forked from OSchip/llvm-project
523 lines
18 KiB
C++
523 lines
18 KiB
C++
//===-- primary32.h ---------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SCUDO_PRIMARY32_H_
|
|
#define SCUDO_PRIMARY32_H_
|
|
|
|
#include "bytemap.h"
|
|
#include "common.h"
|
|
#include "list.h"
|
|
#include "local_cache.h"
|
|
#include "release.h"
|
|
#include "report.h"
|
|
#include "stats.h"
|
|
#include "string_utils.h"
|
|
|
|
namespace scudo {
|
|
|
|
// SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
|
|
//
|
|
// It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
|
|
// boundary, and keeps a bytemap of the mappable address space to track the size
|
|
// class they are associated with.
|
|
//
|
|
// Mapped regions are split into equally sized Blocks according to the size
|
|
// class they belong to, and the associated pointers are shuffled to prevent any
|
|
// predictable address pattern (the predictability increases with the block
|
|
// size).
|
|
//
|
|
// Regions for size class 0 are special and used to hold TransferBatches, which
|
|
// allow to transfer arrays of pointers from the global size class freelist to
|
|
// the thread specific freelist for said class, and back.
|
|
//
|
|
// Memory used by this allocator is never unmapped but can be partially
|
|
// reclaimed if the platform allows for it.
|
|
|
|
template <class SizeClassMapT, uptr RegionSizeLog,
|
|
s32 MinReleaseToOsIntervalMs = INT32_MIN,
|
|
s32 MaxReleaseToOsIntervalMs = INT32_MAX>
|
|
class SizeClassAllocator32 {
|
|
public:
|
|
typedef SizeClassMapT SizeClassMap;
|
|
// The bytemap can only track UINT8_MAX - 1 classes.
|
|
static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
|
|
// Regions should be large enough to hold the largest Block.
|
|
static_assert((1UL << RegionSizeLog) >= SizeClassMap::MaxSize, "");
|
|
typedef SizeClassAllocator32<SizeClassMapT, RegionSizeLog,
|
|
MinReleaseToOsIntervalMs,
|
|
MaxReleaseToOsIntervalMs>
|
|
ThisT;
|
|
typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
|
|
typedef typename CacheT::TransferBatch TransferBatch;
|
|
static const bool SupportsMemoryTagging = false;
|
|
|
|
static uptr getSizeByClassId(uptr ClassId) {
|
|
return (ClassId == SizeClassMap::BatchClassId)
|
|
? sizeof(TransferBatch)
|
|
: SizeClassMap::getSizeByClassId(ClassId);
|
|
}
|
|
|
|
static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
|
|
|
|
void initLinkerInitialized(s32 ReleaseToOsInterval) {
|
|
if (SCUDO_FUCHSIA)
|
|
reportError("SizeClassAllocator32 is not supported on Fuchsia");
|
|
|
|
PossibleRegions.initLinkerInitialized();
|
|
MinRegionIndex = NumRegions; // MaxRegionIndex is already initialized to 0.
|
|
|
|
u32 Seed;
|
|
const u64 Time = getMonotonicTime();
|
|
if (UNLIKELY(!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed))))
|
|
Seed = static_cast<u32>(
|
|
Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
|
|
const uptr PageSize = getPageSizeCached();
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
SizeClassInfo *Sci = getSizeClassInfo(I);
|
|
Sci->RandState = getRandomU32(&Seed);
|
|
// See comment in the 64-bit primary about releasing smaller size classes.
