llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp

7360 lines
264 KiB
C++

//===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the ELF-specific dumper for llvm-readobj.
///
//===----------------------------------------------------------------------===//
#include "ARMEHABIPrinter.h"
#include "DwarfCFIEHPrinter.h"
#include "ObjDumper.h"
#include "StackMapPrinter.h"
#include "llvm-readobj.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/RelocationResolver.h"
#include "llvm/Object/StackMapParser.h"
#include "llvm/Support/AMDGPUMetadata.h"
#include "llvm/Support/ARMAttributeParser.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MSP430AttributeParser.h"
#include "llvm/Support/MSP430Attributes.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MipsABIFlags.h"
#include "llvm/Support/RISCVAttributeParser.h"
#include "llvm/Support/RISCVAttributes.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cinttypes>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <memory>
#include <string>
#include <system_error>
#include <vector>
using namespace llvm;
using namespace llvm::object;
using namespace ELF;
#define LLVM_READOBJ_ENUM_CASE(ns, enum) \
case ns::enum: \
return #enum;
#define ENUM_ENT(enum, altName) \
{ #enum, altName, ELF::enum }
#define ENUM_ENT_1(enum) \
{ #enum, #enum, ELF::enum }
namespace {
template <class ELFT> struct RelSymbol {
RelSymbol(const typename ELFT::Sym *S, StringRef N)
: Sym(S), Name(N.str()) {}
const typename ELFT::Sym *Sym;
std::string Name;
};
/// Represents a contiguous uniform range in the file. We cannot just create a
/// range directly because when creating one of these from the .dynamic table
/// the size, entity size and virtual address are different entries in arbitrary
/// order (DT_REL, DT_RELSZ, DT_RELENT for example).
struct DynRegionInfo {
DynRegionInfo(const Binary &Owner, const ObjDumper &D)
: Obj(&Owner), Dumper(&D) {}
DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
uint64_t S, uint64_t ES)
: Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
/// Address in current address space.
const uint8_t *Addr = nullptr;
/// Size in bytes of the region.
uint64_t Size = 0;
/// Size of each entity in the region.
uint64_t EntSize = 0;
/// Owner object. Used for error reporting.
const Binary *Obj;
/// Dumper used for error reporting.
const ObjDumper *Dumper;
/// Error prefix. Used for error reporting to provide more information.
std::string Context;
/// Region size name. Used for error reporting.
StringRef SizePrintName = "size";
/// Entry size name. Used for error reporting. If this field is empty, errors
/// will not mention the entry size.
StringRef EntSizePrintName = "entry size";
template <typename Type> ArrayRef<Type> getAsArrayRef() const {
const Type *Start = reinterpret_cast<const Type *>(Addr);
if (!Start)
return {Start, Start};
const uint64_t Offset =
Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
if (Size > ObjSize - Offset) {
Dumper->reportUniqueWarning(
"unable to read data at 0x" + Twine::utohexstr(Offset) +
" of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
"): it goes past the end of the file of size 0x" +
Twine::utohexstr(ObjSize));
return {Start, Start};
}
if (EntSize == sizeof(Type) && (Size % EntSize == 0))
return {Start, Start + (Size / EntSize)};
std::string Msg;
if (!Context.empty())
Msg += Context + " has ";
Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
.str();
if (!EntSizePrintName.empty())
Msg +=
(" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
.str();
Dumper->reportUniqueWarning(Msg);
return {Start, Start};
}
};
struct GroupMember {
StringRef Name;
uint64_t Index;
};
struct GroupSection {
StringRef Name;
std::string Signature;
uint64_t ShName;
uint64_t Index;
uint32_t Link;
uint32_t Info;
uint32_t Type;
std::vector<GroupMember> Members;
};
namespace {
struct NoteType {
uint32_t ID;
StringRef Name;
};
} // namespace
template <class ELFT> class Relocation {
public:
Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
: Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
Offset(R.r_offset), Info(R.r_info) {}
Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
: Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
Addend = R.r_addend;
}
uint32_t Type;
uint32_t Symbol;
typename ELFT::uint Offset;
typename ELFT::uint Info;
Optional<int64_t> Addend;
};
template <class ELFT> class MipsGOTParser;
template <typename ELFT> class ELFDumper : public ObjDumper {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
public:
ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
void printUnwindInfo() override;
void printNeededLibraries() override;
void printHashTable() override;
void printGnuHashTable() override;
void printLoadName() override;
void printVersionInfo() override;
void printArchSpecificInfo() override;
void printStackMap() const override;
const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
std::string describe(const Elf_Shdr &Sec) const;
unsigned getHashTableEntSize() const {
// EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
// sections. This violates the ELF specification.
if (Obj.getHeader().e_machine == ELF::EM_S390 ||
Obj.getHeader().e_machine == ELF::EM_ALPHA)
return 8;
return 4;
}
Elf_Dyn_Range dynamic_table() const {
// A valid .dynamic section contains an array of entries terminated
// with a DT_NULL entry. However, sometimes the section content may
// continue past the DT_NULL entry, so to dump the section correctly,
// we first find the end of the entries by iterating over them.
Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
size_t Size = 0;
while (Size < Table.size())
if (Table[Size++].getTag() == DT_NULL)
break;
return Table.slice(0, Size);
}
Elf_Sym_Range dynamic_symbols() const {
if (!DynSymRegion)
return Elf_Sym_Range();
return DynSymRegion->template getAsArrayRef<Elf_Sym>();
}
const Elf_Shdr *findSectionByName(StringRef Name) const;
StringRef getDynamicStringTable() const { return DynamicStringTable; }
protected:
virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
void
printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
function_ref<void(StringRef, uint64_t)> OnLibEntry);
virtual void printRelRelaReloc(const Relocation<ELFT> &R,
const RelSymbol<ELFT> &RelSym) = 0;
virtual void printRelrReloc(const Elf_Relr &R) = 0;
virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
const DynRegionInfo &Reg) {}
void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
void printDynamicReloc(const Relocation<ELFT> &R);
void printDynamicRelocationsHelper();
void printRelocationsHelper(const Elf_Shdr &Sec);
void forEachRelocationDo(
const Elf_Shdr &Sec, bool RawRelr,
llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
const Elf_Shdr &, const Elf_Shdr *)>
RelRelaFn,
llvm::function_ref<void(const Elf_Relr &)> RelrFn);
virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
bool NonVisibilityBitsUsed) const {};
virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable,
Optional<StringRef> StrTable, bool IsDynamic,
bool NonVisibilityBitsUsed) const = 0;
virtual void printMipsABIFlags() = 0;
virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
Expected<ArrayRef<Elf_Versym>>
getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
std::vector<GroupSection> getGroups();
// Returns the function symbol index for the given address. Matches the
// symbol's section with FunctionSec when specified.
// Returns None if no function symbol can be found for the address or in case
// it is not defined in the specified section.
SmallVector<uint32_t>
getSymbolIndexesForFunctionAddress(uint64_t SymValue,
Optional<const Elf_Shdr *> FunctionSec);
bool printFunctionStackSize(uint64_t SymValue,
Optional<const Elf_Shdr *> FunctionSec,
const Elf_Shdr &StackSizeSec, DataExtractor Data,
uint64_t *Offset);
void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
unsigned Ndx, const Elf_Shdr *SymTab,
const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
const RelocationResolver &Resolver, DataExtractor Data);
virtual void printStackSizeEntry(uint64_t Size,
ArrayRef<std::string> FuncNames) = 0;
void printRelocatableStackSizes(std::function<void()> PrintHeader);
void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
/// Retrieves sections with corresponding relocation sections based on
/// IsMatch.
void getSectionAndRelocations(
std::function<bool(const Elf_Shdr &)> IsMatch,
llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
const object::ELFObjectFile<ELFT> &ObjF;
const ELFFile<ELFT> &Obj;
StringRef FileName;
Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
uint64_t EntSize) {
if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
return createError("offset (0x" + Twine::utohexstr(Offset) +
") + size (0x" + Twine::utohexstr(Size) +
") is greater than the file size (0x" +
Twine::utohexstr(Obj.getBufSize()) + ")");
return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
}
void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
support::endianness);
void printMipsReginfo();
void printMipsOptions();
std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
void loadDynamicTable();
void parseDynamicTable();
Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
bool &IsDefault) const;
Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const;
DynRegionInfo DynRelRegion;
DynRegionInfo DynRelaRegion;
DynRegionInfo DynRelrRegion;
DynRegionInfo DynPLTRelRegion;
Optional<DynRegionInfo> DynSymRegion;
DynRegionInfo DynSymTabShndxRegion;
DynRegionInfo DynamicTable;
StringRef DynamicStringTable;
const Elf_Hash *HashTable = nullptr;
const Elf_GnuHash *GnuHashTable = nullptr;
const Elf_Shdr *DotSymtabSec = nullptr;
const Elf_Shdr *DotDynsymSec = nullptr;
const Elf_Shdr *DotAddrsigSec = nullptr;
DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
Optional<uint64_t> SONameOffset;
Optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable,
Optional<StringRef> StrTable,
bool IsDynamic) const;
Expected<unsigned>
getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable) const;
Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
unsigned SectionIndex) const;
std::string getStaticSymbolName(uint32_t Index) const;
StringRef getDynamicString(uint64_t Value) const;
void printSymbolsHelper(bool IsDynamic) const;
std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
const Elf_Shdr *SymTab) const;
ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
private:
mutable SmallVector<Optional<VersionEntry>, 0> VersionMap;
};
template <class ELFT>
std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
return ::describe(Obj, Sec);
}
namespace {
template <class ELFT> struct SymtabLink {
typename ELFT::SymRange Symbols;
StringRef StringTable;
const typename ELFT::Shdr *SymTab;
};
// Returns the linked symbol table, symbols and associated string table for a
// given section.
template <class ELFT>
Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
const typename ELFT::Shdr &Sec,
unsigned ExpectedType) {
Expected<const typename ELFT::Shdr *> SymtabOrErr =
Obj.getSection(Sec.sh_link);
if (!SymtabOrErr)
return createError("invalid section linked to " + describe(Obj, Sec) +
": " + toString(SymtabOrErr.takeError()));
if ((*SymtabOrErr)->sh_type != ExpectedType)
return createError(
"invalid section linked to " + describe(Obj, Sec) + ": expected " +
object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
", but got " +
object::getELFSectionTypeName(Obj.getHeader().e_machine,
(*SymtabOrErr)->sh_type));
Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
if (!StrTabOrErr)
return createError(
"can't get a string table for the symbol table linked to " +
describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
if (!SymsOrErr)
return createError("unable to read symbols from the " + describe(Obj, Sec) +
": " + toString(SymsOrErr.takeError()));
return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
}
} // namespace
template <class ELFT>
Expected<ArrayRef<typename ELFT::Versym>>
ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
StringRef *StrTab,
const Elf_Shdr **SymTabSec) const {
assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
sizeof(uint16_t) !=
0)
return createError("the " + describe(Sec) + " is misaligned");
Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
if (!VersionsOrErr)
return createError("cannot read content of " + describe(Sec) + ": " +
toString(VersionsOrErr.takeError()));
Expected<SymtabLink<ELFT>> SymTabOrErr =
getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
if (!SymTabOrErr) {
reportUniqueWarning(SymTabOrErr.takeError());
return *VersionsOrErr;
}
if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
reportUniqueWarning(describe(Sec) + ": the number of entries (" +
Twine(VersionsOrErr->size()) +
") does not match the number of symbols (" +
Twine(SymTabOrErr->Symbols.size()) +
") in the symbol table with index " +
Twine(Sec.sh_link));
if (SymTab) {
*SymTab = SymTabOrErr->Symbols;
*StrTab = SymTabOrErr->StringTable;
*SymTabSec = SymTabOrErr->SymTab;
}
return *VersionsOrErr;
}
template <class ELFT>
void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
Optional<StringRef> StrTable;
size_t Entries = 0;
Elf_Sym_Range Syms(nullptr, nullptr);
const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
if (IsDynamic) {
StrTable = DynamicStringTable;
Syms = dynamic_symbols();
Entries = Syms.size();
} else if (DotSymtabSec) {
if (Expected<StringRef> StrTableOrErr =
Obj.getStringTableForSymtab(*DotSymtabSec))
StrTable = *StrTableOrErr;
else
reportUniqueWarning(
"unable to get the string table for the SHT_SYMTAB section: " +
toString(StrTableOrErr.takeError()));
if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
Syms = *SymsOrErr;
else
reportUniqueWarning(
"unable to read symbols from the SHT_SYMTAB section: " +
toString(SymsOrErr.takeError()));
Entries = DotSymtabSec->getEntityCount();
}
if (Syms.empty())
return;
// The st_other field has 2 logical parts. The first two bits hold the symbol
// visibility (STV_*) and the remainder hold other platform-specific values.
