llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp

1024 lines
38 KiB
C++

//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "loop-utils"
static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
MemorySSAUpdater *MSSAU,
bool PreserveLCSSA) {
bool Changed = false;
// We re-use a vector for the in-loop predecesosrs.
SmallVector<BasicBlock *, 4> InLoopPredecessors;
auto RewriteExit = [&](BasicBlock *BB) {
assert(InLoopPredecessors.empty() &&
"Must start with an empty predecessors list!");
auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
// See if there are any non-loop predecessors of this exit block and
// keep track of the in-loop predecessors.
bool IsDedicatedExit = true;
for (auto *PredBB : predecessors(BB))
if (L->contains(PredBB)) {
if (isa<IndirectBrInst>(PredBB->getTerminator()))
// We cannot rewrite exiting edges from an indirectbr.
return false;
if (isa<CallBrInst>(PredBB->getTerminator()))
// We cannot rewrite exiting edges from a callbr.
return false;
InLoopPredecessors.push_back(PredBB);
} else {
IsDedicatedExit = false;
}
assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
// Nothing to do if this is already a dedicated exit.
if (IsDedicatedExit)
return false;
auto *NewExitBB = SplitBlockPredecessors(
BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
if (!NewExitBB)
LLVM_DEBUG(
dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
<< *L << "\n");
else
LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
<< NewExitBB->getName() << "\n");
return true;
};
// Walk the exit blocks directly rather than building up a data structure for
// them, but only visit each one once.
SmallPtrSet<BasicBlock *, 4> Visited;
for (auto *BB : L->blocks())
for (auto *SuccBB : successors(BB)) {
// We're looking for exit blocks so skip in-loop successors.
if (L->contains(SuccBB))
continue;
// Visit each exit block exactly once.
if (!Visited.insert(SuccBB).second)
continue;
Changed |= RewriteExit(SuccBB);
}
return Changed;
}
/// Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
SmallVector<Instruction *, 8> UsedOutside;
for (auto *Block : L->getBlocks())
// FIXME: I believe that this could use copy_if if the Inst reference could
// be adapted into a pointer.
for (auto &Inst : *Block) {
auto Users = Inst.users();
if (any_of(Users, [&](User *U) {
auto *Use = cast<Instruction>(U);
return !L->contains(Use->getParent());
}))
UsedOutside.push_back(&Inst);
}
return UsedOutside;
}
void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
// By definition, all loop passes need the LoopInfo analysis and the
// Dominator tree it depends on. Because they all participate in the loop
// pass manager, they must also preserve these.
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
// We must also preserve LoopSimplify and LCSSA. We locally access their IDs
// here because users shouldn't directly get them from this header.
extern char &LoopSimplifyID;
extern char &LCSSAID;
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
// This is used in the LPPassManager to perform LCSSA verification on passes
// which preserve lcssa form
AU.addRequired<LCSSAVerificationPass>();
AU.addPreserved<LCSSAVerificationPass>();
// Loop passes are designed to run inside of a loop pass manager which means
// that any function analyses they require must be required by the first loop
// pass in the manager (so that it is computed before the loop pass manager
// runs) and preserved by all loop pasess in the manager. To make this
// reasonably robust, the set needed for most loop passes is maintained here.
// If your loop pass requires an analysis not listed here, you will need to
// carefully audit the loop pass manager nesting structure that results.
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<SCEVAAWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
}
/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
}
/// Create MDNode for input string.
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
LLVMContext &Context = TheLoop->getHeader()->getContext();
Metadata *MDs[] = {
MDString::get(Context, Name),
ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
return MDNode::get(Context, MDs);
}
/// Set input string into loop metadata by keeping other values intact.
/// If the string is already in loop metadata update value if it is
/// different.
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
unsigned V) {
SmallVector<Metadata *, 4> MDs(1);
// If the loop already has metadata, retain it.