|
|
Sci->CanRelease = (I != SizeClassMap::BatchClassId) &&
|
|
(getSizeByClassId(I) >= (PageSize / 32));
|
|
if (Sci->CanRelease)
|
|
Sci->ReleaseInfo.LastReleaseAtNs = Time;
|
|
}
|
|
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
|
|
}
|
|
void init(s32 ReleaseToOsInterval) {
|
|
memset(this, 0, sizeof(*this));
|
|
initLinkerInitialized(ReleaseToOsInterval);
|
|
}
|
|
|
|
void unmapTestOnly() {
|
|
while (NumberOfStashedRegions > 0)
|
|
unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
|
|
RegionSize);
|
|
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
|
|
if (PossibleRegions[I])
|
|
unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
|
|
PossibleRegions.unmapTestOnly();
|
|
}
|
|
|
|
TransferBatch *popBatch(CacheT *C, uptr ClassId) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
|
|
ScopedLock L(Sci->Mutex);
|
|
TransferBatch *B = Sci->FreeList.front();
|
|
if (B) {
|
|
Sci->FreeList.pop_front();
|
|
} else {
|
|
B = populateFreeList(C, ClassId, Sci);
|
|
if (UNLIKELY(!B))
|
|
return nullptr;
|
|
}
|
|
DCHECK_GT(B->getCount(), 0);
|
|
Sci->Stats.PoppedBlocks += B->getCount();
|
|
return B;
|
|
}
|
|
|
|
void pushBatch(uptr ClassId, TransferBatch *B) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
DCHECK_GT(B->getCount(), 0);
|
|
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
|
|
ScopedLock L(Sci->Mutex);
|
|
Sci->FreeList.push_front(B);
|
|
Sci->Stats.PushedBlocks += B->getCount();
|
|
if (Sci->CanRelease)
|
|
releaseToOSMaybe(Sci, ClassId);
|
|
}
|
|
|
|
void disable() {
|
|
// The BatchClassId must be locked last since other classes can use it.
|
|
for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
|
|
if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
|
|
continue;
|
|
getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
|
|
}
|
|
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
|
|
RegionsStashMutex.lock();
|
|
PossibleRegions.disable();
|
|
}
|
|
|
|
void enable() {
|
|
PossibleRegions.enable();
|
|
RegionsStashMutex.unlock();
|
|
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
if (I == SizeClassMap::BatchClassId)
|
|
continue;
|
|
getSizeClassInfo(I)->Mutex.unlock();
|
|
}
|
|
}
|
|
|
|
template <typename F> void iterateOverBlocks(F Callback) {
|
|
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
|
|
if (PossibleRegions[I] &&
|
|
(PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
|
|
const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
|
|
const uptr From = I * RegionSize;
|
|
const uptr To = From + (RegionSize / BlockSize) * BlockSize;
|
|
for (uptr Block = From; Block < To; Block += BlockSize)
|
|
Callback(Block);
|
|
}
|
|
}
|
|
|
|
void getStats(ScopedString *Str) {
|
|
// TODO(kostyak): get the RSS per region.
|
|
uptr TotalMapped = 0;
|
|
uptr PoppedBlocks = 0;
|
|
uptr PushedBlocks = 0;
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
SizeClassInfo *Sci = getSizeClassInfo(I);
|
|
TotalMapped += Sci->AllocatedUser;
|
|
PoppedBlocks += Sci->Stats.PoppedBlocks;
|
|
PushedBlocks += Sci->Stats.PushedBlocks;
|
|
}
|
|
Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
|
|
"remains %zu\n",
|
|
TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
|
|
for (uptr I = 0; I < NumClasses; I++)
|
|
getStats(Str, I, 0);
|
|
}
|
|
|
|
bool setOption(Option O, sptr Value) {
|
|
if (O == Option::ReleaseInterval) {
|
|
const s32 Interval =
|
|
Max(Min(static_cast<s32>(Value), MaxReleaseToOsIntervalMs),
|
|
MinReleaseToOsIntervalMs);
|
|
atomic_store(&ReleaseToOsIntervalMs, Interval, memory_order_relaxed);
|
|
return true;
|
|
}
|
|
// Not supported by the Primary, but not an error either.
