchedReadWrite");
RWs.push_back(Idx);
}
}
void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
bool IsRead) const {
const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
if (!SchedRW.IsSequence) {
RWSeq.push_back(RWIdx);
return;
}
int Repeat =
SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
for (int i = 0; i < Repeat; ++i) {
for (unsigned I : SchedRW.Sequence) {
expandRWSequence(I, RWSeq, IsRead);
}
}
}
// Expand a SchedWrite as a sequence following any aliases that coincide with
// the given processor model.
void CodeGenSchedModels::expandRWSeqForProc(
unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
const CodeGenProcModel &ProcModel) const {
const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
Record *AliasDef = nullptr;
for (const Record *Rec : SchedWrite.Aliases) {
const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
if (Rec->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = Rec->getValueAsDef("SchedModel");
if (&getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
"defined for processor " + ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef) {
expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
RWSeq, IsRead,ProcModel);
return;
}
if (!SchedWrite.IsSequence) {
RWSeq.push_back(RWIdx);
return;
}
int Repeat =
SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
for (int I = 0, E = Repeat; I < E; ++I) {
for (unsigned Idx : SchedWrite.Sequence) {
expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
}
}
}
// Find the existing SchedWrite that models this sequence of writes.
unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
bool IsRead) {
std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
return makeArrayRef(RW.Sequence) == Seq;
});
// Index zero reserved for invalid RW.
return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
}
/// Add this ReadWrite if it doesn't already exist.
unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
bool IsRead) {
assert(!Seq.empty() && "cannot insert empty sequence");
if (Seq.size() == 1)
return Seq.back();
unsigned Idx = findRWForSequence(Seq, IsRead);
if (Idx)
return Idx;
std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
unsigned RWIdx = RWVec.size();
CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
RWVec.push_back(SchedRW);
return RWIdx;
}
/// Visit all the instruction definitions for this target to gather and
/// enumerate the itinerary classes. These are the explicitly specified
/// SchedClasses. More SchedClasses may be inferred.
void CodeGenSchedModels::collectSchedClasses() {
// NoItinerary is always the first class at Idx=0
assert(SchedClasses.empty() && "Expected empty sched class");
SchedClasses.emplace_back(0, "NoInstrModel",
Records.getDef("NoItinerary"));
SchedClasses.back().ProcIndices.push_back(0);
// Create a SchedClass for each unique combination of itinerary class and
// SchedRW list.
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
IdxVec Writes, Reads;
if (!Inst->TheDef->isValueUnset("SchedRW"))
findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
// ProcIdx == 0 indicates the class applies to all processors.
unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
InstrClassMap[Inst->TheDef] = SCIdx;
}
// Create classes for InstRW defs.
RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
llvm::sort(InstRWDefs, LessRecord());
LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
for (Record *RWDef : InstRWDefs)
createInstRWClass(RWDef);
NumInstrSchedClasses = SchedClasses.size();
bool EnableDump = false;
LLVM_DEBUG(EnableDump = true);
if (!EnableDump)
return;
LLVM_DEBUG(
dbgs()
<< "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
StringRef InstName = Inst->TheDef->getName();
unsigned SCIdx = getSchedClassIdx(*Inst);
if (!SCIdx) {
LLVM_DEBUG({
if (!Inst->hasNoSchedulingInfo)
dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
});
continue;
}
CodeGenSchedClass &SC = getSchedClass(SCIdx);
if (SC.ProcIndices[0] != 0)
PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
"must not be subtarget specific.");
IdxVec ProcIndices;
if (SC.ItinClassDef->getName() != "NoItinerary") {
ProcIndices.push_back(0);
dbgs() << "Itinerary for " << InstName << ": "
<< SC.ItinClassDef->getName() << '\n';
}
if (!SC.Writes.empty()) {
ProcIndices.push_back(0);
LLVM_DEBUG({
dbgs() << "SchedRW machine model for " << InstName;
for (unsigned int Write : SC.Writes)
dbgs() << " " << SchedWrites[Write].Name;
for (unsigned int Read : SC.Reads)
dbgs() << " " << SchedReads[Read].Name;
dbgs() << '\n';
});
}
const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
for (Record *RWDef : RWDefs) {
const CodeGenProcModel &ProcModel =
getProcModel(RWDef->getValueAsDef("SchedModel"));
ProcIndices.push_back(ProcModel.Index);
LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
<< InstName);
IdxVec Writes;
IdxVec Reads;
findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
LLVM_DEBUG({
for (unsigned WIdx : Writes)
dbgs() << " " << SchedWrites[WIdx].Name;
for (unsigned RIdx : Reads)
dbgs() << " " << SchedReads[RIdx].Name;
dbgs() << '\n';
});
}
// If ProcIndices contains zero, the class applies to all processors.
