llvm-project/clang/lib/Basic/Targets/Mips.h

399 lines
13 KiB
C++

//===--- Mips.h - Declare Mips target feature support -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares Mips TargetInfo objects.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H
#define LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Compiler.h"
namespace clang {
namespace targets {
class LLVM_LIBRARY_VISIBILITY MipsTargetInfo : public TargetInfo {
void setDataLayout() {
StringRef Layout;
if (ABI == "o32")
Layout = "m:m-p:32:32-i8:8:32-i16:16:32-i64:64-n32-S64";
else if (ABI == "n32")
Layout = "m:e-p:32:32-i8:8:32-i16:16:32-i64:64-n32:64-S128";
else if (ABI == "n64")
Layout = "m:e-i8:8:32-i16:16:32-i64:64-n32:64-S128";
else
llvm_unreachable("Invalid ABI");
if (BigEndian)
resetDataLayout(("E-" + Layout).str());
else
resetDataLayout(("e-" + Layout).str());
}
static const Builtin::Info BuiltinInfo[];
std::string CPU;
bool IsMips16;
bool IsMicromips;
bool IsNan2008;
bool IsAbs2008;
bool IsSingleFloat;
bool IsNoABICalls;
bool CanUseBSDABICalls;
enum MipsFloatABI { HardFloat, SoftFloat } FloatABI;
enum DspRevEnum { NoDSP, DSP1, DSP2 } DspRev;
bool HasMSA;
bool DisableMadd4;
protected:
bool HasFP64;
std::string ABI;
public:
MipsTargetInfo(const llvm::Triple &Triple, const TargetOptions &)
: TargetInfo(Triple), IsMips16(false), IsMicromips(false),
IsNan2008(false), IsAbs2008(false), IsSingleFloat(false),
IsNoABICalls(false), CanUseBSDABICalls(false), FloatABI(HardFloat),
DspRev(NoDSP), HasMSA(false), DisableMadd4(false), HasFP64(false) {
TheCXXABI.set(TargetCXXABI::GenericMIPS);
setABI((getTriple().getArch() == llvm::Triple::mips ||
getTriple().getArch() == llvm::Triple::mipsel)
? "o32"
: "n64");
CPU = ABI == "o32" ? "mips32r2" : "mips64r2";
CanUseBSDABICalls = Triple.getOS() == llvm::Triple::FreeBSD ||
Triple.getOS() == llvm::Triple::OpenBSD;
}
bool isIEEE754_2008Default() const {
return CPU == "mips32r6" || CPU == "mips64r6";
}
bool isFP64Default() const {
return CPU == "mips32r6" || ABI == "n32" || ABI == "n64" || ABI == "64";
}
bool isNan2008() const override { return IsNan2008; }
bool processorSupportsGPR64() const;
StringRef getABI() const override { return ABI; }
bool setABI(const std::string &Name) override {
if (Name == "o32") {
setO32ABITypes();
ABI = Name;
return true;
}
if (Name == "n32") {
setN32ABITypes();
ABI = Name;
return true;
}
if (Name == "n64") {
setN64ABITypes();
ABI = Name;
return true;
}
return false;
}
void setO32ABITypes() {
Int64Type = SignedLongLong;
IntMaxType = Int64Type;
LongDoubleFormat = &llvm::APFloat::IEEEdouble();
LongDoubleWidth = LongDoubleAlign = 64;
LongWidth = LongAlign = 32;
MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 32;
PointerWidth = PointerAlign = 32;
PtrDiffType = SignedInt;
SizeType = UnsignedInt;
SuitableAlign = 64;
}
void setN32N64ABITypes() {
LongDoubleWidth = LongDoubleAlign = 128;
LongDoubleFormat = &llvm::APFloat::IEEEquad();
if (getTriple().getOS() == llvm::Triple::FreeBSD) {
LongDoubleWidth = LongDoubleAlign = 64;
LongDoubleFormat = &llvm::APFloat::IEEEdouble();
}
MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64;
SuitableAlign = 128;
}
void setN64ABITypes() {
setN32N64ABITypes();
if (getTriple().getOS() == llvm::Triple::OpenBSD) {
Int64Type = SignedLongLong;
} else {
Int64Type = SignedLong;
}
IntMaxType = Int64Type;
LongWidth = LongAlign = 64;
PointerWidth = PointerAlign = 64;
PtrDiffType = SignedLong;
SizeType = UnsignedLong;
}
void setN32ABITypes() {
setN32N64ABITypes();
Int64Type = SignedLongLong;
IntMaxType = Int64Type;
LongWidth = LongAlign = 32;
PointerWidth = PointerAlign = 32;
PtrDiffType = SignedInt;
SizeType = UnsignedInt;
}
bool isValidCPUName(StringRef Name) const override;
void fillValidCPUList(SmallVectorImpl<StringRef> &Values) const override;
bool setCPU(const std::string &Name) override {
CPU = Name;
return isValidCPUName(Name);
}
const std::string &getCPU() const { return CPU; }
bool
initFeatureMap(llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags,
StringRef CPU,
const std::vector<std::string> &FeaturesVec) const override {
if (CPU.empty())
CPU = getCPU();
if (CPU == "octeon")