bool NonVisibilityBitsUsed =
llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
DataRegion<Elf_Word> ShndxTable =
IsDynamic ? DataRegion<Elf_Word>(
(const Elf_Word *)this->DynSymTabShndxRegion.Addr,
this->getElfObject().getELFFile().end())
: DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
for (const Elf_Sym &Sym : Syms)
printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
NonVisibilityBitsUsed);
}
template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
formatted_raw_ostream &OS;
public:
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
: ELFDumper<ELFT>(ObjF, Writer),
OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
assert(&this->W.getOStream() == &llvm::fouts());
}
void printFileSummary(StringRef FileStr, ObjectFile &Obj,
ArrayRef<std::string> InputFilenames,
const Archive *A) override;
void printFileHeaders() override;
void printGroupSections() override;
void printRelocations() override;
void printSectionHeaders() override;
void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
void printHashSymbols() override;
void printSectionDetails() override;
void printDependentLibs() override;
void printDynamicTable() override;
void printDynamicRelocations() override;
void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
bool NonVisibilityBitsUsed) const override;
void printProgramHeaders(bool PrintProgramHeaders,
cl::boolOrDefault PrintSectionMapping) override;
void printVersionSymbolSection(const Elf_Shdr *Sec) override;
void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
void printVersionDependencySection(const Elf_Shdr *Sec) override;
void printHashHistograms() override;
void printCGProfile() override;
void printBBAddrMaps() override;
void printAddrsig() override;
void printNotes() override;
void printELFLinkerOptions() override;
void printStackSizes() override;
private:
void printHashHistogram(const Elf_Hash &HashTable);
void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
void printHashTableSymbols(const Elf_Hash &HashTable);
void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
struct Field {
std::string Str;
unsigned Column;
Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
Field(unsigned Col) : Column(Col) {}
};
template <typename T, typename TEnum>
std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
TEnum EnumMask3 = {}) const {
std::string Str;
for (const EnumEntry<TEnum> &Flag : EnumValues) {
if (Flag.Value == 0)
continue;
TEnum EnumMask{};
if (Flag.Value & EnumMask1)
EnumMask = EnumMask1;
else if (Flag.Value & EnumMask2)
EnumMask = EnumMask2;
else if (Flag.Value & EnumMask3)
EnumMask = EnumMask3;
bool IsEnum = (Flag.Value & EnumMask) != 0;
if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
(IsEnum && (Value & EnumMask) == Flag.Value)) {
if (!Str.empty())
Str += ", ";
Str += Flag.AltName;
}
}
return Str;
}
formatted_raw_ostream &printField(struct Field F) const {
if (F.Column != 0)
OS.PadToColumn(F.Column);
OS << F.Str;
OS.flush();
return OS;
}
void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
uint32_t Bucket);
void printRelrReloc(const Elf_Relr &R) override;
void printRelRelaReloc(const Relocation<ELFT> &R,
const RelSymbol<ELFT> &RelSym) override;
void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable,
Optional<StringRef> StrTable, bool IsDynamic,
bool NonVisibilityBitsUsed) const override;
void printDynamicRelocHeader(unsigned Type, StringRef Name,
const DynRegionInfo &Reg) override;
std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable) const;
void printProgramHeaders() override;
void printSectionMapping() override;
void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
const Twine &Label, unsigned EntriesNum);
void printStackSizeEntry(uint64_t Size,
ArrayRef<std::string> FuncNames) override;
void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
void printMipsABIFlags() override;
};
template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
public:
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
: ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
void printFileHeaders() override;
void printGroupSections() override;
void printRelocations() override;
void printSectionHeaders() override;
void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
void printDependentLibs() override;
void printDynamicTable() override;
void printDynamicRelocations() override;
void printProgramHeaders(bool PrintProgramHeaders,
cl::boolOrDefault PrintSectionMapping) override;
void printVersionSymbolSection(const Elf_Shdr *Sec) override;
void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
void printVersionDependencySection(const Elf_Shdr *Sec) override;
void printHashHistograms() override;
void printCGProfile() override;
void printBBAddrMaps() override;
void printAddrsig() override;
void printNotes() override;
void printELFLinkerOptions() override;
void printStackSizes() override;
private:
void printRelrReloc(const Elf_Relr &R) override;
void printRelRelaReloc(const Relocation<ELFT> &R,
const RelSymbol<ELFT> &RelSym) override;
void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable) const;
void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable,
Optional<StringRef> StrTable, bool IsDynamic,
bool /*NonVisibilityBitsUsed*/) const override;
void printProgramHeaders() override;
void printSectionMapping() override {}
void printStackSizeEntry(uint64_t Size,
ArrayRef<std::string> FuncNames) override;
void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
void printMipsABIFlags() override;
protected:
ScopedPrinter &W;
};
// JSONELFDumper shares most of the same implementation as LLVMELFDumper except
// it uses a JSONScopedPrinter.
template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
public:
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
: LLVMELFDumper<ELFT>(ObjF, Writer) {}
void printFileSummary(StringRef FileStr, ObjectFile &Obj,
ArrayRef<std::string> InputFilenames,
const Archive *A) override;
private:
std::unique_ptr<DictScope> FileScope;
};
} // end anonymous namespace
namespace llvm {
template <class ELFT>
static std::unique_ptr<ObjDumper>
createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
if (opts::Output == opts::GNU)
return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
else if (opts::Output == opts::JSON)
return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
}
std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
ScopedPrinter &Writer) {
// Little-endian 32-bit
if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
return createELFDumper(*ELFObj, Writer);
// Big-endian 32-bit
if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
return createELFDumper(*ELFObj, Writer);
// Little-endian 64-bit
if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
return createELFDumper(*ELFObj, Writer);
// Big-endian 64-bit
return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
}
} // end namespace llvm
template <class ELFT>
Expected<SmallVector<Optional<VersionEntry>, 0> *>
ELFDumper<ELFT>::getVersionMap() const {
// If the VersionMap has already been loaded or if there is no dynamic symtab
// or version table, there is nothing to do.
if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
return &VersionMap;
Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
if (MapOrErr)
VersionMap = *MapOrErr;
else
return MapOrErr.takeError();
return &VersionMap;
}
template <typename ELFT>
Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
bool &IsDefault) const {
// This is a dynamic symbol. Look in the GNU symbol version table.
if (!SymbolVersionSection) {
// No version table.
IsDefault = false;
return "";
}
assert(DynSymRegion && "DynSymRegion has not been initialised");
// Determine the position in the symbol table of this entry.
size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
sizeof(Elf_Sym);
// Get the corresponding version index entry.
Expected<const Elf_Versym *> EntryOrErr =
Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
if (!EntryOrErr)
return EntryOrErr.takeError();
unsigned Version = (*EntryOrErr)->vs_index;
if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
IsDefault = false;
return "";
}
Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
getVersionMap();
if (!MapOrErr)
return MapOrErr.takeError();
return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
Sym.st_shndx == ELF::SHN_UNDEF);
}
template <typename ELFT>
Expected<RelSymbol<ELFT>>
ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
const Elf_Shdr *SymTab) const {
if (R.Symbol == 0)
return RelSymbol<ELFT>(nullptr, "");
Expected<const Elf_Sym *> SymOrErr =
Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
if (!SymOrErr)
return createError("unable to read an entry with index " + Twine(R.Symbol) +
" from " + describe(*SymTab) + ": " +
toString(SymOrErr.takeError()));
const Elf_Sym *Sym = *SymOrErr;
if (!Sym)
return RelSymbol<ELFT>(nullptr, "");
Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
if (!StrTableOrErr)
return StrTableOrErr.takeError();
const Elf_Sym *FirstSym =
cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
std::string SymbolName =
getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
*StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
return RelSymbol<ELFT>(Sym, SymbolName);
}
template <typename ELFT>
ArrayRef<typename ELFT::Word>
ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
if (Symtab) {
auto It = ShndxTables.find(Symtab);
if (It != ShndxTables.end())
return It->second;
}
return {};
}
static std::string maybeDemangle(StringRef Name) {
return opts::Demangle ? demangle(std::string(Name)) : Name.str();
}
template <typename ELFT>
std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
auto Warn = [&](Error E) -> std::string {
reportUniqueWarning("unable to read the name of symbol with index " +
Twine(Index) + ": " + toString(std::move(E)));
return "<?>";
};
Expected<const typename ELFT::Sym *> SymOrErr =
Obj.getSymbol(DotSymtabSec, Index);
if (!SymOrErr)
return Warn(SymOrErr.takeError());
Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
if (!StrTabOrErr)
return Warn(StrTabOrErr.takeError());
Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
if (!NameOrErr)
return Warn(NameOrErr.takeError());
return maybeDemangle(*NameOrErr);
}
template <typename ELFT>
std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable,
Optional<StringRef> StrTable,
bool IsDynamic) const {
if (!StrTable)
return "<?>";
std::string SymbolName;
if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
SymbolName = maybeDemangle(*NameOrErr);
} else {
reportUniqueWarning(NameOrErr.takeError());
return "<?>";
}
if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
Expected<unsigned> SectionIndex =
getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
if (!SectionIndex) {
reportUniqueWarning(SectionIndex.takeError());
return "<?>";
}
Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
if (!NameOrErr) {
reportUniqueWarning(NameOrErr.takeError());
return ("<section " + Twine(*SectionIndex) + ">").str();
}
return std::string(*NameOrErr);
}
if (!IsDynamic)
return SymbolName;
bool IsDefault;
Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
if (!VersionOrErr) {
reportUniqueWarning(VersionOrErr.takeError());
return SymbolName + "@<corrupt>";
}
if (!VersionOrErr->empty()) {
SymbolName += (IsDefault ? "@@" : "@");
SymbolName += *VersionOrErr;
}
return SymbolName;
}
template <typename ELFT>
Expected<unsigned>
ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable) const {
unsigned Ndx = Symbol.st_shndx;
if (Ndx == SHN_XINDEX)
return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
ShndxTable);
if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
return Ndx;
auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
std::string Desc;
if (Offset)
Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
else
Desc = Name.str();
return createError(
"unable to get section index for symbol with st_shndx = 0x" +
Twine::utohexstr(Ndx) + " (" + Desc + ")");
};
if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
if (Ndx == ELF::SHN_UNDEF)
return CreateErr("SHN_UNDEF");
if (Ndx == ELF::SHN_ABS)
return CreateErr("SHN_ABS");
if (Ndx == ELF::SHN_COMMON)
return CreateErr("SHN_COMMON");
return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
}
template <typename ELFT>
Expected<StringRef>
ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
unsigned SectionIndex) const {
Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
if (!SecOrErr)
return SecOrErr.takeError();
return Obj.getSectionName(**SecOrErr);
}
template <class ELFO>
static const typename ELFO::Elf_Shdr *
findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
uint64_t Addr) {
for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
return &Shdr;
return nullptr;
}
const EnumEntry<unsigned> ElfClass[] = {
{"None", "none", ELF::ELFCLASSNONE},
