llvm-project/clang/utils/TableGen/NeonEmitter.cpp

2397 lines
71 KiB
C++

//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting arm_neon.h, which includes
// a declaration and definition of each function specified by the ARM NEON
// compiler interface. See ARM document DUI0348B.
//
// Each NEON instruction is implemented in terms of 1 or more functions which
// are suffixed with the element type of the input vectors. Functions may be
// implemented in terms of generic vector operations such as +, *, -, etc. or
// by calling a __builtin_-prefixed function which will be handled by clang's
// CodeGen library.
//
// Additional validation code can be generated by this file when runHeader() is
// called, rather than the normal run() entry point.
//
// See also the documentation in include/clang/Basic/arm_neon.td.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/SetTheory.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <map>
#include <sstream>
#include <string>
#include <vector>
using namespace llvm;
namespace {
// While globals are generally bad, this one allows us to perform assertions
// liberally and somehow still trace them back to the def they indirectly
// came from.
static Record *CurrentRecord = nullptr;
static void assert_with_loc(bool Assertion, const std::string &Str) {
if (!Assertion) {
if (CurrentRecord)
PrintFatalError(CurrentRecord->getLoc(), Str);
else
PrintFatalError(Str);
}
}
enum ClassKind {
ClassNone,
ClassI, // generic integer instruction, e.g., "i8" suffix
ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
ClassW, // width-specific instruction, e.g., "8" suffix
ClassB, // bitcast arguments with enum argument to specify type
ClassL, // Logical instructions which are op instructions
// but we need to not emit any suffix for in our
// tests.
ClassNoTest // Instructions which we do not test since they are
// not TRUE instructions.
};
/// NeonTypeFlags - Flags to identify the types for overloaded Neon
/// builtins. These must be kept in sync with the flags in
/// include/clang/Basic/TargetBuiltins.h.
namespace NeonTypeFlags {
enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
enum EltType {
Int8,
Int16,
Int32,
Int64,
Poly8,
Poly16,
Poly64,
Poly128,
Float16,
Float32,
Float64
};
}
class Intrinsic;
class NeonEmitter;
class Type;
class Variable;
//===----------------------------------------------------------------------===//
// TypeSpec
//===----------------------------------------------------------------------===//
/// A TypeSpec is just a simple wrapper around a string, but gets its own type
/// for strong typing purposes.
///
/// A TypeSpec can be used to create a type.
class TypeSpec : public std::string {
public:
static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
std::vector<TypeSpec> Ret;
TypeSpec Acc;
for (char I : Str.str()) {
if (islower(I)) {
Acc.push_back(I);
Ret.push_back(TypeSpec(Acc));
Acc.clear();
} else {
Acc.push_back(I);
}
}
return Ret;
}
};
//===----------------------------------------------------------------------===//
// Type
//===----------------------------------------------------------------------===//
/// A Type. Not much more to say here.
class Type {
private:
TypeSpec TS;
bool Float, Signed, Void, Poly, Constant, Pointer;
// ScalarForMangling and NoManglingQ are really not suited to live here as
// they are not related to the type. But they live in the TypeSpec (not the
// prototype), so this is really the only place to store them.
bool ScalarForMangling, NoManglingQ;
unsigned Bitwidth, ElementBitwidth, NumVectors;
public:
Type()
: Float(false), Signed(false), Void(true), Poly(false), Constant(false),
Pointer(false), ScalarForMangling(false), NoManglingQ(false),
Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
Type(TypeSpec TS, char CharMod)
: TS(TS), Float(false), Signed(false), Void(false), Poly(false),
Constant(false), Pointer(false), ScalarForMangling(false),
NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
applyModifier(CharMod);
}
/// Returns a type representing "void".
static Type getVoid() { return Type(); }
bool operator==(const Type &Other) const { return str() == Other.str(); }
bool operator!=(const Type &Other) const { return !operator==(Other); }
//
// Query functions
//
bool isScalarForMangling() const { return ScalarForMangling; }
bool noManglingQ() const { return NoManglingQ; }
bool isPointer() const { return Pointer; }
bool isFloating() const { return Float; }
bool isInteger() const { return !Float && !Poly; }
bool isSigned() const { return Signed; }
bool isScalar() const { return NumVectors == 0; }
bool isVector() const { return NumVectors > 0; }
bool isFloat() const { return Float && ElementBitwidth == 32; }
bool isDouble() const { return Float && ElementBitwidth == 64; }
bool isHalf() const { return Float && ElementBitwidth == 16; }
bool isPoly() const { return Poly; }
bool isChar() const { return ElementBitwidth == 8; }
bool isShort() const { return !Float && ElementBitwidth == 16; }
bool isInt() const { return !Float && ElementBitwidth == 32; }
bool isLong() const { return !Float && ElementBitwidth == 64; }
bool isVoid() const { return Void; }
unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
unsigned getSizeInBits() const { return Bitwidth; }
unsigned getElementSizeInBits() const { return ElementBitwidth; }
unsigned getNumVectors() const { return NumVectors; }
//
// Mutator functions
//
void makeUnsigned() { Signed = false; }
void makeSigned() { Signed = true; }
void makeInteger(unsigned ElemWidth, bool Sign) {
Float = false;
Poly = false;
Signed = Sign;
ElementBitwidth = ElemWidth;
}
void makeScalar() {
Bitwidth = ElementBitwidth;
NumVectors = 0;
}
void makeOneVector() {
assert(isVector());
NumVectors = 1;
}
void doubleLanes() {
assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
Bitwidth = 128;
}
void halveLanes() {
assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
Bitwidth = 64;
}
/// Return the C string representation of a type, which is the typename
/// defined in stdint.h or arm_neon.h.
std::string str() const;
/// Return the string representation of a type, which is an encoded
/// string for passing to the BUILTIN() macro in Builtins.def.
std::string builtin_str() const;
/// Return the value in NeonTypeFlags for this type.
unsigned getNeonEnum() const;
/// Parse a type from a stdint.h or arm_neon.h typedef name,
/// for example uint32x2_t or int64_t.
static Type fromTypedefName(StringRef Name);
private:
/// Creates the type based on the typespec string in TS.
/// Sets "Quad" to true if the "Q" or "H" modifiers were
/// seen. This is needed by applyModifier as some modifiers
/// only take effect if the type size was changed by "Q" or "H".
void applyTypespec(bool &Quad);
/// Applies a prototype modifier to the type.
void applyModifier(char Mod);
};
//===----------------------------------------------------------------------===//
// Variable
//===----------------------------------------------------------------------===//
/// A variable is a simple class that just has a type and a name.
class Variable {
Type T;
std::string N;
public:
Variable() : T(Type::getVoid()), N("") {}
Variable(Type T, std::string N) : T(T), N(N) {}
Type getType() const { return T; }
std::string getName() const { return "__" + N; }
};
//===----------------------------------------------------------------------===//
// Intrinsic
//===----------------------------------------------------------------------===//
/// The main grunt class. This represents an instantiation of an intrinsic with
/// a particular typespec and prototype.
class Intrinsic {
friend class DagEmitter;
/// The Record this intrinsic was created from.
Record *R;
/// The unmangled name and prototype.
std::string Name, Proto;
/// The input and output typespecs. InTS == OutTS except when
/// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
TypeSpec OutTS, InTS;
/// The base class kind. Most intrinsics use ClassS, which has full type
/// info for integers (s32/u32). Some use ClassI, which doesn't care about
/// signedness (i32), while some (ClassB) have no type at all, only a width
/// (32).
ClassKind CK;
/// The list of DAGs for the body. May be empty, in which case we should
/// emit a builtin call.
