llvm-project/llvm/tools/llvm-mca/Instruction.h

337 lines
11 KiB
C++

//===--------------------- Instruction.h ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines abstractions used by the Backend to model register reads,
/// register writes and instructions.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_MCA_INSTRUCTION_H
#define LLVM_TOOLS_LLVM_MCA_INSTRUCTION_H
#include "llvm/Support/MathExtras.h"
#include <memory>
#include <set>
#include <vector>
namespace mca {
struct WriteDescriptor;
struct ReadDescriptor;
class WriteState;
class ReadState;
constexpr int UNKNOWN_CYCLES = -512;
/// \brief A register write descriptor.
struct WriteDescriptor {
int OpIndex; // Operand index. -1 if this is an implicit write.
// Write latency. Number of cycles before write-back stage.
int Latency;
// This field is set to a value different than zero only if this
// is an implicit definition.
unsigned RegisterID;
// True if this write generates a partial update of a super-registers.
// On X86, this flag is set by byte/word writes on GPR registers. Also,
// a write of an XMM register only partially updates the corresponding
// YMM super-register if the write is associated to a legacy SSE instruction.
bool FullyUpdatesSuperRegs;
// Instruction itineraries would set this field to the SchedClass ID.
// Otherwise, it defaults to the WriteResourceID from teh MCWriteLatencyEntry
// element associated to this write.
// When computing read latencies, this value is matched against the
// "ReadAdvance" information. The hardware backend may implement
// dedicated forwarding paths to quickly propagate write results to dependent
// instructions waiting in the reservation station (effectively bypassing the
// write-back stage).
unsigned SClassOrWriteResourceID;
// True only if this is a write obtained from an optional definition.
// Optional definitions are allowed to reference regID zero (i.e. "no
// register").
bool IsOptionalDef;
};
/// \brief A register read descriptor.
struct ReadDescriptor {
// This field defaults to -1 if this is an implicit read.
int OpIndex;
// This field is only set if this is an implicit read.
unsigned RegisterID;
// Scheduling Class Index. It is used to query the scheduling model for the
// MCSchedClassDesc object.
unsigned SchedClassID;
// True if there may be a local forwarding logic in hardware to serve a
// write used by this read. This information, along with SchedClassID, is
// used to dynamically check at Instruction creation time, if the input
// operands can benefit from a ReadAdvance bonus.
bool HasReadAdvanceEntries;
};
/// \brief Tracks uses of a register definition (e.g. register write).
///
/// Each implicit/explicit register write is associated with an instance of
/// this class. A WriteState object tracks the dependent users of a
/// register write. It also tracks how many cycles are left before the write
/// back stage.
class WriteState {
const WriteDescriptor &WD;
// On instruction issue, this field is set equal to the write latency.
// Before instruction issue, this field defaults to -512, a special
// value that represents an "unknown" number of cycles.
int CyclesLeft;
// Actual register defined by this write. This field is only used
// to speedup queries on the register file.
// For implicit writes, this field always matches the value of
// field RegisterID from WD.
unsigned RegisterID;
// A list of dependent reads. Users is a set of dependent
// reads. A dependent read is added to the set only if CyclesLeft
// is "unknown". As soon as CyclesLeft is 'known', each user in the set
// gets notified with the actual CyclesLeft.
// The 'second' element of a pair is a "ReadAdvance" number of cycles.
std::set<std::pair<ReadState *, int>> Users;
public:
WriteState(const WriteDescriptor &Desc)
: WD(Desc), CyclesLeft(UNKNOWN_CYCLES), RegisterID(Desc.RegisterID) {}
WriteState(const WriteState &Other) = delete;
WriteState &operator=(const WriteState &Other) = delete;
int getCyclesLeft() const { return CyclesLeft; }
unsigned getWriteResourceID() const { return WD.SClassOrWriteResourceID; }
unsigned getRegisterID() const { return RegisterID; }
void setRegisterID(unsigned ID) { RegisterID = ID; }
void addUser(ReadState *Use, int ReadAdvance);
bool fullyUpdatesSuperRegs() const { return WD.FullyUpdatesSuperRegs; }
bool isWrittenBack() const { return CyclesLeft == 0; }
// On every cycle, update CyclesLeft and notify dependent users.
void cycleEvent();
void onInstructionIssued();
#ifndef NDEBUG
void dump() const;
#endif
};
/// \brief Tracks register operand latency in cycles.
///
/// A read may be dependent on more than one write. This occurs when some
/// writes only partially update the register associated to this read.
class ReadState {
const ReadDescriptor &RD;
unsigned DependentWrites;
int CyclesLeft;
unsigned TotalCycles;
public:
bool isReady() const {
if (DependentWrites)
return false;
return (CyclesLeft == UNKNOWN_CYCLES || CyclesLeft == 0);
}
ReadState(const ReadDescriptor &Desc)
: RD(Desc), DependentWrites(0), CyclesLeft(UNKNOWN_CYCLES),
TotalCycles(0) {}
ReadState(const ReadState &Other) = delete;
ReadState &operator=(const ReadState &Other) = delete;
const ReadDescriptor &getDescriptor() const { return RD; }
unsigned getSchedClass() const { return RD.SchedClassID; }
void cycleEvent();
void writeStartEvent(unsigned Cycles);
void setDependentWrites(unsigned Writes) { DependentWrites = Writes; }
};
/// \brief A sequence of cycles.