{"32-bit", "ELF32", ELF::ELFCLASS32},
{"64-bit", "ELF64", ELF::ELFCLASS64},
};
const EnumEntry<unsigned> ElfDataEncoding[] = {
{"None", "none", ELF::ELFDATANONE},
{"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
{"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
};
const EnumEntry<unsigned> ElfObjectFileType[] = {
{"None", "NONE (none)", ELF::ET_NONE},
{"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
{"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
{"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
{"Core", "CORE (Core file)", ELF::ET_CORE},
};
const EnumEntry<unsigned> ElfOSABI[] = {
{"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
{"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
{"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
{"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
{"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
{"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
{"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
{"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
{"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
{"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
{"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
{"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
{"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
{"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
{"AROS", "AROS", ELF::ELFOSABI_AROS},
{"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
{"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
{"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
};
const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
{"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
{"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
{"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
};
const EnumEntry<unsigned> ARMElfOSABI[] = {
{"ARM", "ARM", ELF::ELFOSABI_ARM}
};
const EnumEntry<unsigned> C6000ElfOSABI[] = {
{"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
{"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
};
const EnumEntry<unsigned> ElfMachineType[] = {
ENUM_ENT(EM_NONE, "None"),
ENUM_ENT(EM_M32, "WE32100"),
ENUM_ENT(EM_SPARC, "Sparc"),
ENUM_ENT(EM_386, "Intel 80386"),
ENUM_ENT(EM_68K, "MC68000"),
ENUM_ENT(EM_88K, "MC88000"),
ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
ENUM_ENT(EM_860, "Intel 80860"),
ENUM_ENT(EM_MIPS, "MIPS R3000"),
ENUM_ENT(EM_S370, "IBM System/370"),
ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
ENUM_ENT(EM_PARISC, "HPPA"),
ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
ENUM_ENT(EM_960, "Intel 80960"),
ENUM_ENT(EM_PPC, "PowerPC"),
ENUM_ENT(EM_PPC64, "PowerPC64"),
ENUM_ENT(EM_S390, "IBM S/390"),
ENUM_ENT(EM_SPU, "SPU"),
ENUM_ENT(EM_V800, "NEC V800 series"),
ENUM_ENT(EM_FR20, "Fujistsu FR20"),
ENUM_ENT(EM_RH32, "TRW RH-32"),
ENUM_ENT(EM_RCE, "Motorola RCE"),
ENUM_ENT(EM_ARM, "ARM"),
ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
ENUM_ENT(EM_SH, "Hitachi SH"),
ENUM_ENT(EM_SPARCV9, "Sparc v9"),
ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
ENUM_ENT(EM_ARC, "ARC"),
ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
ENUM_ENT(EM_H8S, "Hitachi H8S"),
ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
ENUM_ENT(EM_IA_64, "Intel IA-64"),
ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
ENUM_ENT(EM_PCP, "Siemens PCP"),
ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
ENUM_ENT(EM_PDSP, "Sony DSP processor"),
ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
ENUM_ENT(EM_VAX, "Digital VAX"),
ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
ENUM_ENT(EM_PRISM, "Vitesse Prism"),
ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
ENUM_ENT(EM_FR30, "Fujitsu FR30"),
ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
ENUM_ENT(EM_V850, "NEC v850"),
ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
ENUM_ENT(EM_PJ, "picoJava"),
ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
ENUM_ENT(EM_MAX, "MAX Processor"),
ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
ENUM_ENT(EM_UNICORE, "Unicore"),
ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
ENUM_ENT(EM_M16C, "Renesas M16C"),
ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
ENUM_ENT(EM_M32C, "Renesas M32C"),
ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
ENUM_ENT(EM_SHARC, "EM_SHARC"),
ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
ENUM_ENT(EM_8051, "Intel 8051 and variants"),
ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
// FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
// an identical number to EM_ECOG1.
ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
ENUM_ENT(EM_RX, "Renesas RX"),
ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"),
ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
ENUM_ENT(EM_L10M, "EM_L10M"),
ENUM_ENT(EM_K10M, "EM_K10M"),
ENUM_ENT(EM_AARCH64, "AArch64"),
ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"),
ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
ENUM_ENT(EM_RL78, "Renesas RL78"),
ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
ENUM_ENT(EM_78KOR, "EM_78KOR"),
ENUM_ENT(EM_56800EX, "EM_56800EX"),
ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
ENUM_ENT(EM_RISCV, "RISC-V"),
ENUM_ENT(EM_LANAI, "EM_LANAI"),
ENUM_ENT(EM_BPF, "EM_BPF"),
ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"),
};
const EnumEntry<unsigned> ElfSymbolBindings[] = {
{"Local", "LOCAL", ELF::STB_LOCAL},
{"Global", "GLOBAL", ELF::STB_GLOBAL},
{"Weak", "WEAK", ELF::STB_WEAK},
{"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
{"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
{"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
{"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
{"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
{ "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
};
static const char *getGroupType(uint32_t Flag) {
if (Flag & ELF::GRP_COMDAT)
return "COMDAT";
else
return "(unknown)";
}
const EnumEntry<unsigned> ElfSectionFlags[] = {
ENUM_ENT(SHF_WRITE, "W"),
ENUM_ENT(SHF_ALLOC, "A"),
ENUM_ENT(SHF_EXECINSTR, "X"),
ENUM_ENT(SHF_MERGE, "M"),
ENUM_ENT(SHF_STRINGS, "S"),
ENUM_ENT(SHF_INFO_LINK, "I"),
ENUM_ENT(SHF_LINK_ORDER, "L"),
ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
ENUM_ENT(SHF_GROUP, "G"),
ENUM_ENT(SHF_TLS, "T"),
ENUM_ENT(SHF_COMPRESSED, "C"),
ENUM_ENT(SHF_GNU_RETAIN, "R"),
ENUM_ENT(SHF_EXCLUDE, "E"),
};
const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
ENUM_ENT(XCORE_SHF_DP_SECTION, "")
};
const EnumEntry<unsigned> ElfARMSectionFlags[] = {
ENUM_ENT(SHF_ARM_PURECODE, "y")
};
const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
ENUM_ENT(SHF_HEX_GPREL, "")
};
const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
ENUM_ENT(SHF_MIPS_NODUPES, ""),
ENUM_ENT(SHF_MIPS_NAMES, ""),
ENUM_ENT(SHF_MIPS_LOCAL, ""),
ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
ENUM_ENT(SHF_MIPS_GPREL, ""),
ENUM_ENT(SHF_MIPS_MERGE, ""),
ENUM_ENT(SHF_MIPS_ADDR, ""),
ENUM_ENT(SHF_MIPS_STRING, "")
};
const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
ENUM_ENT(SHF_X86_64_LARGE, "l")
};
static std::vector<EnumEntry<unsigned>>
getSectionFlagsForTarget(unsigned EMachine) {
std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
std::end(ElfSectionFlags));
switch (EMachine) {
case EM_ARM:
Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
std::end(ElfARMSectionFlags));
break;
case EM_HEXAGON:
Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
std::end(ElfHexagonSectionFlags));
break;
case EM_MIPS:
Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
std::end(ElfMipsSectionFlags));
break;
case EM_X86_64:
Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
std::end(ElfX86_64SectionFlags));
break;
case EM_XCORE:
Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
std::end(ElfXCoreSectionFlags));
break;
default:
break;
}
return Ret;
}
static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
// Here we are trying to build the flags string in the same way as GNU does.
// It is not that straightforward. Imagine we have sh_flags == 0x90000000.
// SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
// GNU readelf will not print "E" or "Ep" in this case, but will print just
// "p". It only will print "E" when no other processor flag is set.
std::string Str;
bool HasUnknownFlag = false;
bool HasOSFlag = false;
bool HasProcFlag = false;
std::vector<EnumEntry<unsigned>> FlagsList =
getSectionFlagsForTarget(EMachine);
while (Flags) {
// Take the least significant bit as a flag.
uint64_t Flag = Flags & -Flags;
Flags -= Flag;
// Find the flag in the known flags list.
auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
// Flags with empty names are not printed in GNU style output.
return E.Value == Flag && !E.AltName.empty();
});
if (I != FlagsList.end()) {
Str += I->AltName;
continue;
}
// If we did not find a matching regular flag, then we deal with an OS
// specific flag, processor specific flag or an unknown flag.
if (Flag & ELF::SHF_MASKOS) {
HasOSFlag = true;
Flags &= ~ELF::SHF_MASKOS;
} else if (Flag & ELF::SHF_MASKPROC) {
HasProcFlag = true;
// Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
// bit if set so that it doesn't also get printed.
Flags &= ~ELF::SHF_MASKPROC;
} else {
HasUnknownFlag = true;
}
}
// "o", "p" and "x" are printed last.
if (HasOSFlag)
Str += "o";
if (HasProcFlag)
Str += "p";
if (HasUnknownFlag)
Str += "x";
return Str;
}
static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
// Check potentially overlapped processor-specific program header type.
switch (Arch) {
case ELF::EM_ARM:
switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
break;
case ELF::EM_MIPS:
case ELF::EM_MIPS_RS3_LE:
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
}
break;
}
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
default:
return "";
}
}
static std::string getGNUPtType(unsigned Arch, unsigned Type) {
StringRef Seg = segmentTypeToString(Arch, Type);
if (Seg.empty())
return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
// E.g. "PT_ARM_EXIDX" -> "EXIDX".
if (Seg.startswith("PT_ARM_"))
return Seg.drop_front(7).str();
// E.g. "PT_MIPS_REGINFO" -> "REGINFO".
if (Seg.startswith("PT_MIPS_"))
return Seg.drop_front(8).str();
// E.g. "PT_LOAD" -> "LOAD".
assert(Seg.startswith("PT_"));
return Seg.drop_front(3).str();
}
const EnumEntry<unsigned> ElfSegmentFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
};
const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
ENUM_ENT(EF_MIPS_PIC, "pic"),
ENUM_ENT(EF_MIPS_CPIC, "cpic"),
ENUM_ENT(EF_MIPS_ABI2, "abi2"),
ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
ENUM_ENT(EF_MIPS_FP64, "fp64"),
ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
};
const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
};
const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
};
const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
ENUM_ENT(EF_RISCV_RVC, "RVC"),
ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
ENUM_ENT(EF_RISCV_RVE, "RVE"),
ENUM_ENT(EF_RISCV_TSO, "TSO"),
};
const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
};
const EnumEntry<unsigned> ElfSymOtherFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
};
const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
};
const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
};
const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
};
const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
static const char *getElfMipsOptionsOdkType(unsigned Odk) {
switch (Odk) {
LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
default:
return "Unknown";
}
}
template <typename ELFT>
std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
ELFDumper<ELFT>::findDynamic() {
// Try to locate the PT_DYNAMIC header.
const Elf_Phdr *DynamicPhdr = nullptr;
if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
if (Phdr.p_type != ELF::PT_DYNAMIC)
continue;
DynamicPhdr = &Phdr;
break;
}
} else {
reportUniqueWarning(
"unable to read program headers to locate the PT_DYNAMIC segment: " +
toString(PhdrsOrErr.takeError()));
}
// Try to locate the .dynamic section in the sections header table.
const Elf_Shdr *DynamicSec = nullptr;
for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
if (Sec.sh_type != ELF::SHT_DYNAMIC)
continue;
DynamicSec = &Sec;
break;
}
if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
ObjF.getMemoryBufferRef().getBufferSize()) ||
(DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
DynamicPhdr->p_offset))) {
reportUniqueWarning(
"PT_DYNAMIC segment offset (0x" +
Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
Twine::utohexstr(DynamicPhdr->p_filesz) +
") exceeds the size of the file (0x" +
Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
// Don't use the broken dynamic header.