ListInit *Body;
/// The architectural #ifdef guard.
std::string Guard;
/// Set if the Unvailable bit is 1. This means we don't generate a body,
/// just an "unavailable" attribute on a declaration.
bool IsUnavailable;
/// Is this intrinsic safe for big-endian? or does it need its arguments
/// reversing?
bool BigEndianSafe;
/// The types of return value [0] and parameters [1..].
std::vector<Type> Types;
/// The local variables defined.
std::map<std::string, Variable> Variables;
/// NeededEarly - set if any other intrinsic depends on this intrinsic.
bool NeededEarly;
/// UseMacro - set if we should implement using a macro or unset for a
/// function.
bool UseMacro;
/// The set of intrinsics that this intrinsic uses/requires.
std::set<Intrinsic *> Dependencies;
/// The "base type", which is Type('d', OutTS). InBaseType is only
/// different if CartesianProductOfTypes = 1 (for vreinterpret).
Type BaseType, InBaseType;
/// The return variable.
Variable RetVar;
/// A postfix to apply to every variable. Defaults to "".
std::string VariablePostfix;
NeonEmitter &Emitter;
std::stringstream OS;
public:
Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
: R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS),
CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable),
BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false),
BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) {
// If this builtin takes an immediate argument, we need to #define it rather
// than use a standard declaration, so that SemaChecking can range check
// the immediate passed by the user.
if (Proto.find('i') != std::string::npos)
UseMacro = true;
// Pointer arguments need to use macros to avoid hiding aligned attributes
// from the pointer type.
if (Proto.find('p') != std::string::npos ||
Proto.find('c') != std::string::npos)
UseMacro = true;
// It is not permitted to pass or return an __fp16 by value, so intrinsics
// taking a scalar float16_t must be implemented as macros.
if (OutTS.find('h') != std::string::npos &&
Proto.find('s') != std::string::npos)
UseMacro = true;
// Modify the TypeSpec per-argument to get a concrete Type, and create
// known variables for each.
// Types[0] is the return value.
Types.push_back(Type(OutTS, Proto[0]));
for (unsigned I = 1; I < Proto.size(); ++I)
Types.push_back(Type(InTS, Proto[I]));
}
/// Get the Record that this intrinsic is based off.
Record *getRecord() const { return R; }
/// Get the set of Intrinsics that this intrinsic calls.
/// this is the set of immediate dependencies, NOT the
/// transitive closure.
const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
/// Get the architectural guard string (#ifdef).
std::string getGuard() const { return Guard; }
/// Get the non-mangled name.
std::string getName() const { return Name; }
/// Return true if the intrinsic takes an immediate operand.
bool hasImmediate() const {
return Proto.find('i') != std::string::npos;
}
/// Return the parameter index of the immediate operand.
unsigned getImmediateIdx() const {
assert(hasImmediate());
unsigned Idx = Proto.find('i');
assert(Idx > 0 && "Can't return an immediate!");
return Idx - 1;
}
/// Return true if the intrinsic takes an splat operand.
bool hasSplat() const { return Proto.find('a') != std::string::npos; }
/// Return the parameter index of the splat operand.
unsigned getSplatIdx() const {
assert(hasSplat());
unsigned Idx = Proto.find('a');
assert(Idx > 0 && "Can't return a splat!");
return Idx - 1;
}
unsigned getNumParams() const { return Proto.size() - 1; }
Type getReturnType() const { return Types[0]; }
Type getParamType(unsigned I) const { return Types[I + 1]; }
Type getBaseType() const { return BaseType; }
/// Return the raw prototype string.
std::string getProto() const { return Proto; }
/// Return true if the prototype has a scalar argument.
/// This does not return true for the "splat" code ('a').
bool protoHasScalar();
/// Return the index that parameter PIndex will sit at
/// in a generated function call. This is often just PIndex,
/// but may not be as things such as multiple-vector operands
/// and sret parameters need to be taken into accont.
unsigned getGeneratedParamIdx(unsigned PIndex) {
unsigned Idx = 0;
if (getReturnType().getNumVectors() > 1)
// Multiple vectors are passed as sret.
++Idx;
for (unsigned I = 0; I < PIndex; ++I)
Idx += std::max(1U, getParamType(I).getNumVectors());
return Idx;
}
bool hasBody() const { return Body && Body->getValues().size() > 0; }
void setNeededEarly() { NeededEarly = true; }
bool operator<(const Intrinsic &Other) const {
// Sort lexicographically on a two-tuple (Guard, Name)
if (Guard != Other.Guard)
return Guard < Other.Guard;
return Name < Other.Name;
}
ClassKind getClassKind(bool UseClassBIfScalar = false) {
if (UseClassBIfScalar && !protoHasScalar())
return ClassB;
return CK;
}
/// Return the name, mangled with type information.
/// If ForceClassS is true, use ClassS (u32/s32) instead
/// of the intrinsic's own type class.
std::string getMangledName(bool ForceClassS = false);
/// Return the type code for a builtin function call.
std::string getInstTypeCode(Type T, ClassKind CK);
/// Return the type string for a BUILTIN() macro in Builtins.def.
std::string getBuiltinTypeStr();
/// Generate the intrinsic, returning code.
std::string generate();
/// Perform type checking and populate the dependency graph, but
/// don't generate code yet.
void indexBody();
private:
std::string mangleName(std::string Name, ClassKind CK);
void initVariables();
std::string replaceParamsIn(std::string S);
void emitBodyAsBuiltinCall();
void generateImpl(bool ReverseArguments,
StringRef NamePrefix, StringRef CallPrefix);
void emitReturn();
void emitBody(StringRef CallPrefix);
void emitShadowedArgs();
void emitArgumentReversal();
void emitReturnReversal();
void emitReverseVariable(Variable &Dest, Variable &Src);
void emitNewLine();
void emitClosingBrace();
void emitOpeningBrace();
void emitPrototype(StringRef NamePrefix);
class DagEmitter {
Intrinsic &Intr;
StringRef CallPrefix;
public:
DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
Intr(Intr), CallPrefix(CallPrefix) {
}
std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
std::pair<Type, std::string> emitDagSplat(DagInit *DI);
std::pair<Type, std::string> emitDagDup(DagInit *DI);
std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
std::pair<Type, std::string> emitDagCall(DagInit *DI);
std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
std::pair<Type, std::string> emitDagOp(DagInit *DI);
std::pair<Type, std::string> emitDag(DagInit *DI);
};
};
//===----------------------------------------------------------------------===//
// NeonEmitter
//===----------------------------------------------------------------------===//
class NeonEmitter {
RecordKeeper &Records;
DenseMap<Record *, ClassKind> ClassMap;
std::map<std::string, std::vector<Intrinsic *>> IntrinsicMap;
unsigned UniqueNumber;
void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
void genOverloadTypeCheckCode(raw_ostream &OS,
SmallVectorImpl<Intrinsic *> &Defs);
void genIntrinsicRangeCheckCode(raw_ostream &OS,
SmallVectorImpl<Intrinsic *> &Defs);
public:
/// Called by Intrinsic - this attempts to get an intrinsic that takes
/// the given types as arguments.
Intrinsic *getIntrinsic(StringRef Name, ArrayRef<Type> Types);
/// Called by Intrinsic - returns a globally-unique number.
unsigned getUniqueNumber() { return UniqueNumber++; }
NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
Record *SI = R.getClass("SInst");
Record *II = R.getClass("IInst");
Record *WI = R.getClass("WInst");
Record *SOpI = R.getClass("SOpInst");
Record *IOpI = R.getClass("IOpInst");
Record *WOpI = R.getClass("WOpInst");
Record *LOpI = R.getClass("LOpInst");
Record *NoTestOpI = R.getClass("NoTestOpInst");
ClassMap[SI] = ClassS;
ClassMap[II] = ClassI;
ClassMap[WI] = ClassW;
ClassMap[SOpI] = ClassS;
ClassMap[IOpI] = ClassI;
ClassMap[WOpI] = ClassW;
ClassMap[LOpI] = ClassL;
ClassMap[NoTestOpI] = ClassNoTest;
}
// run - Emit arm_neon.h.inc
void run(raw_ostream &o);
// runHeader - Emit all the __builtin prototypes used in arm_neon.h
void runHeader(raw_ostream &o);
// runTests - Emit tests for all the Neon intrinsics.
void runTests(raw_ostream &o);
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Type implementation
//===----------------------------------------------------------------------===//
std::string Type::str() const {
if (Void)
return "void";
std::string S;
if (!Signed && isInteger())
S += "u";
if (Poly)
S += "poly";
else if (Float)
S += "float";
else
S += "int";
S += utostr(ElementBitwidth);
if (isVector())
S += "x" + utostr(getNumElements());
if (NumVectors > 1)
S += "x" + utostr(NumVectors);
S += "_t";
if (Constant)
S += " const";
if (Pointer)
S += " *";
return S;
}
std::string Type::builtin_str() const {
std::string S;
if (isVoid())
return "v";
if (Pointer)
// All pointers are void pointers.