Features["mips64r2"] = Features["cnmips"] = true;
else
Features[CPU] = true;
return TargetInfo::initFeatureMap(Features, Diags, CPU, FeaturesVec);
}
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override;
ArrayRef<Builtin::Info> getTargetBuiltins() const override;
bool hasFeature(StringRef Feature) const override;
BuiltinVaListKind getBuiltinVaListKind() const override {
return TargetInfo::VoidPtrBuiltinVaList;
}
ArrayRef<const char *> getGCCRegNames() const override {
static const char *const GCCRegNames[] = {
// CPU register names
// Must match second column of GCCRegAliases
"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", "$9", "$10",
"$11", "$12", "$13", "$14", "$15", "$16", "$17", "$18", "$19", "$20",
"$21", "$22", "$23", "$24", "$25", "$26", "$27", "$28", "$29", "$30",
"$31",
// Floating point register names
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", "$f9",
"$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17", "$f18",
"$f19", "$f20", "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27",
"$f28", "$f29", "$f30", "$f31",
// Hi/lo and condition register names
"hi", "lo", "", "$fcc0", "$fcc1", "$fcc2", "$fcc3", "$fcc4", "$fcc5",
"$fcc6", "$fcc7", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo", "$ac3hi",
"$ac3lo",
// MSA register names
"$w0", "$w1", "$w2", "$w3", "$w4", "$w5", "$w6", "$w7", "$w8", "$w9",
"$w10", "$w11", "$w12", "$w13", "$w14", "$w15", "$w16", "$w17", "$w18",
"$w19", "$w20", "$w21", "$w22", "$w23", "$w24", "$w25", "$w26", "$w27",
"$w28", "$w29", "$w30", "$w31",
// MSA control register names
"$msair", "$msacsr", "$msaaccess", "$msasave", "$msamodify",
"$msarequest", "$msamap", "$msaunmap"
};
return llvm::makeArrayRef(GCCRegNames);
}
bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &Info) const override {
switch (*Name) {
default:
return false;
case 'r': // CPU registers.
case 'd': // Equivalent to "r" unless generating MIPS16 code.
case 'y': // Equivalent to "r", backward compatibility only.
case 'f': // floating-point registers.
case 'c': // $25 for indirect jumps
case 'l': // lo register
case 'x': // hilo register pair
Info.setAllowsRegister();
return true;
case 'I': // Signed 16-bit constant
case 'J': // Integer 0
case 'K': // Unsigned 16-bit constant
case 'L': // Signed 32-bit constant, lower 16-bit zeros (for lui)
case 'M': // Constants not loadable via lui, addiu, or ori
case 'N': // Constant -1 to -65535
case 'O': // A signed 15-bit constant
case 'P': // A constant between 1 go 65535
return true;
case 'R': // An address that can be used in a non-macro load or store
Info.setAllowsMemory();
return true;
case 'Z':
if (Name[1] == 'C') { // An address usable by ll, and sc.
Info.setAllowsMemory();
Name++; // Skip over 'Z'.
return true;
}
return false;
}
}
std::string convertConstraint(const char *&Constraint) const override {
std::string R;
switch (*Constraint) {
case 'Z': // Two-character constraint; add "^" hint for later parsing.
if (Constraint[1] == 'C') {
R = std::string("^") + std::string(Constraint, 2);
Constraint++;
return R;
}
break;
}
return TargetInfo::convertConstraint(Constraint);
}
const char *getClobbers() const override {
// In GCC, $1 is not widely used in generated code (it's used only in a few
// specific situations), so there is no real need for users to add it to
// the clobbers list if they want to use it in their inline assembly code.
//
// In LLVM, $1 is treated as a normal GPR and is always allocatable during
// code generation, so using it in inline assembly without adding it to the
// clobbers list can cause conflicts between the inline assembly code and
// the surrounding generated code.
//
// Another problem is that LLVM is allowed to choose $1 for inline assembly
// operands, which will conflict with the ".set at" assembler option (which
// we use only for inline assembly, in order to maintain compatibility with
// GCC) and will also conflict with the user's usage of $1.
//
// The easiest way to avoid these conflicts and keep $1 as an allocatable
// register for generated code is to automatically clobber $1 for all inline
// assembly code.