MDNode *LoopID = TheLoop->getLoopID();
if (LoopID) {
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
// If it is of form key = value, try to parse it.
if (Node->getNumOperands() == 2) {
MDString *S = dyn_cast<MDString>(Node->getOperand(0));
if (S && S->getString().equals(StringMD)) {
ConstantInt *IntMD =
mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
if (IntMD && IntMD->getSExtValue() == V)
// It is already in place. Do nothing.
return;
// We need to update the value, so just skip it here and it will
// be added after copying other existed nodes.
continue;
}
}
MDs.push_back(Node);
}
}
// Add new metadata.
MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
// Replace current metadata node with new one.
LLVMContext &Context = TheLoop->getHeader()->getContext();
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
TheLoop->setLoopID(NewLoopID);
}
/// Find string metadata for loop
///
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
/// operand or null otherwise. If the string metadata is not found return
/// Optional's not-a-value.
Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
StringRef Name) {
MDNode *MD = findOptionMDForLoop(TheLoop, Name);
if (!MD)
return None;
switch (MD->getNumOperands()) {
case 1:
return nullptr;
case 2:
return &MD->getOperand(1);
default:
llvm_unreachable("loop metadata has 0 or 1 operand");
}
}
static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
StringRef Name) {
MDNode *MD = findOptionMDForLoop(TheLoop, Name);
if (!MD)
return None;
switch (MD->getNumOperands()) {
case 1:
// When the value is absent it is interpreted as 'attribute set'.
return true;
case 2:
if (ConstantInt *IntMD =
mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
return IntMD->getZExtValue();
return true;
}
llvm_unreachable("unexpected number of options");
}
static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
}
llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
StringRef Name) {
const MDOperand *AttrMD =
findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
if (!AttrMD)
return None;
ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
if (!IntMD)
return None;
return IntMD->getSExtValue();
}
Optional<MDNode *> llvm::makeFollowupLoopID(
MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
if (!OrigLoopID) {
if (AlwaysNew)
return nullptr;
return None;
}
assert(OrigLoopID->getOperand(0) == OrigLoopID);
bool InheritAllAttrs = !InheritOptionsExceptPrefix;
bool InheritSomeAttrs =
InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
SmallVector<Metadata *, 8> MDs;
MDs.push_back(nullptr);
bool Changed = false;
if (InheritAllAttrs || InheritSomeAttrs) {
for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
MDNode *Op = cast<MDNode>(Existing.get());
auto InheritThisAttribute = [InheritSomeAttrs,
InheritOptionsExceptPrefix](MDNode *Op) {
if (!InheritSomeAttrs)
return false;
// Skip malformatted attribute metadata nodes.
if (Op->getNumOperands() == 0)
return true;
Metadata *NameMD = Op->getOperand(0).get();
if (!isa<MDString>(NameMD))
return true;
StringRef AttrName = cast<MDString>(NameMD)->getString();
// Do not inherit excluded attributes.
return !AttrName.startswith(InheritOptionsExceptPrefix);
};
if (InheritThisAttribute(Op))
MDs.push_back(Op);
else
Changed = true;
}
} else {
// Modified if we dropped at least one attribute.
Changed = OrigLoopID->getNumOperands() > 1;
}
bool HasAnyFollowup = false;
for (StringRef OptionName : FollowupOptions) {
MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
if (!FollowupNode)
continue;
HasAnyFollowup = true;
for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
MDs.push_back(Option.get());
Changed = true;
}
}
// Attributes of the followup loop not specified explicity, so signal to the
// transformation pass to add suitable attributes.
if (!AlwaysNew && !HasAnyFollowup)
return None;
// If no attributes were added or remove, the previous loop Id can be reused.
if (!AlwaysNew && !Changed)
return OrigLoopID;
// No attributes is equivalent to having no !llvm.loop metadata at all.
if (MDs.size() == 1)
return nullptr;
// Build the new loop ID.
MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
return FollowupLoopID;
}
bool llvm::hasDisableAllTransformsHint(const Loop *L) {
return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
}
TransformationMode llvm::hasUnrollTransformation(Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
return TM_SuppressedByUser;
Optional<int> Count =
getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
if (Count.hasValue())
return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
return TM_ForcedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
return TM_ForcedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
return TM_SuppressedByUser;
Optional<int> Count =
getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
if (Count.hasValue())
return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
return TM_ForcedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
Optional<bool> Enable =
getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
if (Enable == false)
return TM_SuppressedByUser;
Optional<int> VectorizeWidth =
getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
Optional<int> InterleaveCount =
getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
// 'Forcing' vector width and interleave count to one effectively disables
// this tranformation.
if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
return TM_SuppressedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
return TM_Disable;
if (Enable == true)
return TM_ForcedByUser;
if (VectorizeWidth == 1 && InterleaveCount == 1)
return TM_Disable;
if (VectorizeWidth > 1 || InterleaveCount > 1)
return TM_Enable;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasDistributeTransformation(Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
return TM_ForcedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
return TM_SuppressedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16>
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
SmallVector<DomTreeNode *, 16> Worklist;
auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
// Only include subregions in the top level loop.
BasicBlock *BB = DTN->getBlock();
if (CurLoop->contains(BB))
Worklist.push_back(DTN);
};
AddRegionToWorklist(N);
for (size_t I = 0; I < Worklist.size(); I++)
for (DomTreeNode *Child : Worklist[I]->getChildren())
AddRegionToWorklist(Child);
return Worklist;
}
void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
ScalarEvolution *SE = nullptr,
LoopInfo *LI = nullptr) {
assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
auto *Preheader = L->getLoopPreheader();
assert(Preheader && "Preheader should exist!");
// Now that we know the removal is safe, remove the loop by changing the
// branch from the preheader to go to the single exit block.
//
// Because we're deleting a large chunk of code at once, the sequence in which
// we remove things is very important to avoid invalidation issues.
// Tell ScalarEvolution that the loop is deleted. Do this before
// deleting the loop so that ScalarEvolution can look at the loop
// to determine what it needs to clean up.
if (SE)
SE->forgetLoop(L);
auto *ExitBlock = L->getUniqueExitBlock();
assert(ExitBlock && "Should have a unique exit block!");
assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
assert(OldBr && "Preheader must end with a branch");
assert(OldBr->isUnconditional() && "Preheader must have a single successor");
// Connect the preheader to the exit block. Keep the old edge to the header
// around to perform the dominator tree update in two separate steps
// -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
// preheader -> header.
//
//
// 0. Preheader 1. Preheader 2. Preheader
// | | | |
// V | V |
// Header <--\ | Header <--\ | Header <--\
// | | | | | | | | | | |
// | V | | | V | | | V |
// | Body --/ | | Body --/ | | Body --/
// V V V V V
// Exit Exit Exit
//
// By doing this is two separate steps we can perform the dominator tree
// update without using the batch update API.
//
// Even when the loop is never executed, we cannot remove the edge from the
// source block to the exit block. Consider the case where the unexecuted loop
// branches back to an outer loop. If we deleted the loop and removed the edge
// coming to this inner loop, this will break the outer loop structure (by
// deleting the backedge of the outer loop). If the outer loop is indeed a
// non-loop, it will be deleted in a future iteration of loop deletion pass.
IRBuilder<> Builder(OldBr);
Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
// Remove the old branch. The conditional branch becomes a new terminator.
OldBr->eraseFromParent();
// Rewrite phis in the exit block to get their inputs from the Preheader
// instead of the exiting block.
for (PHINode &P : ExitBlock->phis()) {
// Set the zero'th element of Phi to be from the preheader and remove all
// other incoming values. Given the loop has dedicated exits, all other
// incoming values must be from the exiting blocks.
int PredIndex = 0;
P.setIncomingBlock(PredIndex, Preheader);
// Removes all incoming values from all other exiting blocks (including
// duplicate values from an exiting block).
// Nuke all entries except the zero'th entry which is the preheader entry.