S += "v";
else if (isInteger())
switch (ElementBitwidth) {
case 8: S += "c"; break;
case 16: S += "s"; break;
case 32: S += "i"; break;
case 64: S += "Wi"; break;
case 128: S += "LLLi"; break;
default: llvm_unreachable("Unhandled case!");
}
else
switch (ElementBitwidth) {
case 16: S += "h"; break;
case 32: S += "f"; break;
case 64: S += "d"; break;
default: llvm_unreachable("Unhandled case!");
}
if (isChar() && !Pointer)
// Make chars explicitly signed.
S = "S" + S;
else if (isInteger() && !Pointer && !Signed)
S = "U" + S;
if (isScalar()) {
if (Constant) S += "C";
if (Pointer) S += "*";
return S;
}
std::string Ret;
for (unsigned I = 0; I < NumVectors; ++I)
Ret += "V" + utostr(getNumElements()) + S;
return Ret;
}
unsigned Type::getNeonEnum() const {
unsigned Addend;
switch (ElementBitwidth) {
case 8: Addend = 0; break;
case 16: Addend = 1; break;
case 32: Addend = 2; break;
case 64: Addend = 3; break;
case 128: Addend = 4; break;
default: llvm_unreachable("Unhandled element bitwidth!");
}
unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
if (Poly) {
// Adjustment needed because Poly32 doesn't exist.
if (Addend >= 2)
--Addend;
Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
}
if (Float) {
assert(Addend != 0 && "Float8 doesn't exist!");
Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
}
if (Bitwidth == 128)
Base |= (unsigned)NeonTypeFlags::QuadFlag;
if (isInteger() && !Signed)
Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
return Base;
}
Type Type::fromTypedefName(StringRef Name) {
Type T;
T.Void = false;
T.Float = false;
T.Poly = false;
if (Name.front() == 'u') {
T.Signed = false;
Name = Name.drop_front();
} else {
T.Signed = true;
}
if (Name.startswith("float")) {
T.Float = true;
Name = Name.drop_front(5);
} else if (Name.startswith("poly")) {
T.Poly = true;
Name = Name.drop_front(4);
} else {
assert(Name.startswith("int"));
Name = Name.drop_front(3);
}
unsigned I = 0;
for (I = 0; I < Name.size(); ++I) {
if (!isdigit(Name[I]))
break;
}
Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
Name = Name.drop_front(I);
T.Bitwidth = T.ElementBitwidth;
T.NumVectors = 1;
if (Name.front() == 'x') {
Name = Name.drop_front();
unsigned I = 0;
for (I = 0; I < Name.size(); ++I) {
if (!isdigit(Name[I]))
break;
}
unsigned NumLanes;
Name.substr(0, I).getAsInteger(10, NumLanes);
Name = Name.drop_front(I);
T.Bitwidth = T.ElementBitwidth * NumLanes;
} else {
// Was scalar.
T.NumVectors = 0;
}
if (Name.front() == 'x') {
Name = Name.drop_front();
unsigned I = 0;
for (I = 0; I < Name.size(); ++I) {
if (!isdigit(Name[I]))
break;
}
Name.substr(0, I).getAsInteger(10, T.NumVectors);
Name = Name.drop_front(I);
}
assert(Name.startswith("_t") && "Malformed typedef!");
return T;
}
void Type::applyTypespec(bool &Quad) {
std::string S = TS;
ScalarForMangling = false;
Void = false;
Poly = Float = false;
ElementBitwidth = ~0U;
Signed = true;
NumVectors = 1;
for (char I : S) {
switch (I) {
case 'S':
ScalarForMangling = true;
break;
case 'H':
NoManglingQ = true;
Quad = true;
break;
case 'Q':
Quad = true;
break;
case 'P':
Poly = true;
break;
case 'U':
Signed = false;
break;
case 'c':
ElementBitwidth = 8;
break;
case 'h':
Float = true;
// Fall through
case 's':
ElementBitwidth = 16;
break;
case 'f':
Float = true;
// Fall through
case 'i':
ElementBitwidth = 32;
break;
case 'd':
Float = true;
// Fall through
case 'l':
ElementBitwidth = 64;
break;
case 'k':
ElementBitwidth = 128;
// Poly doesn't have a 128x1 type.
if (Poly)
NumVectors = 0;
break;
default:
llvm_unreachable("Unhandled type code!");
}
}
assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
Bitwidth = Quad ? 128 : 64;
}
void Type::applyModifier(char Mod) {
bool AppliedQuad = false;
applyTypespec(AppliedQuad);
switch (Mod) {
case 'v':
Void = true;
break;
case 't':
if (Poly) {
Poly = false;
Signed = false;
}
break;
case 'b':
Signed = false;
Float = false;
Poly = false;
NumVectors = 0;
Bitwidth = ElementBitwidth;
break;
case '$':
Signed = true;
Float = false;
Poly = false;
NumVectors = 0;
Bitwidth = ElementBitwidth;
break;
case 'u':
Signed = false;
Poly = false;
Float = false;
break;
case 'x':
Signed = true;
assert(!Poly && "'u' can't be used with poly types!");
Float = false;
break;
case 'o':
Bitwidth = ElementBitwidth = 64;
NumVectors = 0;
Float = true;
break;
case 'y':
Bitwidth = ElementBitwidth = 32;
NumVectors = 0;
Float = true;
break;
case 'f':
// Special case - if we're half-precision, a floating
// point argument needs to be 128-bits (double size).
if (isHalf())
Bitwidth = 128;
Float = true;
ElementBitwidth = 32;
break;
case 'F':
Float = true;
ElementBitwidth = 64;
break;
case 'g':
if (AppliedQuad)
Bitwidth /= 2;
break;
case 'j':
if (!AppliedQuad)
Bitwidth *= 2;
break;
case 'w':
ElementBitwidth *= 2;
Bitwidth *= 2;
break;
case 'n':
ElementBitwidth *= 2;
break;
case 'i':
Float = false;
Poly = false;
ElementBitwidth = Bitwidth = 32;
NumVectors = 0;
Signed = true;
break;
case 'l':
Float = false;
Poly = false;
ElementBitwidth = Bitwidth = 64;
NumVectors = 0;
Signed = false;
break;
case 'z':
ElementBitwidth /= 2;
Bitwidth = ElementBitwidth;
NumVectors = 0;
break;
case 'r':
ElementBitwidth *= 2;
Bitwidth = ElementBitwidth;
NumVectors = 0;
break;
case 's':
case 'a':
Bitwidth = ElementBitwidth;
NumVectors = 0;
break;
case 'k':
Bitwidth *= 2;
break;
case 'c':
Constant = true;
// Fall through
case 'p':
Pointer = true;
Bitwidth = ElementBitwidth;
NumVectors = 0;
break;
case 'h':
ElementBitwidth /= 2;
break;
case 'q':
ElementBitwidth /= 2;
Bitwidth *= 2;
break;
case 'e':
ElementBitwidth /= 2;
Signed = false;
break;
case 'm':
ElementBitwidth /= 2;
Bitwidth /= 2;
break;
case 'd':
break;
case '2':
NumVectors = 2;
break;
case '3':
NumVectors = 3;
break;
case '4':
NumVectors = 4;
break;
case 'B':
NumVectors = 2;
if (!AppliedQuad)
Bitwidth *= 2;
break;
case 'C':
NumVectors = 3;
if (!AppliedQuad)
Bitwidth *= 2;
break;
case 'D':
NumVectors = 4;
if (!AppliedQuad)
Bitwidth *= 2;
break;
default:
llvm_unreachable("Unhandled character!");
}
}
//===----------------------------------------------------------------------===//
// Intrinsic implementation
//===----------------------------------------------------------------------===//
std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) {
char typeCode = '\0';
bool printNumber = true;
if (CK == ClassB)
return "";
if (T.isPoly())
typeCode = 'p';
else if (T.isInteger())
typeCode = T.isSigned() ? 's' : 'u';
else
typeCode = 'f';
if (CK == ClassI) {
switch (typeCode) {
default:
break;
case 's':
case 'u':
case 'p':
typeCode = 'i';
break;
}
}
if (CK == ClassB) {
typeCode = '\0';
}
std::string S;
if (typeCode != '\0')
S.push_back(typeCode);
if (printNumber)
S += utostr(T.getElementSizeInBits());
return S;
}
std::string Intrinsic::getBuiltinTypeStr() {
ClassKind LocalCK = getClassKind(true);
std::string S;
Type RetT = getReturnType();
if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
!RetT.isFloating())
RetT.makeInteger(RetT.getElementSizeInBits(), false);
// Since the return value must be one type, return a vector type of the
// appropriate width which we will bitcast. An exception is made for
// returning structs of 2, 3, or 4 vectors which are returned in a sret-like
// fashion, storing them to a pointer arg.