DynamicPhdr = nullptr;
}
if (DynamicPhdr && DynamicSec) {
if (DynamicSec->sh_addr + DynamicSec->sh_size >
DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
reportUniqueWarning(describe(*DynamicSec) +
" is not contained within the "
"PT_DYNAMIC segment");
if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
"PT_DYNAMIC segment");
}
return std::make_pair(DynamicPhdr, DynamicSec);
}
template <typename ELFT>
void ELFDumper<ELFT>::loadDynamicTable() {
const Elf_Phdr *DynamicPhdr;
const Elf_Shdr *DynamicSec;
std::tie(DynamicPhdr, DynamicSec) = findDynamic();
if (!DynamicPhdr && !DynamicSec)
return;
DynRegionInfo FromPhdr(ObjF, *this);
bool IsPhdrTableValid = false;
if (DynamicPhdr) {
// Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
// validated in findDynamic() and so createDRI() is not expected to fail.
FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
sizeof(Elf_Dyn)));
FromPhdr.SizePrintName = "PT_DYNAMIC size";
FromPhdr.EntSizePrintName = "";
IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
}
// Locate the dynamic table described in a section header.
// Ignore sh_entsize and use the expected value for entry size explicitly.
// This allows us to dump dynamic sections with a broken sh_entsize
// field.
DynRegionInfo FromSec(ObjF, *this);
bool IsSecTableValid = false;
if (DynamicSec) {
Expected<DynRegionInfo> RegOrErr =
createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
if (RegOrErr) {
FromSec = *RegOrErr;
FromSec.Context = describe(*DynamicSec);
FromSec.EntSizePrintName = "";
IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
} else {
reportUniqueWarning("unable to read the dynamic table from " +
describe(*DynamicSec) + ": " +
toString(RegOrErr.takeError()));
}
}
// When we only have information from one of the SHT_DYNAMIC section header or
// PT_DYNAMIC program header, just use that.
if (!DynamicPhdr || !DynamicSec) {
if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
parseDynamicTable();
} else {
reportUniqueWarning("no valid dynamic table was found");
}
return;
}
// At this point we have tables found from the section header and from the
// dynamic segment. Usually they match, but we have to do sanity checks to
// verify that.
if (FromPhdr.Addr != FromSec.Addr)
reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
"program header disagree about "
"the location of the dynamic table");
if (!IsPhdrTableValid && !IsSecTableValid) {
reportUniqueWarning("no valid dynamic table was found");
return;
}
// Information in the PT_DYNAMIC program header has priority over the
// information in a section header.
if (IsPhdrTableValid) {
if (!IsSecTableValid)
reportUniqueWarning(
"SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
DynamicTable = FromPhdr;
} else {
reportUniqueWarning(
"PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
DynamicTable = FromSec;
}
parseDynamicTable();
}
template <typename ELFT>
ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
ScopedPrinter &Writer)
: ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
FileName(O.getFileName()), DynRelRegion(O, *this),
DynRelaRegion(O, *this), DynRelrRegion(O, *this),
DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
DynamicTable(O, *this) {
if (!O.IsContentValid())
return;
typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
for (const Elf_Shdr &Sec : Sections) {
switch (Sec.sh_type) {
case ELF::SHT_SYMTAB:
if (!DotSymtabSec)
DotSymtabSec = &Sec;
break;
case ELF::SHT_DYNSYM:
if (!DotDynsymSec)
DotDynsymSec = &Sec;
if (!DynSymRegion) {
Expected<DynRegionInfo> RegOrErr =
createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
if (RegOrErr) {
DynSymRegion = *RegOrErr;
DynSymRegion->Context = describe(Sec);
if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
DynamicStringTable = *E;
else
reportUniqueWarning("unable to get the string table for the " +
describe(Sec) + ": " + toString(E.takeError()));
} else {
reportUniqueWarning("unable to read dynamic symbols from " +
describe(Sec) + ": " +
toString(RegOrErr.takeError()));
}
}
break;
case ELF::SHT_SYMTAB_SHNDX: {
uint32_t SymtabNdx = Sec.sh_link;
if (SymtabNdx >= Sections.size()) {
reportUniqueWarning(
"unable to get the associated symbol table for " + describe(Sec) +
": sh_link (" + Twine(SymtabNdx) +
") is greater than or equal to the total number of sections (" +
Twine(Sections.size()) + ")");
continue;
}
if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
Obj.getSHNDXTable(Sec)) {
if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
.second)
reportUniqueWarning(
"multiple SHT_SYMTAB_SHNDX sections are linked to " +
describe(Sec));
} else {
reportUniqueWarning(ShndxTableOrErr.takeError());
}
break;
}
case ELF::SHT_GNU_versym:
if (!SymbolVersionSection)
SymbolVersionSection = &Sec;
break;
case ELF::SHT_GNU_verdef:
if (!SymbolVersionDefSection)
SymbolVersionDefSection = &Sec;
break;
case ELF::SHT_GNU_verneed:
if (!SymbolVersionNeedSection)
SymbolVersionNeedSection = &Sec;
break;
case ELF::SHT_LLVM_ADDRSIG:
if (!DotAddrsigSec)
DotAddrsigSec = &Sec;
break;
}
}
loadDynamicTable();
}
template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
this->reportUniqueWarning(Msg);
return Error::success();
});
if (!MappedAddrOrError) {
this->reportUniqueWarning("unable to parse DT_" +
Obj.getDynamicTagAsString(Tag) + ": " +
llvm::toString(MappedAddrOrError.takeError()));
return nullptr;
}
return MappedAddrOrError.get();
};
const char *StringTableBegin = nullptr;
uint64_t StringTableSize = 0;
Optional<DynRegionInfo> DynSymFromTable;
for (const Elf_Dyn &Dyn : dynamic_table()) {
switch (Dyn.d_tag) {
case ELF::DT_HASH:
HashTable = reinterpret_cast<const Elf_Hash *>(
toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
break;
case ELF::DT_GNU_HASH:
GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
break;
case ELF::DT_STRTAB:
StringTableBegin = reinterpret_cast<const char *>(
toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
break;
case ELF::DT_STRSZ:
StringTableSize = Dyn.getVal();
break;
case ELF::DT_SYMTAB: {
// If we can't map the DT_SYMTAB value to an address (e.g. when there are
// no program headers), we ignore its value.
if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
DynSymFromTable.emplace(ObjF, *this);
DynSymFromTable->Addr = VA;
DynSymFromTable->EntSize = sizeof(Elf_Sym);
DynSymFromTable->EntSizePrintName = "";
}
break;
}
case ELF::DT_SYMENT: {
uint64_t Val = Dyn.getVal();
if (Val != sizeof(Elf_Sym))
this->reportUniqueWarning("DT_SYMENT value of 0x" +
Twine::utohexstr(Val) +
" is not the size of a symbol (0x" +
Twine::utohexstr(sizeof(Elf_Sym)) + ")");
break;
}
case ELF::DT_RELA:
DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
break;
case ELF::DT_RELASZ:
DynRelaRegion.Size = Dyn.getVal();
DynRelaRegion.SizePrintName = "DT_RELASZ value";
break;
case ELF::DT_RELAENT:
DynRelaRegion.EntSize = Dyn.getVal();
DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
break;
case ELF::DT_SONAME:
SONameOffset = Dyn.getVal();
break;
case ELF::DT_REL:
DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
break;
case ELF::DT_RELSZ:
DynRelRegion.Size = Dyn.getVal();
DynRelRegion.SizePrintName = "DT_RELSZ value";
break;
case ELF::DT_RELENT:
DynRelRegion.EntSize = Dyn.getVal();
DynRelRegion.EntSizePrintName = "DT_RELENT value";
break;
case ELF::DT_RELR:
case ELF::DT_ANDROID_RELR:
DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
break;
case ELF::DT_RELRSZ:
case ELF::DT_ANDROID_RELRSZ:
DynRelrRegion.Size = Dyn.getVal();
DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
? "DT_RELRSZ value"
: "DT_ANDROID_RELRSZ value";
break;
case ELF::DT_RELRENT:
case ELF::DT_ANDROID_RELRENT:
DynRelrRegion.EntSize = Dyn.getVal();
DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
? "DT_RELRENT value"
: "DT_ANDROID_RELRENT value";
break;
case ELF::DT_PLTREL:
if (Dyn.getVal() == DT_REL)
DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
else if (Dyn.getVal() == DT_RELA)
DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
else
reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
Twine((uint64_t)Dyn.getVal()));
DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
break;
case ELF::DT_JMPREL:
DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
break;
case ELF::DT_PLTRELSZ:
DynPLTRelRegion.Size = Dyn.getVal();
DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
break;
case ELF::DT_SYMTAB_SHNDX:
DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
break;
}
}
if (StringTableBegin) {
const uint64_t FileSize = Obj.getBufSize();
const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
if (StringTableSize > FileSize - Offset)
reportUniqueWarning(
"the dynamic string table at 0x" + Twine::utohexstr(Offset) +
" goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
else
DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
}
const bool IsHashTableSupported = getHashTableEntSize() == 4;
if (DynSymRegion) {
// Often we find the information about the dynamic symbol table
// location in the SHT_DYNSYM section header. However, the value in
// DT_SYMTAB has priority, because it is used by dynamic loaders to
// locate .dynsym at runtime. The location we find in the section header
// and the location we find here should match.
if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
reportUniqueWarning(
createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
"the location of the dynamic symbol table"));
// According to the ELF gABI: "The number of symbol table entries should
// equal nchain". Check to see if the DT_HASH hash table nchain value
// conflicts with the number of symbols in the dynamic symbol table
// according to the section header.
if (HashTable && IsHashTableSupported) {
if (DynSymRegion->EntSize == 0)
reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
reportUniqueWarning(
"hash table nchain (" + Twine(HashTable->nchain) +
") differs from symbol count derived from SHT_DYNSYM section "
"header (" +
Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
}
}
// Delay the creation of the actual dynamic symbol table until now, so that
// checks can always be made against the section header-based properties,
// without worrying about tag order.
if (DynSymFromTable) {
if (!DynSymRegion) {
DynSymRegion = DynSymFromTable;
} else {
DynSymRegion->Addr = DynSymFromTable->Addr;
DynSymRegion->EntSize = DynSymFromTable->EntSize;
DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
}
}
// Derive the dynamic symbol table size from the DT_HASH hash table, if
// present.