LLVM_DEBUG({
if (!llvm::is_contained(ProcIndices, 0)) {
for (const CodeGenProcModel &PM : ProcModels) {
if (!llvm::is_contained(ProcIndices, PM.Index))
dbgs() << "No machine model for " << Inst->TheDef->getName()
<< " on processor " << PM.ModelName << '\n';
}
}
});
}
}
// Get the SchedClass index for an instruction.
unsigned
CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
return InstrClassMap.lookup(Inst.TheDef);
}
std::string
CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
ArrayRef<unsigned> OperWrites,
ArrayRef<unsigned> OperReads) {
std::string Name;
if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
Name = std::string(ItinClassDef->getName());
for (unsigned Idx : OperWrites) {
if (!Name.empty())
Name += '_';
Name += SchedWrites[Idx].Name;
}
for (unsigned Idx : OperReads) {
Name += '_';
Name += SchedReads[Idx].Name;
}
return Name;
}
std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
std::string Name;
ListSeparator LS("_");
for (const Record *InstDef : InstDefs) {
Name += LS;
Name += InstDef->getName();
}
return Name;
}
/// Add an inferred sched class from an itinerary class and per-operand list of
/// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
/// processors that may utilize this class.
unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
ArrayRef<unsigned> OperWrites,
ArrayRef<unsigned> OperReads,
ArrayRef<unsigned> ProcIndices) {
assert(!ProcIndices.empty() && "expect at least one ProcIdx");
auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
};
auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
IdxVec PI;
std::set_union(SchedClasses[Idx].ProcIndices.begin(),
SchedClasses[Idx].ProcIndices.end(),
ProcIndices.begin(), ProcIndices.end(),
std::back_inserter(PI));
SchedClasses[Idx].ProcIndices = std::move(PI);
return Idx;
}
Idx = SchedClasses.size();
SchedClasses.emplace_back(Idx,
createSchedClassName(ItinClassDef, OperWrites,
OperReads),
ItinClassDef);
CodeGenSchedClass &SC = SchedClasses.back();
SC.Writes = OperWrites;
SC.Reads = OperReads;
SC.ProcIndices = ProcIndices;
return Idx;
}
// Create classes for each set of opcodes that are in the same InstReadWrite
// definition across all processors.
void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
// ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
// intersects with an existing class via a previous InstRWDef. Instrs that do
// not intersect with an existing class refer back to their former class as
// determined from ItinDef or SchedRW.
SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
// Sort Instrs into sets.
const RecVec *InstDefs = Sets.expand(InstRWDef);
if (InstDefs->empty())
PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
for (Record *InstDef : *InstDefs) {
InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
if (Pos == InstrClassMap.end())
PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
unsigned SCIdx = Pos->second;
ClassInstrs[SCIdx].push_back(InstDef);
}
// For each set of Instrs, create a new class if necessary, and map or remap
// the Instrs to it.
for (auto &Entry : ClassInstrs) {
unsigned OldSCIdx = Entry.first;
ArrayRef<Record*> InstDefs = Entry.second;
// If the all instrs in the current class are accounted for, then leave
// them mapped to their old class.
if (OldSCIdx) {
const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
if (!RWDefs.empty()) {
const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
unsigned OrigNumInstrs =
count_if(*OrigInstDefs, [&](Record *OIDef) {
return InstrClassMap[OIDef] == OldSCIdx;
});
if (OrigNumInstrs == InstDefs.size()) {
assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
"expected a generic SchedClass");
Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
// Make sure we didn't already have a InstRW containing this
// instruction on this model.
for (Record *RWD : RWDefs) {
if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
assert(!InstDefs.empty()); // Checked at function start.
PrintError(
InstRWDef->getLoc(),
"Overlapping InstRW definition for \"" +
InstDefs.front()->getName() +
"\" also matches previous \"" +
RWD->getValue("Instrs")->getValue()->getAsString() +
"\".");
PrintFatalNote(RWD->getLoc(), "Previous match was here.");
}
}
LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
<< SchedClasses[OldSCIdx].Name << " on "
<< RWModelDef->getName() << "\n");
SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
continue;
}
}
}
unsigned SCIdx = SchedClasses.size();
SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
CodeGenSchedClass &SC = SchedClasses.back();
LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
<< InstRWDef->getValueAsDef("SchedModel")->getName()
<< "\n");
// Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
SC.Writes = SchedClasses[OldSCIdx].Writes;
SC.Reads = SchedClasses[OldSCIdx].Reads;
SC.ProcIndices.push_back(0);
// If we had an old class, copy it's InstRWs to this new class.
if (OldSCIdx) {
Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
assert(!InstDefs.empty()); // Checked at function start.
PrintError(
InstRWDef->getLoc(),
"Overlapping InstRW definition for \"" +
InstDefs.front()->getName() + "\" also matches previous \"" +
OldRWDef->getValue("Instrs")->getValue()->getAsString() +
"\".");
PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
}
assert(OldRWDef != InstRWDef &&
"SchedClass has duplicate InstRW def");
SC.InstRWs.push_back(OldRWDef);
}
}
// Map each Instr to this new class.
for (Record *InstDef : InstDefs)
InstrClassMap[InstDef] = SCIdx;
SC.InstRWs.push_back(InstRWDef);
}
}
// True if collectProcItins found anything.
bool CodeGenSchedModels::hasItineraries() const {
for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
if (PM.hasItineraries())
return true;
return false;
}
// Gather the processor itineraries.
void CodeGenSchedModels::collectProcItins() {
LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
for (CodeGenProcModel &ProcModel : ProcModels) {
if (!ProcModel.hasItineraries())
continue;
RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
// Populate ItinDefList with Itinerary records.