if (RetT.getNumVectors() > 1) {
S += "vv*"; // void result with void* first argument
} else {
if (RetT.isPoly())
RetT.makeInteger(RetT.getElementSizeInBits(), false);
if (!RetT.isScalar() && !RetT.isSigned())
RetT.makeSigned();
bool ForcedVectorFloatingType = Proto[0] == 'F' || Proto[0] == 'f';
if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType)
// Cast to vector of 8-bit elements.
RetT.makeInteger(8, true);
S += RetT.builtin_str();
}
for (unsigned I = 0; I < getNumParams(); ++I) {
Type T = getParamType(I);
if (T.isPoly())
T.makeInteger(T.getElementSizeInBits(), false);
bool ForcedFloatingType = Proto[I + 1] == 'F' || Proto[I + 1] == 'f';
if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType)
T.makeInteger(8, true);
// Halves always get converted to 8-bit elements.
if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
T.makeInteger(8, true);
if (LocalCK == ClassI)
T.makeSigned();
// Constant indices are always just "int".
if (hasImmediate() && getImmediateIdx() == I)
T.makeInteger(32, true);
S += T.builtin_str();
}
// Extra constant integer to hold type class enum for this function, e.g. s8
if (LocalCK == ClassB)
S += "i";
return S;
}
std::string Intrinsic::getMangledName(bool ForceClassS) {
// Check if the prototype has a scalar operand with the type of the vector
// elements. If not, bitcasting the args will take care of arg checking.
// The actual signedness etc. will be taken care of with special enums.
ClassKind LocalCK = CK;
if (!protoHasScalar())
LocalCK = ClassB;
return mangleName(Name, ForceClassS ? ClassS : LocalCK);
}
std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) {
std::string typeCode = getInstTypeCode(BaseType, LocalCK);
std::string S = Name;
if (Name == "vcvt_f32_f16" || Name == "vcvt_f32_f64" ||
Name == "vcvt_f64_f32")
return Name;
if (typeCode.size() > 0) {
// If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
if (Name.size() >= 3 && isdigit(Name.back()) &&
Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
S.insert(S.length() - 3, "_" + typeCode);
else
S += "_" + typeCode;
}
if (BaseType != InBaseType) {
// A reinterpret - out the input base type at the end.
S += "_" + getInstTypeCode(InBaseType, LocalCK);
}
if (LocalCK == ClassB)
S += "_v";
// Insert a 'q' before the first '_' character so that it ends up before
// _lane or _n on vector-scalar operations.
if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
size_t Pos = S.find('_');
S.insert(Pos, "q");
}
char Suffix = '\0';
if (BaseType.isScalarForMangling()) {
switch (BaseType.getElementSizeInBits()) {
case 8: Suffix = 'b'; break;
case 16: Suffix = 'h'; break;
case 32: Suffix = 's'; break;
case 64: Suffix = 'd'; break;
default: llvm_unreachable("Bad suffix!");
}
}
if (Suffix != '\0') {
size_t Pos = S.find('_');
S.insert(Pos, &Suffix, 1);
}
return S;
}
std::string Intrinsic::replaceParamsIn(std::string S) {
while (S.find('$') != std::string::npos) {
size_t Pos = S.find('$');
size_t End = Pos + 1;
while (isalpha(S[End]))
++End;
std::string VarName = S.substr(Pos + 1, End - Pos - 1);
assert_with_loc(Variables.find(VarName) != Variables.end(),
"Variable not defined!");
S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
}
return S;
}
void Intrinsic::initVariables() {
Variables.clear();
// Modify the TypeSpec per-argument to get a concrete Type, and create
// known variables for each.
for (unsigned I = 1; I < Proto.size(); ++I) {
char NameC = '0' + (I - 1);
std::string Name = "p";
Name.push_back(NameC);
Variables[Name] = Variable(Types[I], Name + VariablePostfix);
}
RetVar = Variable(Types[0], "ret" + VariablePostfix);
}
void Intrinsic::emitPrototype(StringRef NamePrefix) {
if (UseMacro)
OS << "#define ";
else
OS << "__ai " << Types[0].str() << " ";
OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
for (unsigned I = 0; I < getNumParams(); ++I) {
if (I != 0)
OS << ", ";
char NameC = '0' + I;
std::string Name = "p";
Name.push_back(NameC);
assert(Variables.find(Name) != Variables.end());
Variable &V = Variables[Name];
if (!UseMacro)
OS << V.getType().str() << " ";
OS << V.getName();
}
OS << ")";
}
void Intrinsic::emitOpeningBrace() {
if (UseMacro)
OS << " __extension__ ({";
else
OS << " {";
emitNewLine();
}
void Intrinsic::emitClosingBrace() {
if (UseMacro)
OS << "})";
else
OS << "}";
}
void Intrinsic::emitNewLine() {
if (UseMacro)
OS << " \\\n";
else
OS << "\n";
}
void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
if (Dest.getType().getNumVectors() > 1) {
emitNewLine();
for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
OS << " " << Dest.getName() << ".val[" << utostr(K) << "] = "
<< "__builtin_shufflevector("
<< Src.getName() << ".val[" << utostr(K) << "], "
<< Src.getName() << ".val[" << utostr(K) << "]";
for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
OS << ", " << utostr(J);
OS << ");";
emitNewLine();
}
} else {
OS << " " << Dest.getName()
<< " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
OS << ", " << utostr(J);
OS << ");";
emitNewLine();
}
}
void Intrinsic::emitArgumentReversal() {
if (BigEndianSafe)
return;
// Reverse all vector arguments.
for (unsigned I = 0; I < getNumParams(); ++I) {
std::string Name = "p" + utostr(I);
std::string NewName = "rev" + utostr(I);
Variable &V = Variables[Name];
Variable NewV(V.getType(), NewName + VariablePostfix);
if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
continue;
OS << " " << NewV.getType().str() << " " << NewV.getName() << ";";
emitReverseVariable(NewV, V);
V = NewV;
}
}
void Intrinsic::emitReturnReversal() {
if (BigEndianSafe)
return;
if (!getReturnType().isVector() || getReturnType().isVoid() ||
getReturnType().getNumElements() == 1)
return;
emitReverseVariable(RetVar, RetVar);
}
void Intrinsic::emitShadowedArgs() {
// Macro arguments are not type-checked like inline function arguments,
// so assign them to local temporaries to get the right type checking.
if (!UseMacro)
return;
for (unsigned I = 0; I < getNumParams(); ++I) {
// Do not create a temporary for an immediate argument.