//
// FIXME: We should automatically clobber $1 only for inline assembly code
// which actually uses it. This would allow LLVM to use $1 for inline
// assembly operands if the user's assembly code doesn't use it.
return "~{$1}";
}
bool handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) override {
IsMips16 = false;
IsMicromips = false;
IsNan2008 = isIEEE754_2008Default();
IsAbs2008 = isIEEE754_2008Default();
IsSingleFloat = false;
FloatABI = HardFloat;
DspRev = NoDSP;
HasFP64 = isFP64Default();
for (const auto &Feature : Features) {
if (Feature == "+single-float")
IsSingleFloat = true;
else if (Feature == "+soft-float")
FloatABI = SoftFloat;
else if (Feature == "+mips16")
IsMips16 = true;
else if (Feature == "+micromips")
IsMicromips = true;
else if (Feature == "+dsp")
DspRev = std::max(DspRev, DSP1);
else if (Feature == "+dspr2")
DspRev = std::max(DspRev, DSP2);
else if (Feature == "+msa")
HasMSA = true;
else if (Feature == "+nomadd4")
DisableMadd4 = true;
else if (Feature == "+fp64")
HasFP64 = true;
else if (Feature == "-fp64")
HasFP64 = false;
else if (Feature == "+nan2008")
IsNan2008 = true;
else if (Feature == "-nan2008")
IsNan2008 = false;
else if (Feature == "+abs2008")
IsAbs2008 = true;
else if (Feature == "-abs2008")
IsAbs2008 = false;
else if (Feature == "+noabicalls")
IsNoABICalls = true;
}
setDataLayout();
return true;
}
int getEHDataRegisterNumber(unsigned RegNo) const override {
if (RegNo == 0)
return 4;
if (RegNo == 1)
return 5;
return -1;
}
bool isCLZForZeroUndef() const override { return false; }
ArrayRef<TargetInfo::GCCRegAlias> getGCCRegAliases() const override {
static const TargetInfo::GCCRegAlias O32RegAliases[] = {
{{"at"}, "$1"}, {{"v0"}, "$2"}, {{"v1"}, "$3"},
{{"a0"}, "$4"}, {{"a1"}, "$5"}, {{"a2"}, "$6"},
{{"a3"}, "$7"}, {{"t0"}, "$8"}, {{"t1"}, "$9"},
{{"t2"}, "$10"}, {{"t3"}, "$11"}, {{"t4"}, "$12"},
{{"t5"}, "$13"}, {{"t6"}, "$14"}, {{"t7"}, "$15"},
{{"s0"}, "$16"}, {{"s1"}, "$17"}, {{"s2"}, "$18"},
{{"s3"}, "$19"}, {{"s4"}, "$20"}, {{"s5"}, "$21"},
{{"s6"}, "$22"}, {{"s7"}, "$23"}, {{"t8"}, "$24"},
{{"t9"}, "$25"}, {{"k0"}, "$26"}, {{"k1"}, "$27"},
{{"gp"}, "$28"}, {{"sp", "$sp"}, "$29"}, {{"fp", "$fp"}, "$30"},
{{"ra"}, "$31"}
};
static const TargetInfo::GCCRegAlias NewABIRegAliases[] = {
{{"at"}, "$1"}, {{"v0"}, "$2"}, {{"v1"}, "$3"},
{{"a0"}, "$4"}, {{"a1"}, "$5"}, {{"a2"}, "$6"},
{{"a3"}, "$7"}, {{"a4"}, "$8"}, {{"a5"}, "$9"},
{{"a6"}, "$10"}, {{"a7"}, "$11"}, {{"t0"}, "$12"},
{{"t1"}, "$13"}, {{"t2"}, "$14"}, {{"t3"}, "$15"},
{{"s0"}, "$16"}, {{"s1"}, "$17"}, {{"s2"}, "$18"},
{{"s3"}, "$19"}, {{"s4"}, "$20"}, {{"s5"}, "$21"},
{{"s6"}, "$22"}, {{"s7"}, "$23"}, {{"t8"}, "$24"},
{{"t9"}, "$25"}, {{"k0"}, "$26"}, {{"k1"}, "$27"},
{{"gp"}, "$28"}, {{"sp", "$sp"}, "$29"}, {{"fp", "$fp"}, "$30"},
{{"ra"}, "$31"}
};
if (ABI == "o32")
return llvm::makeArrayRef(O32RegAliases);
return llvm::makeArrayRef(NewABIRegAliases);
}
bool hasInt128Type() const override { return ABI == "n32" || ABI == "n64"; }
bool validateTarget(DiagnosticsEngine &Diags) const override;
};
} // namespace targets
} // namespace clang
#endif // LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H