ProcModel.ItinDefList.resize(NumInstrSchedClasses);
// Insert each itinerary data record in the correct position within
// the processor model's ItinDefList.
for (Record *ItinData : ItinRecords) {
const Record *ItinDef = ItinData->getValueAsDef("TheClass");
bool FoundClass = false;
for (const CodeGenSchedClass &SC :
make_range(schedClassBegin(), schedClassEnd())) {
// Multiple SchedClasses may share an itinerary. Update all of them.
if (SC.ItinClassDef == ItinDef) {
ProcModel.ItinDefList[SC.Index] = ItinData;
FoundClass = true;
}
}
if (!FoundClass) {
LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
<< " missing class for itinerary "
<< ItinDef->getName() << '\n');
}
}
// Check for missing itinerary entries.
assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
LLVM_DEBUG(
for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
if (!ProcModel.ItinDefList[i])
dbgs() << ProcModel.ItinsDef->getName()
<< " missing itinerary for class " << SchedClasses[i].Name
<< '\n';
});
}
}
// Gather the read/write types for each itinerary class.
void CodeGenSchedModels::collectProcItinRW() {
RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
llvm::sort(ItinRWDefs, LessRecord());
for (Record *RWDef : ItinRWDefs) {
if (!RWDef->getValueInit("SchedModel")->isComplete())
PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
Record *ModelDef = RWDef->getValueAsDef("SchedModel");
ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
if (I == ProcModelMap.end()) {
PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
+ ModelDef->getName());
}
ProcModels[I->second].ItinRWDefs.push_back(RWDef);
}
}
// Gather the unsupported features for processor models.
void CodeGenSchedModels::collectProcUnsupportedFeatures() {
for (CodeGenProcModel &ProcModel : ProcModels)
append_range(
ProcModel.UnsupportedFeaturesDefs,
ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures"));
}
/// Infer new classes from existing classes. In the process, this may create new
/// SchedWrites from sequences of existing SchedWrites.
void CodeGenSchedModels::inferSchedClasses() {
LLVM_DEBUG(
dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
// Visit all existing classes and newly created classes.
for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
if (SchedClasses[Idx].ItinClassDef)
inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
if (!SchedClasses[Idx].InstRWs.empty())
inferFromInstRWs(Idx);
if (!SchedClasses[Idx].Writes.empty()) {
inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
Idx, SchedClasses[Idx].ProcIndices);
}
assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
"too many SchedVariants");
}
}
/// Infer classes from per-processor itinerary resources.
void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
unsigned FromClassIdx) {
for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
const CodeGenProcModel &PM = ProcModels[PIdx];
// For all ItinRW entries.
bool HasMatch = false;
for (const Record *Rec : PM.ItinRWDefs) {
RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
if (!llvm::is_contained(Matched, ItinClassDef))
continue;
if (HasMatch)
PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
+ ItinClassDef->getName()
+ " in ItinResources for " + PM.ModelName);
HasMatch = true;
IdxVec Writes, Reads;
findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
inferFromRW(Writes, Reads, FromClassIdx, PIdx);
}
}
}
/// Infer classes from per-processor InstReadWrite definitions.
void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
Record *Rec = SchedClasses[SCIdx].InstRWs[I];
const RecVec *InstDefs = Sets.expand(Rec);
RecIter II = InstDefs->begin(), IE = InstDefs->end();
for (; II != IE; ++II) {
if (InstrClassMap[*II] == SCIdx)
break;
}
// If this class no longer has any instructions mapped to it, it has become
// irrelevant.
if (II == IE)
continue;
IdxVec Writes, Reads;
findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx);
}
}
namespace {
// Helper for substituteVariantOperand.
struct TransVariant {
Record *VarOrSeqDef; // Variant or sequence.
unsigned RWIdx; // Index of this variant or sequence's matched type.
unsigned ProcIdx; // Processor model index or zero for any.
unsigned TransVecIdx; // Index into PredTransitions::TransVec.
TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
};
// Associate a predicate with the SchedReadWrite that it guards.
// RWIdx is the index of the read/write variant.
struct PredCheck {
bool IsRead;
unsigned RWIdx;
Record *Predicate;
PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
};
// A Predicate transition is a list of RW sequences guarded by a PredTerm.
struct PredTransition {
// A predicate term is a conjunction of PredChecks.
SmallVector<PredCheck, 4> PredTerm;
SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
unsigned ProcIndex = 0;
PredTransition() = default;
PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) {
PredTerm.assign(PT.begin(), PT.end());
ProcIndex = ProcId;
}
};
// Encapsulate a set of partially constructed transitions.
// The results are built by repeated calls to substituteVariants.
class PredTransitions {
CodeGenSchedModels &SchedModels;
public:
std::vector<PredTransition> TransVec;
PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
bool IsRead, unsigned StartIdx);
bool substituteVariants(const PredTransition &Trans);
#ifndef NDEBUG
void dump() const;
#endif
private:
bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds,
ArrayRef<PredCheck> Term);
void getIntersectingVariants(
const CodeGenSchedRW &SchedRW, unsigned TransIdx,
std::vector<TransVariant> &IntersectingVariants);
void pushVariant(const TransVariant &VInfo, bool IsRead);
};
} // end anonymous namespace
// Return true if this predicate is mutually exclusive with a PredTerm. This
// degenerates into checking if the predicate is mutually exclusive with any
// predicate in the Term's conjunction.