// That would defeat the whole point of using a macro!
if (hasImmediate() && Proto[I+1] == 'i')
continue;
// Do not create a temporary for pointer arguments. The input
// pointer may have an alignment hint.
if (getParamType(I).isPointer())
continue;
std::string Name = "p" + utostr(I);
assert(Variables.find(Name) != Variables.end());
Variable &V = Variables[Name];
std::string NewName = "s" + utostr(I);
Variable V2(V.getType(), NewName + VariablePostfix);
OS << " " << V2.getType().str() << " " << V2.getName() << " = "
<< V.getName() << ";";
emitNewLine();
V = V2;
}
}
// We don't check 'a' in this function, because for builtin function the
// argument matching to 'a' uses a vector type splatted from a scalar type.
bool Intrinsic::protoHasScalar() {
return (Proto.find('s') != std::string::npos ||
Proto.find('z') != std::string::npos ||
Proto.find('r') != std::string::npos ||
Proto.find('b') != std::string::npos ||
Proto.find('$') != std::string::npos ||
Proto.find('y') != std::string::npos ||
Proto.find('o') != std::string::npos);
}
void Intrinsic::emitBodyAsBuiltinCall() {
std::string S;
// If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
// sret-like argument.
bool SRet = getReturnType().getNumVectors() >= 2;
StringRef N = Name;
if (hasSplat()) {
// Call the non-splat builtin: chop off the "_n" suffix from the name.
assert(N.endswith("_n"));
N = N.drop_back(2);
}
ClassKind LocalCK = CK;
if (!protoHasScalar())
LocalCK = ClassB;
if (!getReturnType().isVoid() && !SRet)
S += "(" + RetVar.getType().str() + ") ";
S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";
if (SRet)
S += "&" + RetVar.getName() + ", ";
for (unsigned I = 0; I < getNumParams(); ++I) {
Variable &V = Variables["p" + utostr(I)];
Type T = V.getType();
// Handle multiple-vector values specially, emitting each subvector as an
// argument to the builtin.
if (T.getNumVectors() > 1) {
// Check if an explicit cast is needed.
std::string Cast;
if (T.isChar() || T.isPoly() || !T.isSigned()) {
Type T2 = T;
T2.makeOneVector();
T2.makeInteger(8, /*Signed=*/true);
Cast = "(" + T2.str() + ")";
}
for (unsigned J = 0; J < T.getNumVectors(); ++J)
S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
continue;
}
std::string Arg;
Type CastToType = T;
if (hasSplat() && I == getSplatIdx()) {
Arg = "(" + BaseType.str() + ") {";
for (unsigned J = 0; J < BaseType.getNumElements(); ++J) {
if (J != 0)
Arg += ", ";
Arg += V.getName();
}
Arg += "}";
CastToType = BaseType;
} else {
Arg = V.getName();
}
// Check if an explicit cast is needed.
if (CastToType.isVector()) {
CastToType.makeInteger(8, true);
Arg = "(" + CastToType.str() + ")" + Arg;
}
S += Arg + ", ";
}
// Extra constant integer to hold type class enum for this function, e.g. s8
if (getClassKind(true) == ClassB) {
Type ThisTy = getReturnType();
if (Proto[0] == 'v' || Proto[0] == 'f' || Proto[0] == 'F')
ThisTy = getParamType(0);
if (ThisTy.isPointer())
ThisTy = getParamType(1);
S += utostr(ThisTy.getNeonEnum());
} else {
// Remove extraneous ", ".
S.pop_back();
S.pop_back();
}
S += ");";
std::string RetExpr;
if (!SRet && !RetVar.getType().isVoid())
RetExpr = RetVar.getName() + " = ";
OS << " " << RetExpr << S;
emitNewLine();
}
void Intrinsic::emitBody(StringRef CallPrefix) {
std::vector<std::string> Lines;
assert(RetVar.getType() == Types[0]);
// Create a return variable, if we're not void.
if (!RetVar.getType().isVoid()) {
OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";";
emitNewLine();
}
if (!Body || Body->getValues().size() == 0) {
// Nothing specific to output - must output a builtin.
emitBodyAsBuiltinCall();
return;
}
// We have a list of "things to output". The last should be returned.
for (auto *I : Body->getValues()) {
if (StringInit *SI = dyn_cast<StringInit>(I)) {
Lines.push_back(replaceParamsIn(SI->getAsString()));
} else if (DagInit *DI = dyn_cast<DagInit>(I)) {
DagEmitter DE(*this, CallPrefix);
Lines.push_back(DE.emitDag(DI).second + ";");
}
}
assert(!Lines.empty() && "Empty def?");
if (!RetVar.getType().isVoid())
Lines.back().insert(0, RetVar.getName() + " = ");
for (auto &L : Lines) {
OS << " " << L;
emitNewLine();
}
}
void Intrinsic::emitReturn() {
if (RetVar.getType().isVoid())
return;
if (UseMacro)
OS << " " << RetVar.getName() << ";";
else
OS << " return " << RetVar.getName() << ";";
emitNewLine();
}
std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
// At this point we should only be seeing a def.
DefInit *DefI = cast<DefInit>(DI->getOperator());
std::string Op = DefI->getAsString();
if (Op == "cast" || Op == "bitcast")
return emitDagCast(DI, Op == "bitcast");
if (Op == "shuffle")
return emitDagShuffle(DI);
if (Op == "dup")
return emitDagDup(DI);
if (Op == "splat")
return emitDagSplat(DI);
if (Op == "save_temp")
return emitDagSaveTemp(DI);
if (Op == "op")
return emitDagOp(DI);
if (Op == "call")
return emitDagCall(DI);
if (Op == "name_replace")
return emitDagNameReplace(DI);
if (Op == "literal")
return emitDagLiteral(DI);
assert_with_loc(false, "Unknown operation!");
return std::make_pair(Type::getVoid(), "");
}
std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
if (DI->getNumArgs() == 2) {
// Unary op.
std::pair<Type, std::string> R =
emitDagArg(DI->getArg(1), DI->getArgName(1));
return std::make_pair(R.first, Op + R.second);
} else {
assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
std::pair<Type, std::string> R1 =
emitDagArg(DI->getArg(1), DI->getArgName(1));
std::pair<Type, std::string> R2 =
emitDagArg(DI->getArg(2), DI->getArgName(2));
assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
}
}
std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
std::vector<Type> Types;
std::vector<std::string> Values;
for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
std::pair<Type, std::string> R =
emitDagArg(DI->getArg(I + 1), DI->getArgName(I + 1));
Types.push_back(R.first);
Values.push_back(R.second);
}
// Look up the called intrinsic.
std::string N;
if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
N = SI->getAsUnquotedString();
else
N = emitDagArg(DI->getArg(0), "").second;
Intrinsic *Callee = Intr.Emitter.getIntrinsic(N, Types);
assert(Callee && "getIntrinsic should not return us nullptr!");
// Make sure the callee is known as an early def.
Callee->setNeededEarly();
Intr.Dependencies.insert(Callee);
// Now create the call itself.
std::string S = CallPrefix.str() + Callee->getMangledName(true) + "(";
for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
if (I != 0)
S += ", ";
S += Values[I];
}
S += ")";
return std::make_pair(Callee->getReturnType(), S);
}
std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
bool IsBitCast){
// (cast MOD* VAL) -> cast VAL to type given by MOD.
std::pair<Type, std::string> R = emitDagArg(
DI->getArg(DI->getNumArgs() - 1), DI->getArgName(DI->getNumArgs() - 1));
Type castToType = R.first;
for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
// MOD can take several forms:
// 1. $X - take the type of parameter / variable X.
// 2. The value "R" - take the type of the return type.
// 3. a type string
// 4. The value "U" or "S" to switch the signedness.
// 5. The value "H" or "D" to half or double the bitwidth.