if (HashTable && IsHashTableSupported && DynSymRegion) {
const uint64_t FileSize = Obj.getBufSize();
const uint64_t DerivedSize =
(uint64_t)HashTable->nchain * DynSymRegion->EntSize;
const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
if (DerivedSize > FileSize - Offset)
reportUniqueWarning(
"the size (0x" + Twine::utohexstr(DerivedSize) +
") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
", derived from the hash table, goes past the end of the file (0x" +
Twine::utohexstr(FileSize) + ") and will be ignored");
else
DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
}
}
template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
// Dump version symbol section.
printVersionSymbolSection(SymbolVersionSection);
// Dump version definition section.
printVersionDefinitionSection(SymbolVersionDefSection);
// Dump version dependency section.
printVersionDependencySection(SymbolVersionNeedSection);
}
#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
{ #enum, prefix##_##enum }
const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
};
const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
};
const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
};
#undef LLVM_READOBJ_DT_FLAG_ENT
template <typename T, typename TFlag>
void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
SmallVector<EnumEntry<TFlag>, 10> SetFlags;
for (const EnumEntry<TFlag> &Flag : Flags)
if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
SetFlags.push_back(Flag);
for (const EnumEntry<TFlag> &Flag : SetFlags)
OS << Flag.Name << " ";
}
template <class ELFT>
const typename ELFT::Shdr *
ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
if (*NameOrErr == Name)
return &Shdr;
} else {
reportUniqueWarning("unable to read the name of " + describe(Shdr) +
": " + toString(NameOrErr.takeError()));
}
}
return nullptr;
}
template <class ELFT>
std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
uint64_t Value) const {
auto FormatHexValue = [](uint64_t V) {
std::string Str;
raw_string_ostream OS(Str);
const char *ConvChar =
(opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
OS << format(ConvChar, V);
return OS.str();
};
auto FormatFlags = [](uint64_t V,
llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
std::string Str;
raw_string_ostream OS(Str);
printFlags(V, Array, OS);
return OS.str();
};
// Handle custom printing of architecture specific tags
switch (Obj.getHeader().e_machine) {
case EM_AARCH64:
switch (Type) {
case DT_AARCH64_BTI_PLT:
case DT_AARCH64_PAC_PLT:
case DT_AARCH64_VARIANT_PCS:
return std::to_string(Value);
default:
break;
}
break;
case EM_HEXAGON:
switch (Type) {
case DT_HEXAGON_VER:
return std::to_string(Value);
case DT_HEXAGON_SYMSZ:
case DT_HEXAGON_PLT:
return FormatHexValue(Value);
default:
break;
}
break;
case EM_MIPS:
switch (Type) {
case DT_MIPS_RLD_VERSION:
case DT_MIPS_LOCAL_GOTNO:
case DT_MIPS_SYMTABNO:
case DT_MIPS_UNREFEXTNO:
return std::to_string(Value);
case DT_MIPS_TIME_STAMP:
case DT_MIPS_ICHECKSUM:
case DT_MIPS_IVERSION:
case DT_MIPS_BASE_ADDRESS:
case DT_MIPS_MSYM:
case DT_MIPS_CONFLICT:
case DT_MIPS_LIBLIST:
case DT_MIPS_CONFLICTNO:
case DT_MIPS_LIBLISTNO:
case DT_MIPS_GOTSYM:
case DT_MIPS_HIPAGENO:
case DT_MIPS_RLD_MAP:
case DT_MIPS_DELTA_CLASS:
case DT_MIPS_DELTA_CLASS_NO:
case DT_MIPS_DELTA_INSTANCE:
case DT_MIPS_DELTA_RELOC:
case DT_MIPS_DELTA_RELOC_NO:
case DT_MIPS_DELTA_SYM:
case DT_MIPS_DELTA_SYM_NO:
case DT_MIPS_DELTA_CLASSSYM:
case DT_MIPS_DELTA_CLASSSYM_NO:
case DT_MIPS_CXX_FLAGS:
case DT_MIPS_PIXIE_INIT:
case DT_MIPS_SYMBOL_LIB:
case DT_MIPS_LOCALPAGE_GOTIDX:
case DT_MIPS_LOCAL_GOTIDX:
case DT_MIPS_HIDDEN_GOTIDX:
case DT_MIPS_PROTECTED_GOTIDX:
case DT_MIPS_OPTIONS:
case DT_MIPS_INTERFACE:
case DT_MIPS_DYNSTR_ALIGN:
case DT_MIPS_INTERFACE_SIZE:
case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
case DT_MIPS_PERF_SUFFIX:
case DT_MIPS_COMPACT_SIZE:
case DT_MIPS_GP_VALUE:
case DT_MIPS_AUX_DYNAMIC:
case DT_MIPS_PLTGOT:
case DT_MIPS_RWPLT:
case DT_MIPS_RLD_MAP_REL:
return FormatHexValue(Value);
case DT_MIPS_FLAGS:
return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
default:
break;
}
break;
default:
break;
}
switch (Type) {
case DT_PLTREL:
if (Value == DT_REL)
return "REL";
if (Value == DT_RELA)
return "RELA";
LLVM_FALLTHROUGH;
case DT_PLTGOT:
case DT_HASH:
case DT_STRTAB:
case DT_SYMTAB:
case DT_RELA:
case DT_INIT:
case DT_FINI:
case DT_REL:
case DT_JMPREL:
case DT_INIT_ARRAY:
case DT_FINI_ARRAY:
case DT_PREINIT_ARRAY:
case DT_DEBUG:
case DT_VERDEF:
case DT_VERNEED:
case DT_VERSYM:
case DT_GNU_HASH:
case DT_NULL:
return FormatHexValue(Value);
case DT_RELACOUNT:
case DT_RELCOUNT:
case DT_VERDEFNUM:
case DT_VERNEEDNUM:
return std::to_string(Value);
case DT_PLTRELSZ:
case DT_RELASZ:
case DT_RELAENT:
case DT_STRSZ:
case DT_SYMENT:
case DT_RELSZ:
case DT_RELENT:
case DT_INIT_ARRAYSZ:
case DT_FINI_ARRAYSZ:
case DT_PREINIT_ARRAYSZ:
case DT_RELRSZ:
case DT_RELRENT:
case DT_ANDROID_RELSZ:
case DT_ANDROID_RELASZ:
return std::to_string(Value) + " (bytes)";
case DT_NEEDED:
case DT_SONAME:
case DT_AUXILIARY:
case DT_USED:
case DT_FILTER:
case DT_RPATH:
case DT_RUNPATH: {
const std::map<uint64_t, const char *> TagNames = {
{DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
{DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
{DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
{DT_RUNPATH, "Library runpath"},
};
return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
.str();
}
case DT_FLAGS:
return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
case DT_FLAGS_1:
return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
default:
return FormatHexValue(Value);
}
}
template <class ELFT>
StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
reportUniqueWarning("string table was not found");
return "<?>";
}
auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
Msg);
return "<?>";
};
const uint64_t FileSize = Obj.getBufSize();
const uint64_t Offset =
(const uint8_t *)DynamicStringTable.data() - Obj.base();
if (DynamicStringTable.size() > FileSize - Offset)
return WarnAndReturn(" with size 0x" +
Twine::utohexstr(DynamicStringTable.size()) +
" goes past the end of the file (0x" +
Twine::utohexstr(FileSize) + ")",
Offset);
if (Value >= DynamicStringTable.size())
return WarnAndReturn(
": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
": it goes past the end of the table (0x" +
Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
Offset);
if (DynamicStringTable.back() != '\0')
return WarnAndReturn(": unable to read the string at 0x" +
Twine::utohexstr(Offset + Value) +
": the string table is not null-terminated",
Offset);
return DynamicStringTable.data() + Value;
}
template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
Ctx.printUnwindInformation();
}
// The namespace is needed to fix the compilation with GCC older than 7.0+.
namespace {
template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
if (Obj.getHeader().e_machine == EM_ARM) {
ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
DotSymtabSec);
Ctx.PrintUnwindInformation();
}
DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
Ctx.printUnwindInformation();
}
} // namespace
template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
ListScope D(W, "NeededLibraries");
std::vector<StringRef> Libs;
for (const auto &Entry : dynamic_table())
if (Entry.d_tag == ELF::DT_NEEDED)
Libs.push_back(getDynamicString(Entry.d_un.d_val));
llvm::sort(Libs);
for (StringRef L : Libs)
W.startLine() << L << "\n";
}
template <class ELFT>
static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
const typename ELFT::Hash *H,
bool *IsHeaderValid = nullptr) {
const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
if (Dumper.getHashTableEntSize() == 8) {
auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
return E.Value == Obj.getHeader().e_machine;
});
if (IsHeaderValid)
*IsHeaderValid = false;
return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
" is not supported: it contains non-standard 8 "
"byte entries on " +
It->AltName + " platform");
}
auto MakeError = [&](const Twine &Msg = "") {
return createError("the hash table at offset 0x" +
Twine::utohexstr(SecOffset) +
" goes past the end of the file (0x" +
Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
};
// Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
if (IsHeaderValid)
*IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
if (Obj.getBufSize() - SecOffset < HeaderSize)
return MakeError();
if (Obj.getBufSize() - SecOffset - HeaderSize <
((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
return MakeError(", nbucket = " + Twine(H->nbucket) +
", nchain = " + Twine(H->nchain));
return Error::success();
}
template <class ELFT>
static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
const typename ELFT::GnuHash *GnuHashTable,
bool *IsHeaderValid = nullptr) {
const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
"GnuHashTable must always point to a location inside the file");
uint64_t TableOffset = TableData - Obj.base();
if (IsHeaderValid)
*IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
(uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
Obj.getBufSize())
return createError("unable to dump the SHT_GNU_HASH "
"section at 0x" +
Twine::utohexstr(TableOffset) +
": it goes past the end of the file");
return Error::success();
}
template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
DictScope D(W, "HashTable");
if (!HashTable)
return;
bool IsHeaderValid;
Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
if (IsHeaderValid) {
W.printNumber("Num Buckets", HashTable->nbucket);
W.printNumber("Num Chains", HashTable->nchain);
}
if (Err) {
reportUniqueWarning(std::move(Err));
return;
}
W.printList("Buckets", HashTable->buckets());
W.printList("Chains", HashTable->chains());
}
template <class ELFT>
static Expected<ArrayRef<typename ELFT::Word>>
getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
const typename ELFT::GnuHash *GnuHashTable) {
if (!DynSymRegion)
return createError("no dynamic symbol table found");
ArrayRef<typename ELFT::Sym> DynSymTable =
DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
size_t NumSyms = DynSymTable.size();
if (!NumSyms)
return createError("the dynamic symbol table is empty");
if (GnuHashTable->symndx < NumSyms)
return GnuHashTable->values(NumSyms);
// A normal empty GNU hash table section produced by linker might have
// symndx set to the number of dynamic symbols + 1 (for the zero symbol)
// and have dummy null values in the Bloom filter and in the buckets
// vector (or no values at all). It happens because the value of symndx is not
// important for dynamic loaders when the GNU hash table is empty. They just
// skip the whole object during symbol lookup. In such cases, the symndx value
// is irrelevant and we should not report a warning.
ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
return createError(
"the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
") is greater than or equal to the number of dynamic symbols (" +
Twine(NumSyms) + ")");
// There is no way to represent an array of (dynamic symbols count - symndx)
// length.
return ArrayRef<typename ELFT::Word>();
}
template <typename ELFT>
void ELFDumper<ELFT>::printGnuHashTable() {
DictScope D(W, "GnuHashTable");
if (!GnuHashTable)
return;
bool IsHeaderValid;
Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
if (IsHeaderValid) {
W.printNumber("Num Buckets", GnuHashTable->nbuckets);
W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
W.printNumber("Num Mask Words", GnuHashTable->maskwords);
W.printNumber("Shift Count", GnuHashTable->shift2);
}
if (Err) {
reportUniqueWarning(std::move(Err));
return;
}
ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
W.printHexList("Bloom Filter", BloomFilter);
ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
W.printList("Buckets", Buckets);
Expected<ArrayRef<Elf_Word>> Chains =
getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
if (!Chains) {
reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
"section: " +
toString(Chains.takeError()));
return;
}
W.printHexList("Values", *Chains);
}
template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
StringRef SOName = "<Not found>";
if (SONameOffset)
SOName = getDynamicString(*SONameOffset);
W.printString("LoadName", SOName);
}
template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
switch (Obj.getHeader().e_machine) {
case EM_ARM:
if (Obj.isLE())
printAttributes(ELF::SHT_ARM_ATTRIBUTES,
std::make_unique<ARMAttributeParser>(&W),
support::little);
else
reportUniqueWarning("attribute printing not implemented for big-endian "
"ARM objects");
break;
case EM_RISCV:
if (Obj.isLE())
printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
std::make_unique<RISCVAttributeParser>(&W),
support::little);
else
reportUniqueWarning("attribute printing not implemented for big-endian "
"RISC-V objects");
break;
case EM_MSP430:
printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
std::make_unique<MSP430AttributeParser>(&W),
support::little);
break;
case EM_MIPS: {
printMipsABIFlags();
printMipsOptions();
printMipsReginfo();
MipsGOTParser<ELFT> Parser(*this);
if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
reportUniqueWarning(std::move(E));
else if (!Parser.isGotEmpty())
printMipsGOT(Parser);
if (Error E = Parser.findPLT(dynamic_table()))
reportUniqueWarning(std::move(E));
else if (!Parser.isPltEmpty())
printMipsPLT(Parser);
break;
}
default:
break;
}
}
template <class ELFT>
void ELFDumper<ELFT>::printAttributes(
unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
support::endianness Endianness) {
assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
"Incomplete ELF attribute implementation");
DictScope BA(W, "BuildAttributes");
for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
if (Sec.sh_type != AttrShType)
continue;
ArrayRef<uint8_t> Contents;
if (Expected<ArrayRef<uint8_t>> ContentOrErr =
Obj.getSectionContents(Sec)) {
Contents = *ContentOrErr;
if (Contents.empty()) {
reportUniqueWarning("the " + describe(Sec) + " is empty");
continue;
}
} else {
reportUniqueWarning("unable to read the content of the " + describe(Sec) +
": " + toString(ContentOrErr.takeError()));
continue;
}
W.printHex("FormatVersion", Contents[0]);
if (Error E = AttrParser->parse(Contents, Endianness))
reportUniqueWarning("unable to dump attributes from the " +
describe(Sec) + ": " + toString(std::move(E)));
}
}
namespace {
template <class ELFT> class MipsGOTParser {
public:
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
using Entry = typename ELFT::Addr;
using Entries = ArrayRef<Entry>;
const bool IsStatic;
const ELFFile<ELFT> &Obj;
const ELFDumper<ELFT> &Dumper;
MipsGOTParser(const ELFDumper<ELFT> &D);
Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
Error findPLT(Elf_Dyn_Range DynTable);
bool isGotEmpty() const { return GotEntries.empty(); }
bool isPltEmpty() const { return PltEntries.empty(); }
uint64_t getGp() const;
const Entry *getGotLazyResolver() const;
const Entry *getGotModulePointer() const;
const Entry *getPltLazyResolver() const;
const Entry *getPltModulePointer() const;
Entries getLocalEntries() const;
Entries getGlobalEntries() const;
Entries getOtherEntries() const;
Entries getPltEntries() const;
uint64_t getGotAddress(const Entry * E) const;
int64_t getGotOffset(const Entry * E) const;
const Elf_Sym *getGotSym(const Entry *E) const;
uint64_t getPltAddress(const Entry * E) const;
const Elf_Sym *getPltSym(const Entry *E) const;
StringRef getPltStrTable() const { return PltStrTable; }
const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
private:
const Elf_Shdr *GotSec;
size_t LocalNum;
size_t GlobalNum;
const Elf_Shdr *PltSec;
const Elf_Shdr *PltRelSec;
const Elf_Shdr *PltSymTable;
StringRef FileName;
Elf_Sym_Range GotDynSyms;
StringRef PltStrTable;
Entries GotEntries;
Entries PltEntries;
};
} // end anonymous namespace
template <class ELFT>
MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
: IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
PltRelSec(nullptr), PltSymTable(nullptr),
FileName(D.getElfObject().getFileName()) {}
template <class ELFT>
Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
Elf_Sym_Range DynSyms) {
// See "Global Offset Table" in Chapter 5 in the following document
// for detailed GOT description.
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
// Find static GOT secton.
if (IsStatic) {
GotSec = Dumper.findSectionByName(".got");
if (!GotSec)
return Error::success();
ArrayRef<uint8_t> Content =
unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
Content.size() / sizeof(Entry));
LocalNum = GotEntries.size();
return Error::success();
}
// Lookup dynamic table tags which define the GOT layout.
Optional<uint64_t> DtPltGot;
Optional<uint64_t> DtLocalGotNum;
Optional<uint64_t> DtGotSym;
for (const auto &Entry : DynTable) {
switch (Entry.getTag()) {
case ELF::DT_PLTGOT:
DtPltGot = Entry.getVal();
break;
case ELF::DT_MIPS_LOCAL_GOTNO:
DtLocalGotNum = Entry.getVal();
break;
case ELF::DT_MIPS_GOTSYM:
DtGotSym = Entry.getVal();
break;
}
}
if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
return Error::success();
if (!DtPltGot)
return createError("cannot find PLTGOT dynamic tag");
if (!DtLocalGotNum)
return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
if (!DtGotSym)
return createError("cannot find MIPS_GOTSYM dynamic tag");
size_t DynSymTotal = DynSyms.size();
if (*DtGotSym > DynSymTotal)
return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
") exceeds the number of dynamic symbols (" +
Twine(DynSymTotal) + ")");
GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
if (!GotSec)
return createError("there is no non-empty GOT section at 0x" +
Twine::utohexstr(*DtPltGot));
LocalNum = *DtLocalGotNum;
GlobalNum = DynSymTotal - *DtGotSym;
ArrayRef<uint8_t> Content =
unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
Content.size() / sizeof(Entry));
GotDynSyms = DynSyms.drop_front(*DtGotSym);
return Error::success();
}
template <class ELFT>
Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
// Lookup dynamic table tags which define the PLT layout.
Optional<uint64_t> DtMipsPltGot;
Optional<uint64_t> DtJmpRel;
for (const auto &Entry : DynTable) {
switch (Entry.getTag()) {
case ELF::DT_MIPS_PLTGOT:
DtMipsPltGot = Entry.getVal();
break;
case ELF::DT_JMPREL:
DtJmpRel = Entry.getVal();
break;
}
}
if (!DtMipsPltGot && !DtJmpRel)
return Error::success();
// Find PLT section.
if (!DtMipsPltGot)
return createError("cannot find MIPS_PLTGOT dynamic tag");
if (!DtJmpRel)
return createError("cannot find JMPREL dynamic tag");
PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
if (!PltSec)
return createError("there is no non-empty PLTGOT section at 0x" +
Twine::utohexstr(*DtMipsPltGot));
PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
if (!PltRelSec)
return createError("there is no non-empty RELPLT section at 0x" +
Twine::utohexstr(*DtJmpRel));
if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
Obj.getSectionContents(*PltSec))
PltEntries =
Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
PltContentOrErr->size() / sizeof(Entry));
else
return createError("unable to read PLTGOT section content: " +
toString(PltContentOrErr.takeError()));
if (Expected<const Elf_Shdr *> PltSymTableOrErr =
Obj.getSection(PltRelSec->sh_link))
PltSymTable = *PltSymTableOrErr;
else
return createError("unable to get a symbol table linked to the " +
describe(Obj, *PltRelSec) + ": " +
toString(PltSymTableOrErr.takeError()));
if (Expected<StringRef> StrTabOrErr =
Obj.getStringTableForSymtab(*PltSymTable))
PltStrTable = *StrTabOrErr;
else
return createError("unable to get a string table for the " +
describe(Obj, *PltSymTable) + ": " +
toString(StrTabOrErr.takeError()));
return Error::success();
}
template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
return GotSec->sh_addr + 0x7ff0;
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getGotLazyResolver() const {
return LocalNum > 0 ? &GotEntries[0] : nullptr;
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getGotModulePointer() const {
if (LocalNum < 2)
return nullptr;
const Entry &E = GotEntries[1];
if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
return nullptr;
return &E;
}
template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getLocalEntries() const {
size_t Skip = getGotModulePointer() ? 2 : 1;
if (LocalNum - Skip <= 0)
return Entries();
return GotEntries.slice(Skip, LocalNum - Skip);
}
template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getGlobalEntries() const {
if (GlobalNum == 0)
return Entries();
return GotEntries.slice(LocalNum, GlobalNum);
}
template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getOtherEntries() const {
size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
if (OtherNum == 0)
return Entries();
return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
}
template <class ELFT>
uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
return GotSec->sh_addr + Offset;
}
template <class ELFT>
int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
return Offset - 0x7ff0;
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Elf_Sym *
MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
int64_t Offset = std::distance(GotEntries.data(), E);
return &GotDynSyms[Offset - LocalNum];
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getPltLazyResolver() const {
return PltEntries.empty() ? nullptr : &PltEntries[0];
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Entry *
MipsGOTParser<ELFT>::getPltModulePointer() const {
return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
}
template <class ELFT>
typename MipsGOTParser<ELFT>::Entries
MipsGOTParser<ELFT>::getPltEntries() const {
if (PltEntries.size() <= 2)
return Entries();
return PltEntries.slice(2, PltEntries.size() - 2);
}
template <class ELFT>
uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
return PltSec->sh_addr + Offset;
}
template <class ELFT>
const typename MipsGOTParser<ELFT>::Elf_Sym *
MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
int64_t Offset = std::distance(getPltEntries().data(), E);
if (PltRelSec->sh_type == ELF::SHT_REL) {
Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
return unwrapOrError(FileName,
Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
} else {
Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
return unwrapOrError(FileName,
Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
}
}
const EnumEntry<unsigned> ElfMipsISAExtType[] = {
{"None", Mips::AFL_EXT_NONE},
{"Broadcom SB-1", Mips::AFL_EXT_SB1},
{"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
{"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
{"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
{"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
{"LSI R4010", Mips::AFL_EXT_4010},
{"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
{"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
{"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
{"MIPS R4650", Mips::AFL_EXT_4650},
{"MIPS R5900", Mips::AFL_EXT_5900},
{"MIPS R10000", Mips::AFL_EXT_10000},
{"NEC VR4100", Mips::AFL_EXT_4100},
{"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
{"NEC VR4120", Mips::AFL_EXT_4120},
{"NEC VR5400", Mips::AFL_EXT_5400},
{"NEC VR5500", Mips::AFL_EXT_5500},
{"RMI Xlr", Mips::AFL_EXT_XLR},
{"Toshiba R3900", Mips::AFL_EXT_3900}
};
const EnumEntry<unsigned> ElfMipsASEFlags[] = {
{"DSP", Mips::AFL_ASE_DSP},
{"DSPR2", Mips::AFL_ASE_DSPR2},
{"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
{"MCU", Mips::AFL_ASE_MCU},
{"MDMX", Mips::AFL_ASE_MDMX},
{"MIPS-3D", Mips::AFL_ASE_MIPS3D},
{"MT", Mips::AFL_ASE_MT},
{"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