//
// All predicates associated with a given SchedRW are considered mutually
// exclusive. This should work even if the conditions expressed by the
// predicates are not exclusive because the predicates for a given SchedWrite
// are always checked in the order they are defined in the .td file. Later
// conditions implicitly negate any prior condition.
bool PredTransitions::mutuallyExclusive(Record *PredDef,
ArrayRef<Record *> Preds,
ArrayRef<PredCheck> Term) {
for (const PredCheck &PC: Term) {
if (PC.Predicate == PredDef)
return false;
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
if (any_of(Variants, [PredDef](const Record *R) {
return R->getValueAsDef("Predicate") == PredDef;
})) {
// To check if PredDef is mutually exclusive with PC we also need to
// check that PC.Predicate is exclusive with all predicates from variant
// we're expanding. Consider following RW sequence with two variants
// (1 & 2), where A, B and C are predicates from corresponding SchedVars:
//
// 1:A/B - 2:C/B
//
// Here C is not mutually exclusive with variant (1), because A doesn't
// exist in variant (2). This means we have possible transitions from A
// to C and from A to B, and fully expanded sequence would look like:
//
// if (A & C) return ...;
// if (A & B) return ...;
// if (B) return ...;
//
// Now let's consider another sequence:
//
// 1:A/B - 2:A/B
//
// Here A in variant (2) is mutually exclusive with variant (1), because
// A also exists in (2). This means A->B transition is impossible and
// expanded sequence would look like:
//
// if (A) return ...;
// if (B) return ...;
if (!llvm::is_contained(Preds, PC.Predicate))
continue;
return true;
}
}
return false;
}
static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants,
unsigned ProcId) {
std::vector<Record *> Preds;
for (auto &Variant : Variants) {
if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar"))
continue;
Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate"));
}
return Preds;
}
// Populate IntersectingVariants with any variants or aliased sequences of the
// given SchedRW whose processor indices and predicates are not mutually
// exclusive with the given transition.
void PredTransitions::getIntersectingVariants(
const CodeGenSchedRW &SchedRW, unsigned TransIdx,
std::vector<TransVariant> &IntersectingVariants) {
bool GenericRW = false;
std::vector<TransVariant> Variants;
if (SchedRW.HasVariants) {
unsigned VarProcIdx = 0;
if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
}
if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) {
// Push each variant. Assign TransVecIdx later.
const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
for (Record *VarDef : VarDefs)
Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
if (VarProcIdx == 0)
GenericRW = true;
}
}
for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
AI != AE; ++AI) {
// If either the SchedAlias itself or the SchedReadWrite that it aliases
// to is defined within a processor model, constrain all variants to
// that processor.
unsigned AliasProcIdx = 0;
if ((*AI)->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
}
if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex)
continue;
if (!Variants.empty()) {
const CodeGenProcModel &PM =
*(SchedModels.procModelBegin() + AliasProcIdx);
PrintFatalError((*AI)->getLoc(),
"Multiple variants defined for processor " +
PM.ModelName +
" Ensure only one SchedAlias exists per RW.");
}
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
if (AliasRW.HasVariants) {
const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
for (Record *VD : VarDefs)
Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
}
if (AliasRW.IsSequence)
Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
if (AliasProcIdx == 0)
GenericRW = true;
}
std::vector<Record *> AllPreds =
getAllPredicates(Variants, TransVec[TransIdx].ProcIndex);
for (TransVariant &Variant : Variants) {
// Don't expand variants if the processor models don't intersect.
// A zero processor index means any processor.
if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm))
continue;
}
if (IntersectingVariants.empty()) {
// The first variant builds on the existing transition.
Variant.TransVecIdx = TransIdx;
IntersectingVariants.push_back(Variant);
}
else {
// Push another copy of the current transition for more variants.
Variant.TransVecIdx = TransVec.size();
IntersectingVariants.push_back(Variant);
TransVec.push_back(TransVec[TransIdx]);
}
}
if (GenericRW && IntersectingVariants.empty()) {
PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
"a matching predicate on any processor");
}
}
// Push the Reads/Writes selected by this variant onto the PredTransition
// specified by VInfo.
void PredTransitions::
pushVariant(const TransVariant &VInfo, bool IsRead) {
PredTransition &Trans = TransVec[VInfo.TransVecIdx];
// If this operand transition is reached through a processor-specific alias,
// then the whole transition is specific to this processor.
IdxVec SelectedRWs;
if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
}
else {
assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
"variant must be a SchedVariant or aliased WriteSequence");
SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
}
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
? Trans.ReadSequences : Trans.WriteSequences;
if (SchedRW.IsVariadic) {
unsigned OperIdx = RWSequences.size()-1;
// Make N-1 copies of this transition's last sequence.
RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1);
RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
RWSequences[OperIdx]);
// Push each of the N elements of the SelectedRWs onto a copy of the last
// sequence (split the current operand into N operands).
// Note that write sequences should be expanded within this loop--the entire
// sequence belongs to a single operand.
for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
RWI != RWE; ++RWI, ++OperIdx) {
IdxVec ExpandedRWs;
if (IsRead)
ExpandedRWs.push_back(*RWI);
else
SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
llvm::append_range(RWSequences[OperIdx], ExpandedRWs);
}
assert(OperIdx == RWSequences.size() && "missed a sequence");
}
else {
// Push this transition's expanded sequence onto this transition's last
// sequence (add to the current operand's sequence).
SmallVectorImpl<unsigned> &Seq = RWSequences.back();
IdxVec ExpandedRWs;
for (unsigned int SelectedRW : SelectedRWs) {
if (IsRead)
ExpandedRWs.push_back(SelectedRW);
else
SchedModels.expandRWSequence(SelectedRW, ExpandedRWs, IsRead);
}
llvm::append_range(Seq, ExpandedRWs);
}
}
// RWSeq is a sequence of all Reads or all Writes for the next read or write
// operand. StartIdx is an index into TransVec where partial results
// starts. RWSeq must be applied to all transitions between StartIdx and the end
// of TransVec.
bool PredTransitions::substituteVariantOperand(
const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
bool Subst = false;
// Visit each original RW within the current sequence.
for (unsigned int RWI : RWSeq) {
const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(RWI, IsRead);
// Push this RW on all partial PredTransitions or distribute variants.