///
/// This class can be used as a building block to construct ranges of cycles.
class CycleSegment {
unsigned Begin; // Inclusive.
unsigned End; // Exclusive.
bool Reserved; // Resources associated to this segment must be reserved.
public:
CycleSegment(unsigned StartCycle, unsigned EndCycle, bool IsReserved = false)
: Begin(StartCycle), End(EndCycle), Reserved(IsReserved) {}
bool contains(unsigned Cycle) const { return Cycle >= Begin && Cycle < End; }
bool startsAfter(const CycleSegment &CS) const { return End <= CS.Begin; }
bool endsBefore(const CycleSegment &CS) const { return Begin >= CS.End; }
bool overlaps(const CycleSegment &CS) const {
return !startsAfter(CS) && !endsBefore(CS);
}
bool isExecuting() const { return Begin == 0 && End != 0; }
bool isExecuted() const { return End == 0; }
bool operator<(const CycleSegment &Other) const {
return Begin < Other.Begin;
}
CycleSegment &operator--(void) {
if (Begin)
Begin--;
if (End)
End--;
return *this;
}
bool isValid() const { return Begin <= End; }
unsigned size() const { return End - Begin; };
void Subtract(unsigned Cycles) {
assert(End >= Cycles);
End -= Cycles;
}
unsigned begin() const { return Begin; }
unsigned end() const { return End; }
void setEnd(unsigned NewEnd) { End = NewEnd; }
bool isReserved() const { return Reserved; }
void setReserved() { Reserved = true; }
};
/// \brief Helper used by class InstrDesc to describe how hardware resources
/// are used.
///
/// This class describes how many resource units of a specific resource kind
/// (and how many cycles) are "used" by an instruction.
struct ResourceUsage {
CycleSegment CS;
unsigned NumUnits;
ResourceUsage(CycleSegment Cycles, unsigned Units = 1)
: CS(Cycles), NumUnits(Units) {}
unsigned size() const { return CS.size(); }
bool isReserved() const { return CS.isReserved(); }
void setReserved() { CS.setReserved(); }
};
/// \brief An instruction descriptor
struct InstrDesc {
std::vector<WriteDescriptor> Writes; // Implicit writes are at the end.
std::vector<ReadDescriptor> Reads; // Implicit reads are at the end.
// For every resource used by an instruction of this kind, this vector
// reports the number of "consumed cycles".
std::vector<std::pair<uint64_t, ResourceUsage>> Resources;
// A list of buffered resources consumed by this instruction.
std::vector<uint64_t> Buffers;
unsigned MaxLatency;
// Number of MicroOps for this instruction.
unsigned NumMicroOps;
bool MayLoad;
bool MayStore;
bool HasSideEffects;
};
/// An instruction dispatched to the out-of-order backend.
///
/// This class is used to monitor changes in the internal state of instructions
/// that are dispatched by the DispatchUnit to the hardware schedulers.
class Instruction {
const InstrDesc &Desc;
enum InstrStage {
IS_INVALID, // Instruction in an invalid state.
IS_AVAILABLE, // Instruction dispatched but operands are not ready.
IS_READY, // Instruction dispatched and operands ready.
IS_EXECUTING, // Instruction issued.
IS_EXECUTED, // Instruction executed. Values are written back.
IS_RETIRED // Instruction retired.
};
// The current instruction stage.
enum InstrStage Stage;
// This value defaults to the instruction latency. This instruction is
// considered executed when field CyclesLeft goes to zero.
int CyclesLeft;
// Retire Unit token ID for this instruction.
unsigned RCUTokenID;
using UniqueDef = std::unique_ptr<WriteState>;
using UniqueUse = std::unique_ptr<ReadState>;
using VecDefs = std::vector<UniqueDef>;
using VecUses = std::vector<UniqueUse>;
// Output dependencies.
// One entry per each implicit and explicit register definition.
VecDefs Defs;
// Input dependencies.
// One entry per each implicit and explicit register use.
VecUses Uses;
// This instruction has already been dispatched, and all operands are ready.
void setReady() {
assert(Stage == IS_AVAILABLE);
Stage = IS_READY;
}
public:
Instruction(const InstrDesc &D)
: Desc(D), Stage(IS_INVALID), CyclesLeft(-1) {}
Instruction(const Instruction &Other) = delete;
Instruction &operator=(const Instruction &Other) = delete;
VecDefs &getDefs() { return Defs; }
const VecDefs &getDefs() const { return Defs; }
VecUses &getUses() { return Uses; }
const VecUses &getUses() const { return Uses; }
const InstrDesc &getDesc() const { return Desc; }
unsigned getRCUTokenID() const { return RCUTokenID; }
int getCyclesLeft() const { return CyclesLeft; }
void setCyclesLeft(int Cycles) { CyclesLeft = Cycles; }
void setRCUTokenID(unsigned TokenID) { RCUTokenID = TokenID; }
// Transition to the dispatch stage.
// No definition is updated because the instruction is not "executing".
void dispatch() {
assert(Stage == IS_INVALID);
Stage = IS_AVAILABLE;
}
// Instruction issued. Transition to the IS_EXECUTING state, and update
// all the definitions.
void execute();
void forceExecuted() {
assert((Stage == IS_INVALID && isZeroLatency()) ||
(Stage == IS_READY && Desc.MaxLatency == 0));
Stage = IS_EXECUTED;
}
// Checks if operands are available. If all operands area ready,
// then this forces a transition from IS_AVAILABLE to IS_READY.
bool isReady();
bool isDispatched() const { return Stage == IS_AVAILABLE; }
bool isExecuting() const { return Stage == IS_EXECUTING; }
bool isExecuted() const { return Stage == IS_EXECUTED; }
bool isZeroLatency() const;
void retire() {
assert(Stage == IS_EXECUTED);
Stage = IS_RETIRED;
}
void cycleEvent();
};
} // namespace mca
#endif