// NOTE! We need to remove Incoming Values in the reverse order as done
// below, to keep the indices valid for deletion (removeIncomingValues
// updates getNumIncomingValues and shifts all values down into the operand
// being deleted).
for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
P.removeIncomingValue(e - i, false);
assert((P.getNumIncomingValues() == 1 &&
P.getIncomingBlock(PredIndex) == Preheader) &&
"Should have exactly one value and that's from the preheader!");
}
// Disconnect the loop body by branching directly to its exit.
Builder.SetInsertPoint(Preheader->getTerminator());
Builder.CreateBr(ExitBlock);
// Remove the old branch.
Preheader->getTerminator()->eraseFromParent();
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
if (DT) {
// Update the dominator tree by informing it about the new edge from the
// preheader to the exit and the removed edge.
DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock},
{DominatorTree::Delete, Preheader, L->getHeader()}});
}
// Use a map to unique and a vector to guarantee deterministic ordering.
llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
// Given LCSSA form is satisfied, we should not have users of instructions
// within the dead loop outside of the loop. However, LCSSA doesn't take
// unreachable uses into account. We handle them here.
// We could do it after drop all references (in this case all users in the
// loop will be already eliminated and we have less work to do but according
// to API doc of User::dropAllReferences only valid operation after dropping
// references, is deletion. So let's substitute all usages of
// instruction from the loop with undef value of corresponding type first.
for (auto *Block : L->blocks())
for (Instruction &I : *Block) {
auto *Undef = UndefValue::get(I.getType());
for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
Use &U = *UI;
++UI;
if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
if (L->contains(Usr->getParent()))
continue;
// If we have a DT then we can check that uses outside a loop only in
// unreachable block.
if (DT)
assert(!DT->isReachableFromEntry(U) &&
"Unexpected user in reachable block");
U.set(Undef);
}
auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
if (!DVI)
continue;
auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
if (Key != DeadDebugSet.end())
continue;
DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
DeadDebugInst.push_back(DVI);
}
// After the loop has been deleted all the values defined and modified
// inside the loop are going to be unavailable.
// Since debug values in the loop have been deleted, inserting an undef
// dbg.value truncates the range of any dbg.value before the loop where the
// loop used to be. This is particularly important for constant values.
DIBuilder DIB(*ExitBlock->getModule());
Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
assert(InsertDbgValueBefore &&
"There should be a non-PHI instruction in exit block, else these "
"instructions will have no parent.");
for (auto *DVI : DeadDebugInst)
DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
DVI->getVariable(), DVI->getExpression(),
DVI->getDebugLoc(), InsertDbgValueBefore);
// Remove the block from the reference counting scheme, so that we can
// delete it freely later.
for (auto *Block : L->blocks())
Block->dropAllReferences();
if (LI) {
// Erase the instructions and the blocks without having to worry
// about ordering because we already dropped the references.
// NOTE: This iteration is safe because erasing the block does not remove
// its entry from the loop's block list. We do that in the next section.
for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
LpI != LpE; ++LpI)
(*LpI)->eraseFromParent();
// Finally, the blocks from loopinfo. This has to happen late because
// otherwise our loop iterators won't work.
SmallPtrSet<BasicBlock *, 8> blocks;
blocks.insert(L->block_begin(), L->block_end());
for (BasicBlock *BB : blocks)
LI->removeBlock(BB);
// The last step is to update LoopInfo now that we've eliminated this loop.
LI->erase(L);
}
}
Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
// Support loops with an exiting latch and other existing exists only
// deoptimize.
// Get the branch weights for the loop's backedge.