// New PredTransitions may be pushed within this loop which should not be
// revisited (TransEnd must be loop invariant).
for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
TransIdx != TransEnd; ++TransIdx) {
// Distribute this partial PredTransition across intersecting variants.
// This will push a copies of TransVec[TransIdx] on the back of TransVec.
std::vector<TransVariant> IntersectingVariants;
getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
// Now expand each variant on top of its copy of the transition.
for (const TransVariant &IV : IntersectingVariants)
pushVariant(IV, IsRead);
if (IntersectingVariants.empty()) {
if (IsRead)
TransVec[TransIdx].ReadSequences.back().push_back(RWI);
else
TransVec[TransIdx].WriteSequences.back().push_back(RWI);
continue;
} else {
Subst = true;
}
}
}
return Subst;
}
// For each variant of a Read/Write in Trans, substitute the sequence of
// Read/Writes guarded by the variant. This is exponential in the number of
// variant Read/Writes, but in practice detection of mutually exclusive
// predicates should result in linear growth in the total number variants.
//
// This is one step in a breadth-first search of nested variants.
bool PredTransitions::substituteVariants(const PredTransition &Trans) {
// Build up a set of partial results starting at the back of
// PredTransitions. Remember the first new transition.
unsigned StartIdx = TransVec.size();
bool Subst = false;
assert(Trans.ProcIndex != 0);
TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex);
// Visit each original write sequence.
for (const auto &WriteSequence : Trans.WriteSequences) {
// Push a new (empty) write sequence onto all partial Transitions.
for (std::vector<PredTransition>::iterator I =
TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
I->WriteSequences.emplace_back();
}
Subst |=
substituteVariantOperand(WriteSequence, /*IsRead=*/false, StartIdx);
}
// Visit each original read sequence.
for (const auto &ReadSequence : Trans.ReadSequences) {
// Push a new (empty) read sequence onto all partial Transitions.
for (std::vector<PredTransition>::iterator I =
TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
I->ReadSequences.emplace_back();
}
Subst |= substituteVariantOperand(ReadSequence, /*IsRead=*/true, StartIdx);
}
return Subst;
}
static void addSequences(CodeGenSchedModels &SchedModels,
const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs,
IdxVec &Result, bool IsRead) {
for (const auto &S : Seqs)
if (!S.empty())
Result.push_back(SchedModels.findOrInsertRW(S, IsRead));
}
#ifndef NDEBUG
static void dumpRecVec(const RecVec &RV) {
for (const Record *R : RV)
dbgs() << R->getName() << ", ";
}
#endif
static void dumpTransition(const CodeGenSchedModels &SchedModels,
const CodeGenSchedClass &FromSC,
const CodeGenSchedTransition &SCTrans,
const RecVec &Preds) {
LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "("
<< FromSC.Index << ") to "
<< SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "("
<< SCTrans.ToClassIdx << ") on pred term: (";
dumpRecVec(Preds);
dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n");
}
// Create a new SchedClass for each variant found by inferFromRW. Pass
static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
unsigned FromClassIdx,
CodeGenSchedModels &SchedModels) {
// For each PredTransition, create a new CodeGenSchedTransition, which usually
// requires creating a new SchedClass.
for (const auto &LastTransition : LastTransitions) {
// Variant expansion (substituteVariants) may create unconditional
// transitions. We don't need to build sched classes for them.
if (LastTransition.PredTerm.empty())
continue;
IdxVec OperWritesVariant, OperReadsVariant;
addSequences(SchedModels, LastTransition.WriteSequences, OperWritesVariant,
false);
addSequences(SchedModels, LastTransition.ReadSequences, OperReadsVariant,
true);
CodeGenSchedTransition SCTrans;
// Transition should not contain processor indices already assigned to
// InstRWs in this scheduling class.
const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx);
if (FromSC.InstRWProcIndices.count(LastTransition.ProcIndex))
continue;
SCTrans.ProcIndex = LastTransition.ProcIndex;
SCTrans.ToClassIdx =
SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
OperReadsVariant, LastTransition.ProcIndex);
// The final PredTerm is unique set of predicates guarding the transition.
RecVec Preds;
transform(LastTransition.PredTerm, std::back_inserter(Preds),
[](const PredCheck &P) { return P.Predicate; });
Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
dumpTransition(SchedModels, FromSC, SCTrans, Preds);
SCTrans.PredTerm = std::move(Preds);
SchedModels.getSchedClass(FromClassIdx)
.Transitions.push_back(std::move(SCTrans));
}
}
std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const {
std::vector<unsigned> ProcIdVec;
for (const auto &PM : ProcModelMap)
if (PM.second != 0)
ProcIdVec.push_back(PM.second);
// The order of the keys (Record pointers) of ProcModelMap are not stable.