|
|
return true;
|
|
}
|
|
|
|
uptr releaseToOS() {
|
|
uptr TotalReleasedBytes = 0;
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
SizeClassInfo *Sci = getSizeClassInfo(I);
|
|
ScopedLock L(Sci->Mutex);
|
|
TotalReleasedBytes += releaseToOSMaybe(Sci, I, /*Force=*/true);
|
|
}
|
|
return TotalReleasedBytes;
|
|
}
|
|
|
|
bool useMemoryTagging() { return false; }
|
|
void disableMemoryTagging() {}
|
|
|
|
const char *getRegionInfoArrayAddress() const { return nullptr; }
|
|
static uptr getRegionInfoArraySize() { return 0; }
|
|
|
|
static BlockInfo findNearestBlock(const char *RegionInfoData, uptr Ptr) {
|
|
(void)RegionInfoData;
|
|
(void)Ptr;
|
|
return {};
|
|
}
|
|
|
|
private:
|
|
static const uptr NumClasses = SizeClassMap::NumClasses;
|
|
static const uptr RegionSize = 1UL << RegionSizeLog;
|
|
static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >> RegionSizeLog;
|
|
static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
|
|
typedef FlatByteMap<NumRegions> ByteMap;
|
|
|
|
struct SizeClassStats {
|
|
uptr PoppedBlocks;
|
|
uptr PushedBlocks;
|
|
};
|
|
|
|
struct ReleaseToOsInfo {
|
|
uptr PushedBlocksAtLastRelease;
|
|
uptr RangesReleased;
|
|
uptr LastReleasedBytes;
|
|
u64 LastReleaseAtNs;
|
|
};
|
|
|
|
struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
|
|
HybridMutex Mutex;
|
|
SinglyLinkedList<TransferBatch> FreeList;
|
|
uptr CurrentRegion;
|
|
uptr CurrentRegionAllocated;
|
|
SizeClassStats Stats;
|
|
bool CanRelease;
|
|
u32 RandState;
|
|
uptr AllocatedUser;
|
|
ReleaseToOsInfo ReleaseInfo;
|
|
};
|
|
static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
|
|
|
|
uptr computeRegionId(uptr Mem) {
|
|
const uptr Id = Mem >> RegionSizeLog;
|
|
CHECK_LT(Id, NumRegions);
|
|
return Id;
|
|
}
|
|
|
|
uptr allocateRegionSlow() {
|
|
uptr MapSize = 2 * RegionSize;
|
|
const uptr MapBase = reinterpret_cast<uptr>(
|
|
map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
|
|
if (UNLIKELY(!MapBase))
|
|
return 0;
|
|
const uptr MapEnd = MapBase + MapSize;
|
|
uptr Region = MapBase;
|
|
if (isAligned(Region, RegionSize)) {
|
|
ScopedLock L(RegionsStashMutex);
|
|
if (NumberOfStashedRegions < MaxStashedRegions)
|
|
RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
|
|
else
|
|
MapSize = RegionSize;
|
|
} else {
|
|
Region = roundUpTo(MapBase, RegionSize);
|
|
unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
|
|
MapSize = RegionSize;
|
|
}
|
|
const uptr End = Region + MapSize;
|
|
if (End != MapEnd)
|
|
unmap(reinterpret_cast<void *>(End), MapEnd - End);
|
|
return Region;
|
|
}
|
|
|
|
uptr allocateRegion(uptr ClassId) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
uptr Region = 0;
|
|
{
|
|
ScopedLock L(RegionsStashMutex);
|
|
if (NumberOfStashedRegions > 0)
|
|
Region = RegionsStash[--NumberOfStashedRegions];
|
|
}
|
|
if (!Region)
|
|
Region = allocateRegionSlow();
|
|
if (LIKELY(Region)) {
|
|
const uptr RegionIndex = computeRegionId(Region);
|
|
if (RegionIndex < MinRegionIndex)
|
|
MinRegionIndex = RegionIndex;
|
|
if (RegionIndex > MaxRegionIndex)
|
|
MaxRegionIndex = RegionIndex;
|
|
PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
|
|
}
|
|
return Region;
|
|
}
|
|
|
|
SizeClassInfo *getSizeClassInfo(uptr ClassId) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
return &SizeClassInfoArray[ClassId];
|
|
}
|
|
|
|
bool populateBatches(CacheT *C, SizeClassInfo *Sci, uptr ClassId,
|
|
TransferBatch **CurrentBatch, u32 MaxCount,
|
|
void **PointersArray, u32 Count) {
|
|
if (ClassId != SizeClassMap::BatchClassId)
|
|
shuffle(PointersArray, Count, &Sci->RandState);
|
|
TransferBatch *B = *CurrentBatch;
|
|
for (uptr I = 0; I < Count; I++) {
|
|
if (B && B->getCount() == MaxCount) {
|
|
Sci->FreeList.push_back(B);
|
|
B = nullptr;
|
|
}
|
|
if (!B) {
|
|
B = C->createBatch(ClassId, PointersArray[I]);
|
|
if (UNLIKELY(!B))
|
|
return false;
|
|
B->clear();
|
|
}
|
|
B->add(PointersArray[I]);
|
|
}
|
|
*CurrentBatch = B;
|
|
return true;
|
|
}
|
|
|
|
NOINLINE TransferBatch *populateFreeList(CacheT *C, uptr ClassId,
|
|
SizeClassInfo *Sci) {
|
|
uptr Region;
|
|
uptr Offset;
|
|
// If the size-class currently has a region associated to it, use it. The
|
|
// newly created blocks will be located after the currently allocated memory
|
|
// for that region (up to RegionSize). Otherwise, create a new region, where
|
|
// the new blocks will be carved from the beginning.