{"VZ", Mips::AFL_ASE_VIRT},
{"MSA", Mips::AFL_ASE_MSA},
{"MIPS16", Mips::AFL_ASE_MIPS16},
{"microMIPS", Mips::AFL_ASE_MICROMIPS},
{"XPA", Mips::AFL_ASE_XPA},
{"CRC", Mips::AFL_ASE_CRC},
{"GINV", Mips::AFL_ASE_GINV},
};
const EnumEntry<unsigned> ElfMipsFpABIType[] = {
{"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
{"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
{"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
{"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
{"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
{"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
{"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
{"Hard float compat (32-bit CPU, 64-bit FPU)",
Mips::Val_GNU_MIPS_ABI_FP_64A}
};
static const EnumEntry<unsigned> ElfMipsFlags1[] {
{"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
};
static int getMipsRegisterSize(uint8_t Flag) {
switch (Flag) {
case Mips::AFL_REG_NONE:
return 0;
case Mips::AFL_REG_32:
return 32;
case Mips::AFL_REG_64:
return 64;
case Mips::AFL_REG_128:
return 128;
default:
return -1;
}
}
template <class ELFT>
static void printMipsReginfoData(ScopedPrinter &W,
const Elf_Mips_RegInfo<ELFT> &Reginfo) {
W.printHex("GP", Reginfo.ri_gp_value);
W.printHex("General Mask", Reginfo.ri_gprmask);
W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
}
template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
if (!RegInfoSec) {
W.startLine() << "There is no .reginfo section in the file.\n";
return;
}
Expected<ArrayRef<uint8_t>> ContentsOrErr =
Obj.getSectionContents(*RegInfoSec);
if (!ContentsOrErr) {
this->reportUniqueWarning(
"unable to read the content of the .reginfo section (" +
describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
return;
}
if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
Twine::utohexstr(ContentsOrErr->size()) + ")");
return;
}
DictScope GS(W, "MIPS RegInfo");
printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
ContentsOrErr->data()));
}
template <class ELFT>
static Expected<const Elf_Mips_Options<ELFT> *>
readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
bool &IsSupported) {
if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
return createError("the .MIPS.options section has an invalid size (0x" +
Twine::utohexstr(SecData.size()) + ")");
const Elf_Mips_Options<ELFT> *O =
reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
const uint8_t Size = O->size;
if (Size > SecData.size()) {
const uint64_t Offset = SecData.data() - SecBegin;
const uint64_t SecSize = Offset + SecData.size();
return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
" at offset 0x" + Twine::utohexstr(Offset) +
" goes past the end of the .MIPS.options "
"section of size 0x" +
Twine::utohexstr(SecSize));
}
IsSupported = O->kind == ODK_REGINFO;
const size_t ExpectedSize =
sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
if (IsSupported)
if (Size < ExpectedSize)
return createError(
"a .MIPS.options entry of kind " +
Twine(getElfMipsOptionsOdkType(O->kind)) +
" has an invalid size (0x" + Twine::utohexstr(Size) +
"), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
SecData = SecData.drop_front(Size);
return O;
}
template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
if (!MipsOpts) {
W.startLine() << "There is no .MIPS.options section in the file.\n";
return;
}
DictScope GS(W, "MIPS Options");
ArrayRef<uint8_t> Data =
unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
const uint8_t *const SecBegin = Data.begin();
while (!Data.empty()) {
bool IsSupported;
Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
if (!OptsOrErr) {
reportUniqueWarning(OptsOrErr.takeError());
break;
}
unsigned Kind = (*OptsOrErr)->kind;
const char *Type = getElfMipsOptionsOdkType(Kind);
if (!IsSupported) {
W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
<< ")\n";
continue;
}
DictScope GS(W, Type);
if (Kind == ODK_REGINFO)
printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
else
llvm_unreachable("unexpected .MIPS.options section descriptor kind");
}
}
template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
if (!StackMapSection)
return;
auto Warn = [&](Error &&E) {
this->reportUniqueWarning("unable to read the stack map from " +
describe(*StackMapSection) + ": " +
toString(std::move(E)));
};
Expected<ArrayRef<uint8_t>> ContentOrErr =
Obj.getSectionContents(*StackMapSection);
if (!ContentOrErr) {
Warn(ContentOrErr.takeError());
return;
}
if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
*ContentOrErr)) {
Warn(std::move(E));
return;
}
prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
}
template <class ELFT>
void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
if (!Target)
reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
" in " + describe(Sec) + ": " +
toString(Target.takeError()));
else
printRelRelaReloc(R, *Target);
}
static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
StringRef Str2) {
OS.PadToColumn(2u);
OS << Str1;
OS.PadToColumn(37u);
OS << Str2 << "\n";
OS.flush();
}
template <class ELFT>
static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
StringRef FileName) {
const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
if (ElfHeader.e_shnum != 0)
return to_string(ElfHeader.e_shnum);
Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
if (!ArrOrErr) {
// In this case we can ignore an error, because we have already reported a
// warning about the broken section header table earlier.
consumeError(ArrOrErr.takeError());
return "<?>";
}
if (ArrOrErr->empty())
return "0";
return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
}
template <class ELFT>
static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
StringRef FileName) {
const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
if (ElfHeader.e_shstrndx != SHN_XINDEX)
return to_string(ElfHeader.e_shstrndx);
Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
if (!ArrOrErr) {
// In this case we can ignore an error, because we have already reported a
// warning about the broken section header table earlier.
consumeError(ArrOrErr.takeError());
return "<?>";
}
if (ArrOrErr->empty())
return "65535 (corrupt: out of range)";
return to_string(ElfHeader.e_shstrndx) + " (" +
to_string((*ArrOrErr)[0].sh_link) + ")";
}
static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
return E.Value == Type;
});
if (It != makeArrayRef(ElfObjectFileType).end())
return It;
return nullptr;
}
template <class ELFT>
void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
ArrayRef<std::string> InputFilenames,
const Archive *A) {
if (InputFilenames.size() > 1 || A) {
this->W.startLine() << "\n";
this->W.printString("File", FileStr);
}
}
template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
const Elf_Ehdr &e = this->Obj.getHeader();
OS << "ELF Header:\n";
OS << " Magic: ";
std::string Str;
for (int i = 0; i < ELF::EI_NIDENT; i++)
OS << format(" %02x", static_cast<int>(e.e_ident[i]));
OS << "\n";
Str = enumToString(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
printFields(OS, "Class:", Str);
Str = enumToString(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
printFields(OS, "Data:", Str);
OS.PadToColumn(2u);
OS << "Version:";
OS.PadToColumn(37u);
OS << to_hexString(e.e_ident[ELF::EI_VERSION]);
if (e.e_version == ELF::EV_CURRENT)
OS << " (current)";
OS << "\n";
Str = enumToString(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
printFields(OS, "OS/ABI:", Str);
printFields(OS,
"ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
Str = E->AltName.str();
} else {
if (e.e_type >= ET_LOPROC)
Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")";
else if (e.e_type >= ET_LOOS)
Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")";
else
Str = "<unknown>: " + to_hexString(e.e_type, false);
}
printFields(OS, "Type:", Str);
Str = enumToString(e.e_machine, makeArrayRef(ElfMachineType));
printFields(OS, "Machine:", Str);
Str = "0x" + to_hexString(e.e_version);
printFields(OS, "Version:", Str);
Str = "0x" + to_hexString(e.e_entry);
printFields(OS, "Entry point address:", Str);
Str = to_string(e.e_phoff) + " (bytes into file)";
printFields(OS, "Start of program headers:", Str);
Str = to_string(e.e_shoff) + " (bytes into file)";
printFields(OS, "Start of section headers:", Str);
std::string ElfFlags;
if (e.e_machine == EM_MIPS)
ElfFlags =
printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
unsigned(ELF::EF_MIPS_MACH));
else if (e.e_machine == EM_RISCV)
ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
else if (e.e_machine == EM_AVR)
ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
unsigned(ELF::EF_AVR_ARCH_MASK));
Str = "0x" + to_hexString(e.e_flags);
if (!ElfFlags.empty())
Str = Str + ", " + ElfFlags;
printFields(OS, "Flags:", Str);
Str = to_string(e.e_ehsize) + " (bytes)";
printFields(OS, "Size of this header:", Str);
Str = to_string(e.e_phentsize) + " (bytes)";
printFields(OS, "Size of program headers:", Str);
Str = to_string(e.e_phnum);
printFields(OS, "Number of program headers:", Str);
Str = to_string(e.e_shentsize) + " (bytes)";
printFields(OS, "Size of section headers:", Str);
Str = getSectionHeadersNumString(this->Obj, this->FileName);
printFields(OS, "Number of section headers:", Str);
Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
printFields(OS, "Section header string table index:", Str);
}
template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
const Elf_Shdr &Symtab) -> StringRef {
Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
if (!StrTableOrErr) {
reportUniqueWarning("unable to get the string table for " +
describe(Symtab) + ": " +
toString(StrTableOrErr.takeError()));
return "<?>";
}
StringRef Strings = *StrTableOrErr;
if (Sym.st_name >= Strings.size()) {
reportUniqueWarning("unable to get the name of the symbol with index " +
Twine(SymNdx) + ": st_name (0x" +
Twine::utohexstr(Sym.st_name) +
") is past the end of the string table of size 0x" +
Twine::utohexstr(Strings.size()));
return "<?>";
}
return StrTableOrErr->data() + Sym.st_name;
};
std::vector<GroupSection> Ret;
uint64_t I = 0;
for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
++I;
if (Sec.sh_type != ELF::SHT_GROUP)
continue;
StringRef Signature = "<?>";
if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
if (Expected<const Elf_Sym *> SymOrErr =
Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
else
reportUniqueWarning("unable to get the signature symbol for " +
describe(Sec) + ": " +
toString(SymOrErr.takeError()));
} else {
reportUniqueWarning("unable to get the symbol table for " +
describe(Sec) + ": " +
toString(SymtabOrErr.takeError()));
}
ArrayRef<Elf_Word> Data;
if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
if (ContentsOrErr->empty())
reportUniqueWarning("unable to read the section group flag from the " +
describe(Sec) + ": the section is empty");
else
Data = *ContentsOrErr;
} else {
reportUniqueWarning("unable to get the content of the " + describe(Sec) +
": " + toString(ContentsOrErr.takeError()));
}
Ret.push_back({getPrintableSectionName(Sec),
maybeDemangle(Signature),
Sec.sh_name,
I - 1,
Sec.sh_link,
Sec.sh_info,
Data.empty() ? Elf_Word(0) : Data[0],
{}});
if (Data.empty())
continue;
std::vector<GroupMember> &GM = Ret.back().Members;
for (uint32_t Ndx : Data.slice(1)) {
if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
} else {
reportUniqueWarning("unable to get the section with index " +
Twine(Ndx) + " when dumping the " + describe(Sec) +
": " + toString(SecOrErr.takeError()));
GM.push_back({"<?>", Ndx});
}
}
}
return Ret;
}
static DenseMap<uint64_t, const GroupSection *>
mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
DenseMap<uint64_t, const GroupSection *> Ret;
for (const GroupSection &G : Groups)
for (const GroupMember &GM : G.Members)
Ret.insert({GM.Index, &G});
return Ret;
}
template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
std::vector<GroupSection> V = this->getGroups();
DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
for (const GroupSection &G : V) {
OS << "\n"
<< getGroupType(G.Type) << " group section ["
<< format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
<< "] contains " << G.Members.size() << " sections:\n"
<< " [Index] Name\n";
for (const GroupMember &GM : G.Members) {
const GroupSection *MainGroup = Map[GM.Index];
if (MainGroup != &G)
this->reportUniqueWarning(
"section with index " + Twine(GM.Index) +
", included in the group section with index " +
Twine(MainGroup->Index) +
", was also found in the group section with index " +
Twine(G.Index));
OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
}
}
if (V.empty())
OS << "There are no section groups in this file.\n";
}
template <class ELFT>
void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
}
template <class ELFT>
void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
const RelSymbol<ELFT> &RelSym) {
// First two fields are bit width dependent. The rest of them are fixed width.