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return None;
BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
return None;
assert((LatchBR->getSuccessor(0) == L->getHeader() ||
LatchBR->getSuccessor(1) == L->getHeader()) &&
"At least one edge out of the latch must go to the header");
SmallVector<BasicBlock *, 4> ExitBlocks;
L->getUniqueNonLatchExitBlocks(ExitBlocks);
if (any_of(ExitBlocks, [](const BasicBlock *EB) {
return !EB->getTerminatingDeoptimizeCall();
}))
return None;
// To estimate the number of times the loop body was executed, we want to
// know the number of times the backedge was taken, vs. the number of times
// we exited the loop.
uint64_t TrueVal, FalseVal;
if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
return None;
if (!TrueVal || !FalseVal)
return 0;
// Divide the count of the backedge by the count of the edge exiting the loop,
// rounding to nearest.
if (LatchBR->getSuccessor(0) == L->getHeader())
return (TrueVal + (FalseVal / 2)) / FalseVal;
else
return (FalseVal + (TrueVal / 2)) / TrueVal;
}
bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
ScalarEvolution &SE) {
Loop *OuterL = InnerLoop->getParentLoop();
if (!OuterL)
return true;
// Get the backedge taken count for the inner loop
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
!InnerLoopBECountSC->getType()->isIntegerTy())
return false;
// Get whether count is invariant to the outer loop
ScalarEvolution::LoopDisposition LD =
SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
if (LD != ScalarEvolution::LoopInvariant)
return false;
return true;
}
Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
RecurrenceDescriptor::MinMaxRecurrenceKind RK,
Value *Left, Value *Right) {
CmpInst::Predicate P = CmpInst::ICMP_NE;
switch (RK) {
default:
llvm_unreachable("Unknown min/max recurrence kind");
case RecurrenceDescriptor::MRK_UIntMin:
P = CmpInst::ICMP_ULT;
break;
case RecurrenceDescriptor::MRK_UIntMax:
P = CmpInst::ICMP_UGT;
break;
case RecurrenceDescriptor::MRK_SIntMin:
P = CmpInst::ICMP_SLT;
break;
case RecurrenceDescriptor::MRK_SIntMax:
P = CmpInst::ICMP_SGT;
break;
case RecurrenceDescriptor::MRK_FloatMin:
P = CmpInst::FCMP_OLT;
break;
case RecurrenceDescriptor::MRK_FloatMax:
P = CmpInst::FCMP_OGT;
break;
}
// We only match FP sequences that are 'fast', so we can unconditionally
// set it on any generated instructions.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
FastMathFlags FMF;
FMF.setFast();
Builder.setFastMathFlags(FMF);
Value *Cmp;
if (RK == RecurrenceDescriptor::MRK_FloatMin ||
RK == RecurrenceDescriptor::MRK_FloatMax)
Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
else
Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
return Select;
}
// Helper to generate an ordered reduction.
Value *
llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
unsigned Op,
RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
ArrayRef<Value *> RedOps) {
unsigned VF = Src->getType()->getVectorNumElements();
// Extract and apply reduction ops in ascending order:
// e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
Value *Result = Acc;
for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
Value *Ext =
Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
"bin.rdx");
} else {
assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
"Invalid min/max");
Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
}
if (!RedOps.empty())
propagateIRFlags(Result, RedOps);
}
return Result;
}
// Helper to generate a log2 shuffle reduction.
Value *
llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
ArrayRef<Value *> RedOps) {
unsigned VF = Src->getType()->getVectorNumElements();
// VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
// and vector ops, reducing the set of values being computed by half each
// round.
assert(isPowerOf2_32(VF) &&
"Reduction emission only supported for pow2 vectors!");
Value *TmpVec = Src;
SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
for (unsigned i = VF; i != 1; i >>= 1) {
// Move the upper half of the vector to the lower half.
for (unsigned j = 0; j != i / 2; ++j)
ShuffleMask[j] = Builder.getInt32(i / 2 + j);
// Fill the rest of the mask with undef.
std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
UndefValue::get(Builder.getInt32Ty()));
Value *Shuf = Builder.CreateShuffleVector(
TmpVec, UndefValue::get(TmpVec->getType()),
ConstantVector::get(ShuffleMask), "rdx.shuf");
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
// The builder propagates its fast-math-flags setting.
TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
"bin.rdx");
} else {
assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
"Invalid min/max");
TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
}
if (!RedOps.empty())
propagateIRFlags(TmpVec, RedOps);
}
// The result is in the first element of the vector.
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}
/// Create a simple vector reduction specified by an opcode and some
/// flags (if generating min/max reductions).
Value *llvm::createSimpleTargetReduction(
IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
Value *Src, TargetTransformInfo::ReductionFlags Flags,
ArrayRef<Value *> RedOps) {
assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
std::function<Value *()> BuildFunc;
using RD = RecurrenceDescriptor;
RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
switch (Opcode) {
case Instruction::Add:
BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
break;
case Instruction::Mul:
BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
break;
case Instruction::And:
BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
break;
case Instruction::Or:
BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
break;
case Instruction::Xor:
BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
break;
case Instruction::FAdd:
BuildFunc = [&]() {
auto Rdx = Builder.CreateFAddReduce(
Constant::getNullValue(Src->getType()->getVectorElementType()), Src);
return Rdx;
};
break;
case Instruction::FMul:
BuildFunc = [&]() {
Type *Ty = Src->getType()->getVectorElementType();
auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
return Rdx;
};
break;
case Instruction::ICmp:
if (Flags.IsMaxOp) {
MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
BuildFunc = [&]() {
return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
};
} else {
MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
BuildFunc = [&]() {
return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
};
}
break;
case Instruction::FCmp:
if (Flags.IsMaxOp) {
MinMaxKind = RD::MRK_FloatMax;
BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
} else {
MinMaxKind = RD::MRK_FloatMin;
BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
}
break;
default:
llvm_unreachable("Unhandled opcode");
break;
}
if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
return BuildFunc();
return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
}
/// Create a vector reduction using a given recurrence descriptor.
Value *llvm::createTargetReduction(IRBuilder<> &B,
const TargetTransformInfo *TTI,
RecurrenceDescriptor &Desc, Value *Src,
bool NoNaN) {
// TODO: Support in-order reductions based on the recurrence descriptor.
using RD = RecurrenceDescriptor;
RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
TargetTransformInfo::ReductionFlags Flags;
Flags.NoNaN = NoNaN;
// All ops in the reduction inherit fast-math-flags from the recurrence
// descriptor.
IRBuilder<>::FastMathFlagGuard FMFGuard(B);
B.setFastMathFlags(Desc.getFastMathFlags());
switch (RecKind) {
case RD::RK_FloatAdd:
return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
case RD::RK_FloatMult:
return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
case RD::RK_IntegerAdd:
return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
case RD::RK_IntegerMult:
return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
case RD::RK_IntegerAnd:
return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
case RD::RK_IntegerOr:
return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
case RD::RK_IntegerXor:
return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
case RD::RK_IntegerMinMax: {
RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
}
case RD::RK_FloatMinMax: {
Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
}
default:
llvm_unreachable("Unhandled RecKind");
}
}
void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
auto *VecOp = dyn_cast<Instruction>(I);
if (!VecOp)
return;
auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
: dyn_cast<Instruction>(OpValue);
if (!Intersection)
return;
const unsigned Opcode = Intersection->getOpcode();
VecOp->copyIRFlags(Intersection);
for (auto *V : VL) {
auto *Instr = dyn_cast<Instruction>(V);
if (!Instr)
continue;
if (OpValue == nullptr || Opcode == Instr->getOpcode())
VecOp->andIRFlags(V);
}
}
bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
ScalarEvolution &SE) {
const SCEV *Zero = SE.getZero(S->getType());
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
}
bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
ScalarEvolution &SE) {
const SCEV *Zero = SE.getZero(S->getType());
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
}
bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
bool Signed) {
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
APInt::getMinValue(BitWidth);
auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, Predicate, S,
SE.getConstant(Min));
}
bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
bool Signed) {
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
APInt::getMaxValue(BitWidth);
auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, Predicate, S,
SE.getConstant(Max));
}