|
|
if (Sci->CurrentRegion) {
|
|
Region = Sci->CurrentRegion;
|
|
DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
|
|
Offset = Sci->CurrentRegionAllocated;
|
|
} else {
|
|
DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
|
|
Region = allocateRegion(ClassId);
|
|
if (UNLIKELY(!Region))
|
|
return nullptr;
|
|
C->getStats().add(StatMapped, RegionSize);
|
|
Sci->CurrentRegion = Region;
|
|
Offset = 0;
|
|
}
|
|
|
|
const uptr Size = getSizeByClassId(ClassId);
|
|
const u32 MaxCount = TransferBatch::getMaxCached(Size);
|
|
DCHECK_GT(MaxCount, 0U);
|
|
// The maximum number of blocks we should carve in the region is dictated
|
|
// by the maximum number of batches we want to fill, and the amount of
|
|
// memory left in the current region (we use the lowest of the two). This
|
|
// will not be 0 as we ensure that a region can at least hold one block (via
|
|
// static_assert and at the end of this function).
|
|
const u32 NumberOfBlocks =
|
|
Min(MaxNumBatches * MaxCount,
|
|
static_cast<u32>((RegionSize - Offset) / Size));
|
|
DCHECK_GT(NumberOfBlocks, 0U);
|
|
|
|
TransferBatch *B = nullptr;
|
|
constexpr u32 ShuffleArraySize =
|
|
MaxNumBatches * TransferBatch::MaxNumCached;
|
|
// Fill the transfer batches and put them in the size-class freelist. We
|
|
// need to randomize the blocks for security purposes, so we first fill a
|
|
// local array that we then shuffle before populating the batches.
|
|
void *ShuffleArray[ShuffleArraySize];
|
|
u32 Count = 0;
|
|
const uptr AllocatedUser = Size * NumberOfBlocks;
|
|
for (uptr I = Region + Offset; I < Region + Offset + AllocatedUser;
|
|
I += Size) {
|
|
ShuffleArray[Count++] = reinterpret_cast<void *>(I);
|
|
if (Count == ShuffleArraySize) {
|
|
if (UNLIKELY(!populateBatches(C, Sci, ClassId, &B, MaxCount,
|
|
ShuffleArray, Count)))
|
|
return nullptr;
|
|
Count = 0;
|
|
}
|
|
}
|
|
if (Count) {
|
|
if (UNLIKELY(!populateBatches(C, Sci, ClassId, &B, MaxCount, ShuffleArray,
|
|
Count)))
|
|
return nullptr;
|
|
}
|
|
DCHECK(B);
|
|
if (!Sci->FreeList.empty()) {
|
|
Sci->FreeList.push_back(B);
|
|
B = Sci->FreeList.front();
|
|
Sci->FreeList.pop_front();
|
|
}
|
|
DCHECK_GT(B->getCount(), 0);
|
|
|
|
C->getStats().add(StatFree, AllocatedUser);
|
|
DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
|
|
// If there is not enough room in the region currently associated to fit
|
|
// more blocks, we deassociate the region by resetting CurrentRegion and
|
|
// CurrentRegionAllocated. Otherwise, update the allocated amount.
|
|
if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
|
|
Sci->CurrentRegion = 0;
|
|
Sci->CurrentRegionAllocated = 0;
|
|
} else {
|
|
Sci->CurrentRegionAllocated += AllocatedUser;
|
|
}
|
|
Sci->AllocatedUser += AllocatedUser;
|
|
|
|
return B;
|
|
}
|
|
|
|
void getStats(ScopedString *Str, uptr ClassId, uptr Rss) {
|
|
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
|
|
if (Sci->AllocatedUser == 0)
|
|
return;
|
|
const uptr InUse = Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks;
|
|
const uptr AvailableChunks = Sci->AllocatedUser / getSizeByClassId(ClassId);
|
|
Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
|
|
"inuse: %6zu avail: %6zu rss: %6zuK releases: %6zu\n",
|
|
ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
|
|
Sci->Stats.PoppedBlocks, Sci->Stats.PushedBlocks, InUse,
|
|
AvailableChunks, Rss >> 10, Sci->ReleaseInfo.RangesReleased);
|
|
}
|
|
|
|
NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
|
|
bool Force = false) {
|
|
const uptr BlockSize = getSizeByClassId(ClassId);
|
|
const uptr PageSize = getPageSizeCached();
|
|
|
|
CHECK_GE(Sci->Stats.PoppedBlocks, Sci->Stats.PushedBlocks);
|
|
const uptr BytesInFreeList =
|
|
Sci->AllocatedUser -
|
|
(Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks) * BlockSize;
|
|
if (BytesInFreeList < PageSize)
|
|
return 0; // No chance to release anything.