// Sort to stabalize the values.
llvm::sort(ProcIdVec);
return ProcIdVec;
}
static std::vector<PredTransition>
makePerProcessorTransitions(const PredTransition &Trans,
ArrayRef<unsigned> ProcIndices) {
std::vector<PredTransition> PerCpuTransVec;
for (unsigned ProcId : ProcIndices) {
assert(ProcId != 0);
PerCpuTransVec.push_back(Trans);
PerCpuTransVec.back().ProcIndex = ProcId;
}
return PerCpuTransVec;
}
// Create new SchedClasses for the given ReadWrite list. If any of the
// ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
// of the ReadWrite list, following Aliases if necessary.
void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
ArrayRef<unsigned> OperReads,
unsigned FromClassIdx,
ArrayRef<unsigned> ProcIndices) {
LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
dbgs() << ") ");
// Create a seed transition with an empty PredTerm and the expanded sequences
// of SchedWrites for the current SchedClass.
std::vector<PredTransition> LastTransitions;
LastTransitions.emplace_back();
for (unsigned WriteIdx : OperWrites) {
IdxVec WriteSeq;
expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
LastTransitions[0].WriteSequences.emplace_back();
SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
Seq.append(WriteSeq.begin(), WriteSeq.end());
LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
}
LLVM_DEBUG(dbgs() << " Reads: ");
for (unsigned ReadIdx : OperReads) {
IdxVec ReadSeq;
expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
LastTransitions[0].ReadSequences.emplace_back();
SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
Seq.append(ReadSeq.begin(), ReadSeq.end());
LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
}
LLVM_DEBUG(dbgs() << '\n');
LastTransitions = makePerProcessorTransitions(
LastTransitions[0], llvm::is_contained(ProcIndices, 0)
? ArrayRef<unsigned>(getAllProcIndices())
: ProcIndices);
// Collect all PredTransitions for individual operands.
// Iterate until no variant writes remain.
bool SubstitutedAny;
do {
SubstitutedAny = false;
PredTransitions Transitions(*this);
for (const PredTransition &Trans : LastTransitions)
SubstitutedAny |= Transitions.substituteVariants(Trans);
LLVM_DEBUG(Transitions.dump());
LastTransitions.swap(Transitions.TransVec);
} while (SubstitutedAny);
// WARNING: We are about to mutate the SchedClasses vector. Do not refer to
// OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
inferFromTransitions(LastTransitions, FromClassIdx, *this);
}
// Check if any processor resource group contains all resource records in
// SubUnits.
bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
for (Record *ProcResourceDef : PM.ProcResourceDefs) {
if (!ProcResourceDef->isSubClassOf("ProcResGroup"))
continue;
RecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs("Resources");
RecIter RI = SubUnits.begin(), RE = SubUnits.end();
for ( ; RI != RE; ++RI) {
if (!is_contained(SuperUnits, *RI)) {
break;
}
}
if (RI == RE)
return true;
}
return false;
}
// Verify that overlapping groups have a common supergroup.
void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
continue;
RecVec CheckUnits =
PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
for (unsigned j = i+1; j < e; ++j) {
if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
continue;
RecVec OtherUnits =
PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
OtherUnits.begin(), OtherUnits.end())
!= CheckUnits.end()) {
// CheckUnits and OtherUnits overlap
llvm::append_range(OtherUnits, CheckUnits);
if (!hasSuperGroup(OtherUnits, PM)) {
PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
"proc resource group overlaps with "
+ PM.ProcResourceDefs[j]->getName()
+ " but no supergroup contains both.");
}
}
}
}
}
// Collect all the RegisterFile definitions available in this target.
void CodeGenSchedModels::collectRegisterFiles() {
RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
// RegisterFiles is the vector of CodeGenRegisterFile.
for (Record *RF : RegisterFileDefs) {
// For each register file definition, construct a CodeGenRegisterFile object
// and add it to the appropriate scheduling model.
CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
CGRF.MaxMovesEliminatedPerCycle =
RF->getValueAsInt("MaxMovesEliminatedPerCycle");
CGRF.AllowZeroMoveEliminationOnly =
RF->getValueAsBit("AllowZeroMoveEliminationOnly");
// Now set the number of physical registers as well as the cost of registers
// in each register class.
CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
if (!CGRF.NumPhysRegs) {
PrintFatalError(RF->getLoc(),
"Invalid RegisterFile with zero physical registers");
}
RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
bool AllowMoveElim = false;
if (MoveElimInfo->size() > I) {
BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
AllowMoveElim = Val->getValue();
}
CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
}
}
}
// Collect and sort WriteRes, ReadAdvance, and ProcResources.
void CodeGenSchedModels::collectProcResources() {
ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
// Add any subtarget-specific SchedReadWrites that are directly associated
// with processor resources. Refer to the parent SchedClass's ProcIndices to
// determine which processors they apply to.
for (const CodeGenSchedClass &SC :
make_range(schedClassBegin(), schedClassEnd())) {
if (SC.ItinClassDef) {
collectItinProcResources(SC.ItinClassDef);
continue;
}
// This class may have a default ReadWrite list which can be overriden by
// InstRW definitions.
for (Record *RW : SC.InstRWs) {
Record *RWModelDef = RW->getValueAsDef("SchedModel");
unsigned PIdx = getProcModel(RWModelDef).Index;
IdxVec Writes, Reads;
findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
collectRWResources(Writes, Reads, PIdx);
}
collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
}
// Add resources separately defined by each subtarget.
RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
for (Record *WR : WRDefs) {
Record *ModelDef = WR->getValueAsDef("SchedModel");
addWriteRes(WR, getProcModel(ModelDef).Index);
}
RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
for (Record *SWR : SWRDefs) {
Record *ModelDef = SWR->getValueAsDef("SchedModel");
addWriteRes(SWR, getProcModel(ModelDef).Index);
}
RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
for (Record *RA : RADefs) {
Record *ModelDef = RA->getValueAsDef("SchedModel");
addReadAdvance(RA, getProcModel(ModelDef).Index);
}
RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
for (Record *SRA : SRADefs) {
if (SRA->getValueInit("SchedModel")->isComplete()) {
Record *ModelDef = SRA->getValueAsDef("SchedModel");
addReadAdvance(SRA, getProcModel(ModelDef).Index);
}
}
// Add ProcResGroups that are defined within this processor model, which may
// not be directly referenced but may directly specify a buffer size.
RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
for (Record *PRG : ProcResGroups) {
if (!PRG->getValueInit("SchedModel")->isComplete())
continue;
CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
if (!is_contained(PM.ProcResourceDefs, PRG))
PM.ProcResourceDefs.push_back(PRG);
}
// Add ProcResourceUnits unconditionally.
for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
if (!PRU->getValueInit("SchedModel")->isComplete())
continue;
CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
if (!is_contained(PM.ProcResourceDefs, PRU))
PM.ProcResourceDefs.push_back(PRU);
}
// Finalize each ProcModel by sorting the record arrays.
for (CodeGenProcModel &PM : ProcModels) {
llvm::sort(PM.WriteResDefs, LessRecord());
llvm::sort(PM.ReadAdvanceDefs, LessRecord());
llvm::sort(PM.ProcResourceDefs, LessRecord());
LLVM_DEBUG(
PM.dump(); dbgs() << "WriteResDefs: "; for (auto WriteResDef
: PM.WriteResDefs) {
if (WriteResDef->isSubClassOf("WriteRes"))
dbgs() << WriteResDef->getValueAsDef("WriteType")->getName() << " ";
else
dbgs() << WriteResDef->getName() << " ";
} dbgs() << "\nReadAdvanceDefs: ";
for (Record *ReadAdvanceDef
: PM.ReadAdvanceDefs) {
if (ReadAdvanceDef->isSubClassOf("ReadAdvance"))
dbgs() << ReadAdvanceDef->getValueAsDef("ReadType")->getName()
<< " ";
else
dbgs() << ReadAdvanceDef->getName() << " ";
} dbgs()
<< "\nProcResourceDefs: ";
for (Record *ProcResourceDef
: PM.ProcResourceDefs) {
dbgs() << ProcResourceDef->getName() << " ";
} dbgs()
<< '\n');
verifyProcResourceGroups(PM);
}
ProcResourceDefs.clear();
ProcResGroups.clear();
}
void CodeGenSchedModels::checkCompleteness() {
bool Complete = true;
for (const CodeGenProcModel &ProcModel : procModels()) {
const bool HasItineraries = ProcModel.hasItineraries();
if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
continue;
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
if (Inst->hasNoSchedulingInfo)
continue;
if (ProcModel.isUnsupported(*Inst))
continue;
unsigned SCIdx = getSchedClassIdx(*Inst);
if (!SCIdx) {
if (Inst->TheDef->isValueUnset("SchedRW")) {
PrintError(Inst->TheDef->getLoc(),
"No schedule information for instruction '" +
Inst->TheDef->getName() + "' in SchedMachineModel '" +
ProcModel.ModelDef->getName() + "'");
Complete = false;
}
continue;
}
const CodeGenSchedClass &SC = getSchedClass(SCIdx);
if (!SC.Writes.empty())
continue;
if (HasItineraries && SC.ItinClassDef != nullptr &&
SC.ItinClassDef->getName() != "NoItinerary")
continue;
const RecVec &InstRWs = SC.InstRWs;
auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
});
if (I == InstRWs.end()) {
PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
"' lacks information for '" +
Inst->TheDef->getName() + "'");
Complete = false;
}
}
}
if (!Complete) {
errs() << "\n\nIncomplete schedule models found.\n"
<< "- Consider setting 'CompleteModel = 0' while developing new models.\n"
<< "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
<< "- Instructions should usually have Sched<[...]> as a superclass, "
"you may temporarily use an empty list.\n"
<< "- Instructions related to unsupported features can be excluded with "
"list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
"processor model.\n\n";
PrintFatalError("Incomplete schedule model");
}
}
// Collect itinerary class resources for each processor.
void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
const CodeGenProcModel &PM = ProcModels[PIdx];
// For all ItinRW entries.
bool HasMatch = false;
for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
II != IE; ++II) {
RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
if (!llvm::is_contained(Matched, ItinClassDef))
continue;
if (HasMatch)
PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
+ ItinClassDef->getName()
+ " in ItinResources for " + PM.ModelName);
HasMatch = true;
IdxVec Writes, Reads;
findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
collectRWResources(Writes, Reads, PIdx);
}
}
}
void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
ArrayRef<unsigned> ProcIndices) {
const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
if (SchedRW.TheDef) {
if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
for (unsigned Idx : ProcIndices)
addWriteRes(SchedRW.TheDef, Idx);
}
else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
for (unsigned Idx : ProcIndices)
addReadAdvance(SchedRW.TheDef, Idx);
}
}
for (auto *Alias : SchedRW.Aliases) {
IdxVec AliasProcIndices;
if (Alias->getValueInit("SchedModel")->isComplete()) {
AliasProcIndices.push_back(
getProcModel(Alias->getValueAsDef("SchedModel")).Index);
} else
AliasProcIndices = ProcIndices;
const CodeGenSchedRW &AliasRW = getSchedRW(Alias->getValueAsDef("AliasRW"));
assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
IdxVec ExpandedRWs;
expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
for (unsigned int ExpandedRW : ExpandedRWs) {
collectRWResources(ExpandedRW, IsRead, AliasProcIndices);
}
}
}
// Collect resources for a set of read/write types and processor indices.
void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
ArrayRef<unsigned> Reads,
ArrayRef<unsigned> ProcIndices) {
for (unsigned Idx : Writes)
collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
for (unsigned Idx : Reads)
collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
}
// Find the processor's resource units for this kind of resource.
Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
const CodeGenProcModel &PM,
ArrayRef<SMLoc> Loc) const {
if (ProcResKind->isSubClassOf("ProcResourceUnits"))
return ProcResKind;
Record *ProcUnitDef = nullptr;
assert(!ProcResourceDefs.empty());
assert(!ProcResGroups.empty());
for (Record *ProcResDef : ProcResourceDefs) {
if (ProcResDef->getValueAsDef("Kind") == ProcResKind
&& ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
if (ProcUnitDef) {
PrintFatalError(Loc,
"Multiple ProcessorResourceUnits associated with "
+ ProcResKind->getName());
}
ProcUnitDef = ProcResDef;
}
}
for (Record *ProcResGroup : ProcResGroups) {
if (ProcResGroup == ProcResKind
&& ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
if (ProcUnitDef) {
PrintFatalError(Loc,
"Multiple ProcessorResourceUnits associated with "
+ ProcResKind->getName());
}
ProcUnitDef = ProcResGroup;
}
}
if (!ProcUnitDef) {
PrintFatalError(Loc,
"No ProcessorResources associated with "
+ ProcResKind->getName());
}
return ProcUnitDef;
}
// Iteratively add a resource and its super resources.
void CodeGenSchedModels::addProcResource(Record *ProcResKind,
CodeGenProcModel &PM,
ArrayRef<SMLoc> Loc) {
while (true) {
Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
// See if this ProcResource is already associated with this processor.
if (is_contained(PM.ProcResourceDefs, ProcResUnits))
return;
PM.ProcResourceDefs.push_back(ProcResUnits);
if (ProcResUnits->isSubClassOf("ProcResGroup"))
return;
if (!ProcResUnits->getValueInit("Super")->isComplete())
return;
ProcResKind = ProcResUnits->getValueAsDef("Super");
}
}
// Add resources for a SchedWrite to this processor if they don't exist.
void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
assert(PIdx && "don't add resources to an invalid Processor model");
RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
if (is_contained(WRDefs, ProcWriteResDef))
return;
WRDefs.push_back(ProcWriteResDef);
// Visit ProcResourceKinds referenced by the newly discovered WriteRes.
RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
for (auto *ProcResDef : ProcResDefs) {
addProcResource(ProcResDef, ProcModels[PIdx], ProcWriteResDef->getLoc());
}
}
// Add resources for a ReadAdvance to this processor if they don't exist.
void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
unsigned PIdx) {
RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
if (is_contained(RADefs, ProcReadAdvanceDef))
return;
RADefs.push_back(ProcReadAdvanceDef);
}
unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
RecIter PRPos = find(ProcResourceDefs, PRDef);
if (PRPos == ProcResourceDefs.end())
PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
"the ProcResources list for " + ModelName);
// Idx=0 is reserved for invalid.
return 1 + (PRPos - ProcResourceDefs.begin());
}
bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
for (const Record *TheDef : UnsupportedFeaturesDefs) {
for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
if (TheDef->getName() == PredDef->getName())
return true;
}
}
return false;
}
#ifndef NDEBUG
void CodeGenProcModel::dump() const {
dbgs() << Index << ": " << ModelName << " "
<< (ModelDef ? ModelDef->getName() : "inferred") << " "
<< (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
}
void CodeGenSchedRW::dump() const {
dbgs() << Name << (IsVariadic ? " (V) " : " ");
if (IsSequence) {
dbgs() << "(";
dumpIdxVec(Sequence);
dbgs() << ")";
}
}
void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
<< " Writes: ";
for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
SchedModels->getSchedWrite(Writes[i]).dump();
if (i < N-1) {
dbgs() << '\n';
dbgs().indent(10);
}
}
dbgs() << "\n Reads: ";
for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
SchedModels->getSchedRead(Reads[i]).dump();
if (i < N-1) {
dbgs() << '\n';
dbgs().indent(10);
}
}
dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices);
if (!Transitions.empty()) {
dbgs() << "\n Transitions for Proc ";
for (const CodeGenSchedTransition &Transition : Transitions) {
dbgs() << Transition.ProcIndex << ", ";
}
}
dbgs() << '\n';
}
void PredTransitions::dump() const {
dbgs() << "Expanded Variants:\n";
for (const auto &TI : TransVec) {
dbgs() << "{";
ListSeparator LS;
for (const PredCheck &PC : TI.PredTerm)
dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":"
<< PC.Predicate->getName();
dbgs() << "},\n => {";
for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator
WSI = TI.WriteSequences.begin(),
WSE = TI.WriteSequences.end();
WSI != WSE; ++WSI) {
dbgs() << "(";
ListSeparator LS;
for (unsigned N : *WSI)
dbgs() << LS << SchedModels.getSchedWrite(N).Name;
dbgs() << "),";
}
dbgs() << "}\n";
}
}
#endif // NDEBUG