// 6. The value "8" to convert to 8-bit (signed) integer lanes.
if (DI->getArgName(ArgIdx).size()) {
assert_with_loc(Intr.Variables.find(DI->getArgName(ArgIdx)) !=
Intr.Variables.end(),
"Variable not found");
castToType = Intr.Variables[DI->getArgName(ArgIdx)].getType();
} else {
StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
assert_with_loc(SI, "Expected string type or $Name for cast type");
if (SI->getAsUnquotedString() == "R") {
castToType = Intr.getReturnType();
} else if (SI->getAsUnquotedString() == "U") {
castToType.makeUnsigned();
} else if (SI->getAsUnquotedString() == "S") {
castToType.makeSigned();
} else if (SI->getAsUnquotedString() == "H") {
castToType.halveLanes();
} else if (SI->getAsUnquotedString() == "D") {
castToType.doubleLanes();
} else if (SI->getAsUnquotedString() == "8") {
castToType.makeInteger(8, true);
} else {
castToType = Type::fromTypedefName(SI->getAsUnquotedString());
assert_with_loc(!castToType.isVoid(), "Unknown typedef");
}
}
}
std::string S;
if (IsBitCast) {
// Emit a reinterpret cast. The second operand must be an lvalue, so create
// a temporary.
std::string N = "reint";
unsigned I = 0;
while (Intr.Variables.find(N) != Intr.Variables.end())
N = "reint" + utostr(++I);
Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
<< R.second << ";";
Intr.emitNewLine();
S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
} else {
// Emit a normal (static) cast.
S = "(" + castToType.str() + ")(" + R.second + ")";
}
return std::make_pair(castToType, S);
}
std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
// See the documentation in arm_neon.td for a description of these operators.
class LowHalf : public SetTheory::Operator {
public:
virtual void anchor() {}
virtual ~LowHalf() {}
virtual void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
ArrayRef<SMLoc> Loc) {
SetTheory::RecSet Elts2;
ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
}
};
class HighHalf : public SetTheory::Operator {
public:
virtual void anchor() {}
virtual ~HighHalf() {}
virtual void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
ArrayRef<SMLoc> Loc) {
SetTheory::RecSet Elts2;
ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
}
};
class Rev : public SetTheory::Operator {
unsigned ElementSize;
public:
Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
virtual void anchor() {}
virtual ~Rev() {}
virtual void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
ArrayRef<SMLoc> Loc) {
SetTheory::RecSet Elts2;
ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
VectorSize /= ElementSize;
std::vector<Record *> Revved;
for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
for (int LI = VectorSize - 1; LI >= 0; --LI) {
Revved.push_back(Elts2[VI + LI]);
}
}
Elts.insert(Revved.begin(), Revved.end());
}
};
class MaskExpander : public SetTheory::Expander {
unsigned N;
public:
MaskExpander(unsigned N) : N(N) {}
virtual void anchor() {}
virtual ~MaskExpander() {}
virtual void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) {
unsigned Addend = 0;
if (R->getName() == "mask0")
Addend = 0;
else if (R->getName() == "mask1")
Addend = N;
else
return;
for (unsigned I = 0; I < N; ++I)
Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
}
};
// (shuffle arg1, arg2, sequence)
std::pair<Type, std::string> Arg1 =
emitDagArg(DI->getArg(0), DI->getArgName(0));
std::pair<Type, std::string> Arg2 =
emitDagArg(DI->getArg(1), DI->getArgName(1));
assert_with_loc(Arg1.first == Arg2.first,
"Different types in arguments to shuffle!");
SetTheory ST;
LowHalf LH;
HighHalf HH;
MaskExpander ME(Arg1.first.getNumElements());
Rev R(Arg1.first.getElementSizeInBits());
SetTheory::RecSet Elts;
ST.addOperator("lowhalf", &LH);
ST.addOperator("highhalf", &HH);
ST.addOperator("rev", &R);
ST.addExpander("MaskExpand", &ME);
ST.evaluate(DI->getArg(2), Elts, None);
std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
for (auto &E : Elts) {
StringRef Name = E->getName();
assert_with_loc(Name.startswith("sv"),
"Incorrect element kind in shuffle mask!");
S += ", " + Name.drop_front(2).str();
}
S += ")";
// Recalculate the return type - the shuffle may have halved or doubled it.
Type T(Arg1.first);
if (Elts.size() > T.getNumElements()) {
assert_with_loc(
Elts.size() == T.getNumElements() * 2,
"Can only double or half the number of elements in a shuffle!");
T.doubleLanes();
} else if (Elts.size() < T.getNumElements()) {
assert_with_loc(
Elts.size() == T.getNumElements() / 2,
"Can only double or half the number of elements in a shuffle!");
T.halveLanes();
}
return std::make_pair(T, S);
}
std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
Type T = Intr.getBaseType();
assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
std::string S = "(" + T.str() + ") {";
for (unsigned I = 0; I < T.getNumElements(); ++I) {
if (I != 0)
S += ", ";
S += A.second;
}
S += "}";
return std::make_pair(T, S);
}
std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
std::pair<Type, std::string> B = emitDagArg(DI->getArg(1), DI->getArgName(1));
assert_with_loc(B.first.isScalar(),
"splat() requires a scalar int as the second argument");
std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
S += ", " + B.second;
}
S += ")";
return std::make_pair(Intr.getBaseType(), S);
}
std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
std::pair<Type, std::string> A = emitDagArg(DI->getArg(1), DI->getArgName(1));
assert_with_loc(!A.first.isVoid(),
"Argument to save_temp() must have non-void type!");
std::string N = DI->getArgName(0);
assert_with_loc(N.size(), "save_temp() expects a name as the first argument");
assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
"Variable already defined!");
Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
std::string S =
A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
return std::make_pair(Type::getVoid(), S);
}
std::pair<Type, std::string>
Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
std::string S = Intr.Name;
assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
size_t Idx = S.find(ToReplace);
assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
S.replace(Idx, ToReplace.size(), ReplaceWith);
return std::make_pair(Type::getVoid(), S);
}
std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
return std::make_pair(Type::fromTypedefName(Ty), Value);
}
std::pair<Type, std::string>
Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
if (ArgName.size()) {
assert_with_loc(!Arg->isComplete(),
"Arguments must either be DAGs or names, not both!");
assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
"Variable not defined!");
Variable &V = Intr.Variables[ArgName];
return std::make_pair(V.getType(), V.getName());
}
assert(Arg && "Neither ArgName nor Arg?!");
DagInit *DI = dyn_cast<DagInit>(Arg);
assert_with_loc(DI, "Arguments must either be DAGs or names!");
return emitDag(DI);
}
std::string Intrinsic::generate() {
// Little endian intrinsics are simple and don't require any argument
// swapping.
OS << "#ifdef __LITTLE_ENDIAN__\n";
generateImpl(false, "", "");
OS << "#else\n";
// Big endian intrinsics are more complex. The user intended these
// intrinsics to operate on a vector "as-if" loaded by (V)LDR,
// but we load as-if (V)LD1. So we should swap all arguments and
// swap the return value too.
//
// If we call sub-intrinsics, we should call a version that does
// not re-swap the arguments!
generateImpl(true, "", "__noswap_");
// If we're needed early, create a non-swapping variant for
// big-endian.
if (NeededEarly) {
generateImpl(false, "__noswap_", "__noswap_");
}
OS << "#endif\n\n";
return OS.str();
}
void Intrinsic::generateImpl(bool ReverseArguments,
StringRef NamePrefix, StringRef CallPrefix) {
CurrentRecord = R;
// If we call a macro, our local variables may be corrupted due to
// lack of proper lexical scoping. So, add a globally unique postfix
// to every variable.