|
|
const uptr BytesPushed =
|
|
(Sci->Stats.PushedBlocks - Sci->ReleaseInfo.PushedBlocksAtLastRelease) *
|
|
BlockSize;
|
|
if (BytesPushed < PageSize)
|
|
return 0; // Nothing new to release.
|
|
|
|
// Releasing smaller blocks is expensive, so we want to make sure that a
|
|
// significant amount of bytes are free, and that there has been a good
|
|
// amount of batches pushed to the freelist before attempting to release.
|
|
if (BlockSize < PageSize / 16U) {
|
|
if (!Force && BytesPushed < Sci->AllocatedUser / 16U)
|
|
return 0;
|
|
// We want 8x% to 9x% free bytes (the larger the bock, the lower the %).
|
|
if ((BytesInFreeList * 100U) / Sci->AllocatedUser <
|
|
(100U - 1U - BlockSize / 16U))
|
|
return 0;
|
|
}
|
|
|
|
if (!Force) {
|
|
const s32 IntervalMs =
|
|
atomic_load(&ReleaseToOsIntervalMs, memory_order_relaxed);
|
|
if (IntervalMs < 0)
|
|
return 0;
|
|
if (Sci->ReleaseInfo.LastReleaseAtNs +
|
|
static_cast<u64>(IntervalMs) * 1000000 >
|
|
getMonotonicTime()) {
|
|
return 0; // Memory was returned recently.
|
|
}
|
|
}
|
|
|
|
DCHECK_GT(MinRegionIndex, 0U);
|
|
uptr First = 0;
|
|
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
|
|
if (PossibleRegions[I] - 1U == ClassId) {
|
|
First = I;
|
|
break;
|
|
}
|
|
}
|
|
uptr Last = 0;
|
|
for (uptr I = MaxRegionIndex; I >= MinRegionIndex; I--) {
|
|
if (PossibleRegions[I] - 1U == ClassId) {
|
|
Last = I;
|
|
break;
|
|
}
|
|
}
|
|
uptr TotalReleasedBytes = 0;
|
|
if (First && Last) {
|
|
const uptr Base = First * RegionSize;
|
|
const uptr NumberOfRegions = Last - First + 1U;
|
|
ReleaseRecorder Recorder(Base);
|
|
releaseFreeMemoryToOS(Sci->FreeList, Base, RegionSize, NumberOfRegions,
|
|
BlockSize, &Recorder);
|
|
if (Recorder.getReleasedRangesCount() > 0) {
|
|
Sci->ReleaseInfo.PushedBlocksAtLastRelease = Sci->Stats.PushedBlocks;
|
|
Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
|
|
Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
|
|
TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
|
|
}
|
|
}
|
|
Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTime();
|
|
return TotalReleasedBytes;
|
|
}
|
|
|
|
SizeClassInfo SizeClassInfoArray[NumClasses];
|
|
|
|
// Track the regions in use, 0 is unused, otherwise store ClassId + 1.
|
|
ByteMap PossibleRegions;
|
|
// Keep track of the lowest & highest regions allocated to avoid looping
|
|
// through the whole NumRegions.
|
|
uptr MinRegionIndex;
|
|
uptr MaxRegionIndex;
|
|
atomic_s32 ReleaseToOsIntervalMs;
|
|
// Unless several threads request regions simultaneously from different size
|
|
// classes, the stash rarely contains more than 1 entry.
|
|
static constexpr uptr MaxStashedRegions = 4;
|
|
HybridMutex RegionsStashMutex;
|
|
uptr NumberOfStashedRegions;
|
|
uptr RegionsStash[MaxStashedRegions];
|
|
};
|
|
|
|
} // namespace scudo
|
|
|
|
#endif // SCUDO_PRIMARY32_H_
|