//
// indexBody() should have set up the Dependencies set by now.
for (auto *I : Dependencies)
if (I->UseMacro) {
VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
break;
}
initVariables();
emitPrototype(NamePrefix);
if (IsUnavailable) {
OS << " __attribute__((unavailable));";
} else {
emitOpeningBrace();
emitShadowedArgs();
if (ReverseArguments)
emitArgumentReversal();
emitBody(CallPrefix);
if (ReverseArguments)
emitReturnReversal();
emitReturn();
emitClosingBrace();
}
OS << "\n";
CurrentRecord = nullptr;
}
void Intrinsic::indexBody() {
CurrentRecord = R;
initVariables();
emitBody("");
OS.str("");
CurrentRecord = nullptr;
}
//===----------------------------------------------------------------------===//
// NeonEmitter implementation
//===----------------------------------------------------------------------===//
Intrinsic *NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
// First, look up the name in the intrinsic map.
assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
("Intrinsic '" + Name + "' not found!").str());
std::vector<Intrinsic *> &V = IntrinsicMap[Name.str()];
std::vector<Intrinsic *> GoodVec;
// Create a string to print if we end up failing.
std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
for (unsigned I = 0; I < Types.size(); ++I) {
if (I != 0)
ErrMsg += ", ";
ErrMsg += Types[I].str();
}
ErrMsg += ")'\n";
ErrMsg += "Available overloads:\n";
// Now, look through each intrinsic implementation and see if the types are
// compatible.
for (auto *I : V) {
ErrMsg += " - " + I->getReturnType().str() + " " + I->getMangledName();
ErrMsg += "(";
for (unsigned A = 0; A < I->getNumParams(); ++A) {
if (A != 0)
ErrMsg += ", ";
ErrMsg += I->getParamType(A).str();
}
ErrMsg += ")\n";
if (I->getNumParams() != Types.size())
continue;
bool Good = true;
for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
if (I->getParamType(Arg) != Types[Arg]) {
Good = false;
break;
}
}
if (Good)
GoodVec.push_back(I);
}
assert_with_loc(GoodVec.size() > 0,
"No compatible intrinsic found - " + ErrMsg);
assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
return GoodVec.front();
}
void NeonEmitter::createIntrinsic(Record *R,
SmallVectorImpl<Intrinsic *> &Out) {
std::string Name = R->getValueAsString("Name");
std::string Proto = R->getValueAsString("Prototype");
std::string Types = R->getValueAsString("Types");
Record *OperationRec = R->getValueAsDef("Operation");
bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
bool BigEndianSafe = R->getValueAsBit("BigEndianSafe");
std::string Guard = R->getValueAsString("ArchGuard");
bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
// Set the global current record. This allows assert_with_loc to produce
// decent location information even when highly nested.
CurrentRecord = R;
ListInit *Body = OperationRec->getValueAsListInit("Ops");
std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
ClassKind CK = ClassNone;
if (R->getSuperClasses().size() >= 2)
CK = ClassMap[R->getSuperClasses()[1]];
std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
for (auto TS : TypeSpecs) {
if (CartesianProductOfTypes) {
Type DefaultT(TS, 'd');
for (auto SrcTS : TypeSpecs) {
Type DefaultSrcT(SrcTS, 'd');
if (TS == SrcTS ||
DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
continue;
NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
}
} else {
NewTypeSpecs.push_back(std::make_pair(TS, TS));
}
}
std::sort(NewTypeSpecs.begin(), NewTypeSpecs.end());
std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end());
for (auto &I : NewTypeSpecs) {
Intrinsic *IT = new Intrinsic(R, Name, Proto, I.first, I.second, CK, Body,
*this, Guard, IsUnavailable, BigEndianSafe);
IntrinsicMap[Name].push_back(IT);
Out.push_back(IT);
}
CurrentRecord = nullptr;
}
/// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def
/// declaration of builtins, checking for unique builtin declarations.
void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
SmallVectorImpl<Intrinsic *> &Defs) {
OS << "#ifdef GET_NEON_BUILTINS\n";
// We only want to emit a builtin once, and we want to emit them in
// alphabetical order, so use a std::set.
std::set<std::string> Builtins;
for (auto *Def : Defs) {
if (Def->hasBody())
continue;
// Functions with 'a' (the splat code) in the type prototype should not get
// their own builtin as they use the non-splat variant.
if (Def->hasSplat())
continue;
std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
S += Def->getBuiltinTypeStr();
S += "\", \"n\")";
Builtins.insert(S);
}
for (auto &S : Builtins)
OS << S << "\n";
OS << "#endif\n\n";
}
/// Generate the ARM and AArch64 overloaded type checking code for
/// SemaChecking.cpp, checking for unique builtin declarations.
void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
SmallVectorImpl<Intrinsic *> &Defs) {
OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
// We record each overload check line before emitting because subsequent Inst
// definitions may extend the number of permitted types (i.e. augment the
// Mask). Use std::map to avoid sorting the table by hash number.
struct OverloadInfo {
uint64_t Mask;
int PtrArgNum;
bool HasConstPtr;
OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
};
std::map<std::string, OverloadInfo> OverloadMap;
for (auto *Def : Defs) {
// If the def has a body (that is, it has Operation DAGs), it won't call
// __builtin_neon_* so we don't need to generate a definition for it.
if (Def->hasBody())
continue;
// Functions with 'a' (the splat code) in the type prototype should not get
// their own builtin as they use the non-splat variant.
if (Def->hasSplat())
continue;
// Functions which have a scalar argument cannot be overloaded, no need to
// check them if we are emitting the type checking code.
if (Def->protoHasScalar())
continue;
uint64_t Mask = 0ULL;
Type Ty = Def->getReturnType();
if (Def->getProto()[0] == 'v' || Def->getProto()[0] == 'f' ||
Def->getProto()[0] == 'F')
Ty = Def->getParamType(0);
if (Ty.isPointer())
Ty = Def->getParamType(1);
Mask |= 1ULL << Ty.getNeonEnum();
// Check if the function has a pointer or const pointer argument.
std::string Proto = Def->getProto();
int PtrArgNum = -1;
bool HasConstPtr = false;
for (unsigned I = 0; I < Def->getNumParams(); ++I) {
char ArgType = Proto[I + 1];
if (ArgType == 'c') {
HasConstPtr = true;
PtrArgNum = I;
break;
}
if (ArgType == 'p') {
PtrArgNum = I;
break;
}
}
// For sret builtins, adjust the pointer argument index.
if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
PtrArgNum += 1;
std::string Name = Def->getName();
// Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
// and vst1_lane intrinsics. Using a pointer to the vector element
// type with one of those operations causes codegen to select an aligned
// load/store instruction. If you want an unaligned operation,
// the pointer argument needs to have less alignment than element type,
// so just accept any pointer type.
if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
PtrArgNum = -1;
HasConstPtr = false;
}
if (Mask) {
std::string Name = Def->getMangledName();
OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
OverloadInfo &OI = OverloadMap[Name];
OI.Mask |= Mask;
OI.PtrArgNum |= PtrArgNum;
OI.HasConstPtr = HasConstPtr;
}
}
for (auto &I : OverloadMap) {
OverloadInfo &OI = I.second;
OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
OS << "mask = 0x" << utohexstr(OI.Mask) << "ULL";
if (OI.PtrArgNum >= 0)
OS << "; PtrArgNum = " << OI.PtrArgNum;
if (OI.HasConstPtr)
OS << "; HasConstPtr = true";
OS << "; break;\n";
}
OS << "#endif\n\n";
}
void
NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
SmallVectorImpl<Intrinsic *> &Defs) {
OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
std::set<std::string> Emitted;
for (auto *Def : Defs) {
if (Def->hasBody())
continue;
// Functions with 'a' (the splat code) in the type prototype should not get
// their own builtin as they use the non-splat variant.
if (Def->hasSplat())
continue;
// Functions which do not have an immediate do not need to have range
// checking code emitted.
if (!Def->hasImmediate())
continue;
if (Emitted.find(Def->getMangledName()) != Emitted.end())
continue;
std::string LowerBound, UpperBound;
Record *R = Def->getRecord();
if (R->getValueAsBit("isVCVT_N")) {
// VCVT between floating- and fixed-point values takes an immediate
// in the range [1, 32) for f32 or [1, 64) for f64.
LowerBound = "1";
if (Def->getBaseType().getElementSizeInBits() == 32)
UpperBound = "31";
else
UpperBound = "63";
} else if (R->getValueAsBit("isScalarShift")) {
// Right shifts have an 'r' in the name, left shifts do not. Convert
// instructions have the same bounds and right shifts.
if (Def->getName().find('r') != std::string::npos ||
Def->getName().find("cvt") != std::string::npos)
LowerBound = "1";
UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
} else if (R->getValueAsBit("isShift")) {
// Builtins which are overloaded by type will need to have their upper
// bound computed at Sema time based on the type constant.
// Right shifts have an 'r' in the name, left shifts do not.
if (Def->getName().find('r') != std::string::npos)
LowerBound = "1";
UpperBound = "RFT(TV, true)";
} else if (Def->getClassKind(true) == ClassB) {
// ClassB intrinsics have a type (and hence lane number) that is only
// known at runtime.
if (R->getValueAsBit("isLaneQ"))
UpperBound = "RFT(TV, false, true)";
else
UpperBound = "RFT(TV, false, false)";
} else {
// The immediate generally refers to a lane in the preceding argument.
assert(Def->getImmediateIdx() > 0);
Type T = Def->getParamType(Def->getImmediateIdx() - 1);
UpperBound = utostr(T.getNumElements() - 1);
}
// Calculate the index of the immediate that should be range checked.
unsigned Idx = Def->getNumParams();
if (Def->hasImmediate())
Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
<< "i = " << Idx << ";";
if (LowerBound.size())
OS << " l = " << LowerBound << ";";
if (UpperBound.size())
OS << " u = " << UpperBound << ";";
OS << " break;\n";
Emitted.insert(Def->getMangledName());
}
OS << "#endif\n\n";
}
/// runHeader - Emit a file with sections defining:
/// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
/// 2. the SemaChecking code for the type overload checking.
/// 3. the SemaChecking code for validation of intrinsic immediate arguments.
void NeonEmitter::runHeader(raw_ostream &OS) {
std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
SmallVector<Intrinsic *, 128> Defs;
for (auto *R : RV)
createIntrinsic(R, Defs);
// Generate shared BuiltinsXXX.def
genBuiltinsDef(OS, Defs);
// Generate ARM overloaded type checking code for SemaChecking.cpp
genOverloadTypeCheckCode(OS, Defs);
// Generate ARM range checking code for shift/lane immediates.
genIntrinsicRangeCheckCode(OS, Defs);
}
/// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h
/// is comprised of type definitions and function declarations.
void NeonEmitter::run(raw_ostream &OS) {
OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
"------------------------------"
"---===\n"
" *\n"
" * Permission is hereby granted, free of charge, to any person "
"obtaining "
"a copy\n"
" * of this software and associated documentation files (the "
"\"Software\"),"
" to deal\n"
" * in the Software without restriction, including without limitation "
"the "
"rights\n"
" * to use, copy, modify, merge, publish, distribute, sublicense, "
"and/or sell\n"
" * copies of the Software, and to permit persons to whom the Software "
"is\n"
" * furnished to do so, subject to the following conditions:\n"
" *\n"
" * The above copyright notice and this permission notice shall be "
"included in\n"
" * all copies or substantial portions of the Software.\n"
" *\n"
" * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
"EXPRESS OR\n"
" * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
"MERCHANTABILITY,\n"
" * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
"SHALL THE\n"
" * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
"OTHER\n"
" * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
"ARISING FROM,\n"
" * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
"DEALINGS IN\n"
" * THE SOFTWARE.\n"
" *\n"
" *===-----------------------------------------------------------------"
"---"
"---===\n"
" */\n\n";
OS << "#ifndef __ARM_NEON_H\n";
OS << "#define __ARM_NEON_H\n\n";
OS << "#if !defined(__ARM_NEON)\n";
OS << "#error \"NEON support not enabled\"\n";
OS << "#endif\n\n";
OS << "#include <stdint.h>\n\n";
// Emit NEON-specific scalar typedefs.
OS << "typedef float float32_t;\n";
OS << "typedef __fp16 float16_t;\n";
OS << "#ifdef __aarch64__\n";
OS << "typedef double float64_t;\n";
OS << "#endif\n\n";
// For now, signedness of polynomial types depends on target
OS << "#ifdef __aarch64__\n";
OS << "typedef uint8_t poly8_t;\n";
OS << "typedef uint16_t poly16_t;\n";
OS << "typedef uint64_t poly64_t;\n";
OS << "typedef __uint128_t poly128_t;\n";
OS << "#else\n";
OS << "typedef int8_t poly8_t;\n";
OS << "typedef int16_t poly16_t;\n";
OS << "#endif\n";
// Emit Neon vector typedefs.
std::string TypedefTypes(
"cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
// Emit vector typedefs.
bool InIfdef = false;
for (auto &TS : TDTypeVec) {
bool IsA64 = false;
Type T(TS, 'd');
if (T.isDouble() || (T.isPoly() && T.isLong()))
IsA64 = true;
if (InIfdef && !IsA64) {
OS << "#endif\n";
InIfdef = false;
}
if (!InIfdef && IsA64) {
OS << "#ifdef __aarch64__\n";
InIfdef = true;
}
if (T.isPoly())
OS << "typedef __attribute__((neon_polyvector_type(";
else
OS << "typedef __attribute__((neon_vector_type(";
Type T2 = T;
T2.makeScalar();
OS << utostr(T.getNumElements()) << "))) ";
OS << T2.str();
OS << " " << T.str() << ";\n";
}
if (InIfdef)
OS << "#endif\n";
OS << "\n";
// Emit struct typedefs.
InIfdef = false;
for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
for (auto &TS : TDTypeVec) {
bool IsA64 = false;
Type T(TS, 'd');
if (T.isDouble() || (T.isPoly() && T.isLong()))
IsA64 = true;
if (InIfdef && !IsA64) {
OS << "#endif\n";
InIfdef = false;
}
if (!InIfdef && IsA64) {
OS << "#ifdef __aarch64__\n";
InIfdef = true;
}
char M = '2' + (NumMembers - 2);
Type VT(TS, M);
OS << "typedef struct " << VT.str() << " {\n";
OS << " " << T.str() << " val";
OS << "[" << utostr(NumMembers) << "]";
OS << ";\n} ";
OS << VT.str() << ";\n";
OS << "\n";
}
}
if (InIfdef)
OS << "#endif\n";
OS << "\n";
OS << "#define __ai static inline __attribute__((__always_inline__, "
"__nodebug__))\n\n";
SmallVector<Intrinsic *, 128> Defs;
std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
for (auto *R : RV)
createIntrinsic(R, Defs);
for (auto *I : Defs)
I->indexBody();
std::stable_sort(
Defs.begin(), Defs.end(),
[](const Intrinsic *A, const Intrinsic *B) { return *A < *B; });
// Only emit a def when its requirements have been met.
// FIXME: This loop could be made faster, but it's fast enough for now.
bool MadeProgress = true;
std::string InGuard = "";
while (!Defs.empty() && MadeProgress) {
MadeProgress = false;
for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
I != Defs.end(); /*No step*/) {
bool DependenciesSatisfied = true;
for (auto *II : (*I)->getDependencies()) {
if (std::find(Defs.begin(), Defs.end(), II) != Defs.end())
DependenciesSatisfied = false;
}
if (!DependenciesSatisfied) {
// Try the next one.
++I;
continue;
}
// Emit #endif/#if pair if needed.
if ((*I)->getGuard() != InGuard) {
if (!InGuard.empty())
OS << "#endif\n";
InGuard = (*I)->getGuard();
if (!InGuard.empty())
OS << "#if " << InGuard << "\n";
}
// Actually generate the intrinsic code.
OS << (*I)->generate();
MadeProgress = true;
I = Defs.erase(I);
}
}
assert(Defs.empty() && "Some requirements were not satisfied!");
if (!InGuard.empty())
OS << "#endif\n";
OS << "\n";
OS << "#undef __ai\n\n";
OS << "#endif /* __ARM_NEON_H */\n";
}
namespace clang {
void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
NeonEmitter(Records).run(OS);
}
void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
NeonEmitter(Records).runHeader(OS);
}
void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
llvm_unreachable("Neon test generation no longer implemented!");
}
} // End namespace clang