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
unsigned Width = ELFT::Is64Bits ? 16 : 8;
Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
SmallString<32> RelocName;
this->Obj.getRelocationTypeName(R.Type, RelocName);
Fields[2].Str = RelocName.c_str();
if (RelSym.Sym)
Fields[3].Str =
to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
Fields[4].Str = std::string(RelSym.Name);
for (const Field &F : Fields)
printField(F);
std::string Addend;
if (Optional<int64_t> A = R.Addend) {
int64_t RelAddend = *A;
if (!RelSym.Name.empty()) {
if (RelAddend < 0) {
Addend = " - ";
RelAddend = std::abs(RelAddend);
} else {
Addend = " + ";
}
}
Addend += to_hexString(RelAddend, false);
}
OS << Addend << "\n";
}
template <class ELFT>
static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
if (ELFT::Is64Bits)
OS << " ";
else
OS << " ";
if (IsRelr && opts::RawRelr)
OS << "Data ";
else
OS << "Offset";
if (ELFT::Is64Bits)
OS << " Info Type"
<< " Symbol's Value Symbol's Name";
else
OS << " Info Type Sym. Value Symbol's Name";
if (IsRela)
OS << " + Addend";
OS << "\n";
}
template <class ELFT>
void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
const DynRegionInfo &Reg) {
uint64_t Offset = Reg.Addr - this->Obj.base();
OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
<< to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n";
printRelocHeaderFields<ELFT>(OS, Type);
}
template <class ELFT>
static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
Sec.sh_type == ELF::SHT_ANDROID_RELA ||
Sec.sh_type == ELF::SHT_ANDROID_RELR;
}
template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
// Android's packed relocation section needs to be unpacked first
// to get the actual number of entries.
if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
Sec.sh_type == ELF::SHT_ANDROID_RELA) {
Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
this->Obj.android_relas(Sec);
if (!RelasOrErr)
return RelasOrErr.takeError();
return RelasOrErr->size();
}
if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
if (!RelrsOrErr)
return RelrsOrErr.takeError();
return this->Obj.decode_relrs(*RelrsOrErr).size();
}
return Sec.getEntityCount();
};
bool HasRelocSections = false;
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
if (!isRelocationSec<ELFT>(Sec))
continue;
HasRelocSections = true;
std::string EntriesNum = "<?>";
if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
EntriesNum = std::to_string(*NumOrErr);
else
this->reportUniqueWarning("unable to get the number of relocations in " +
this->describe(Sec) + ": " +
toString(NumOrErr.takeError()));
uintX_t Offset = Sec.sh_offset;
StringRef Name = this->getPrintableSectionName(Sec);
OS << "\nRelocation section '" << Name << "' at offset 0x"
<< to_hexString(Offset, false) << " contains " << EntriesNum
<< " entries:\n";
printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
this->printRelocationsHelper(Sec);
}
if (!HasRelocSections)
OS << "\nThere are no relocations in this file.\n";
}
// Print the offset of a particular section from anyone of the ranges:
// [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
// If 'Type' does not fall within any of those ranges, then a string is
// returned as '<unknown>' followed by the type value.
static std::string getSectionTypeOffsetString(unsigned Type) {
if (Type >= SHT_LOOS && Type <= SHT_HIOS)
return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
return "0x" + to_hexString(Type) + ": <unknown>";
}
static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
StringRef Name = getELFSectionTypeName(Machine, Type);
// Handle SHT_GNU_* type names.
if (Name.startswith("SHT_GNU_")) {
if (Name == "SHT_GNU_HASH")
return "GNU_HASH";
// E.g. SHT_GNU_verneed -> VERNEED.
return Name.drop_front(8).upper();
}
if (Name == "SHT_SYMTAB_SHNDX")
return "SYMTAB SECTION INDICES";
if (Name.startswith("SHT_"))
return Name.drop_front(4).str();
return getSectionTypeOffsetString(Type);
}
static void printSectionDescription(formatted_raw_ostream &OS,
unsigned EMachine) {
OS << "Key to Flags:\n";
OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
"(info),\n";
OS << " L (link order), O (extra OS processing required), G (group), T "
"(TLS),\n";
OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
OS << " R (retain)";
if (EMachine == EM_X86_64)
OS << ", l (large)";
else if (EMachine == EM_ARM)
OS << ", y (purecode)";
OS << ", p (processor specific)\n";
}
template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
unsigned Bias = ELFT::Is64Bits ? 0 : 8;
ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
OS << "There are " << to_string(Sections.size())
<< " section headers, starting at offset "
<< "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
OS << "Section Headers:\n";
Field Fields[11] = {
{"[Nr]", 2}, {"Name", 7}, {"Type", 25},
{"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
{"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
{"Inf", 82 - Bias}, {"Al", 86 - Bias}};
for (const Field &F : Fields)
printField(F);
OS << "\n";
StringRef SecStrTable;
if (Expected<StringRef> SecStrTableOrErr =
this->Obj.getSectionStringTable(Sections, this->WarningHandler))
SecStrTable = *SecStrTableOrErr;
else
this->reportUniqueWarning(SecStrTableOrErr.takeError());
size_t SectionIndex = 0;
for (const Elf_Shdr &Sec : Sections) {
Fields[0].Str = to_string(SectionIndex);
if (SecStrTable.empty())
Fields[1].Str = "<no-strings>";
else
Fields[1].Str = std::string(unwrapOrError<StringRef>(
this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
Fields[2].Str =
getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
Fields[3].Str =
to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags);
Fields[8].Str = to_string(Sec.sh_link);
Fields[9].Str = to_string(Sec.sh_info);
Fields[10].Str = to_string(Sec.sh_addralign);
OS.PadToColumn(Fields[0].Column);
OS << "[" << right_justify(Fields[0].Str, 2) << "]";
for (int i = 1; i < 7; i++)
printField(Fields[i]);
OS.PadToColumn(Fields[7].Column);
OS << right_justify(Fields[7].Str, 3);
OS.PadToColumn(Fields[8].Column);
OS << right_justify(Fields[8].Str, 2);
OS.PadToColumn(Fields[9].Column);
OS << right_justify(Fields[9].Str, 3);
OS.PadToColumn(Fields[10].Column);
OS << right_justify(Fields[10].Str, 2);
OS << "\n";
++SectionIndex;
}
printSectionDescription(OS, this->Obj.getHeader().e_machine);
}
template <class ELFT>
void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
size_t Entries,
bool NonVisibilityBitsUsed) const {
StringRef Name;
if (Symtab)
Name = this->getPrintableSectionName(*Symtab);
if (!Name.empty())
OS << "\nSymbol table '" << Name << "'";
else
OS << "\nSymbol table for image";
OS << " contains " << Entries << " entries:\n";
if (ELFT::Is64Bits)
OS << " Num: Value Size Type Bind Vis";
else
OS << " Num: Value Size Type Bind Vis";
if (NonVisibilityBitsUsed)
OS << " ";
OS << " Ndx Name\n";
}
template <class ELFT>
std::string
GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable) const {
unsigned SectionIndex = Symbol.st_shndx;
switch (SectionIndex) {
case ELF::SHN_UNDEF:
return "UND";
case ELF::SHN_ABS:
return "ABS";
case ELF::SHN_COMMON:
return "COM";
case ELF::SHN_XINDEX: {
Expected<uint32_t> IndexOrErr =
object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
if (!IndexOrErr) {
assert(Symbol.st_shndx == SHN_XINDEX &&
"getExtendedSymbolTableIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference");
this->reportUniqueWarning(IndexOrErr.takeError());
return "RSV[0xffff]";
}
return to_string(format_decimal(*IndexOrErr, 3));
}
default:
// Find if:
// Processor specific
if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
return std::string("PRC[0x") +
to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
// OS specific
if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
return std::string("OS[0x") +
to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
// Architecture reserved:
if (SectionIndex >= ELF::SHN_LORESERVE &&
SectionIndex <= ELF::SHN_HIRESERVE)
return std::string("RSV[0x") +
to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
// A normal section with an index
return to_string(format_decimal(SectionIndex, 3));
}
}
template <class ELFT>
void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable,
Optional<StringRef> StrTable,
bool IsDynamic,
bool NonVisibilityBitsUsed) const {
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
Fields[1].Str =
to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
unsigned char SymbolType = Symbol.getType();
if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
Fields[3].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
else
Fields[3].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
Fields[4].Str =
enumToString(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
Fields[5].Str =
enumToString(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
if (Symbol.st_other & ~0x3) {
if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
uint8_t Other = Symbol.st_other & ~0x3;
if (Other & STO_AARCH64_VARIANT_PCS) {
Other &= ~STO_AARCH64_VARIANT_PCS;
Fields[5].Str += " [VARIANT_PCS";
if (Other != 0)
Fields[5].Str.append(" | " + to_hexString(Other, false));
Fields[5].Str.append("]");
}
} else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
uint8_t Other = Symbol.st_other & ~0x3;
if (Other & STO_RISCV_VARIANT_CC) {
Other &= ~STO_RISCV_VARIANT_CC;
Fields[5].Str += " [VARIANT_CC";
if (Other != 0)
Fields[5].Str.append(" | " + to_hexString(Other, false));
Fields[5].Str.append("]");
}
} else {
Fields[5].Str +=
" [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
}
}
Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
StrTable, IsDynamic);
for (const Field &Entry : Fields)
printField(Entry);
OS << "\n";
}
template <class ELFT>
void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable,
StringRef StrTable,
uint32_t Bucket) {
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
Fields[0].Str = to_string(format_decimal(SymIndex, 5));
Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
Fields[2].Str = to_string(
format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
unsigned char SymbolType = Symbol->getType();
if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
Fields[4].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
else
Fields[4].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
Fields[5].Str =
enumToString(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
Fields[6].Str = enumToString(Symbol->getVisibility(),
makeArrayRef(ElfSymbolVisibilities));
Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
Fields[8].Str =
this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
for (const Field &Entry : Fields)
printField(Entry);
OS << "\n";
}
template <class ELFT>
void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
bool PrintDynamicSymbols) {
if (!PrintSymbols && !PrintDynamicSymbols)
return;
// GNU readelf prints both the .dynsym and .symtab with --symbols.
this->printSymbolsHelper(true);
if (PrintSymbols)
this->printSymbolsHelper(false);
}
template <class ELFT>
void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
if (this->DynamicStringTable.empty())
return;
if (ELFT::Is64Bits)
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
else
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
OS << "\n";
Elf_Sym_Range DynSyms = this->dynamic_symbols();
const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
if (!FirstSym) {
this->reportUniqueWarning(
Twine("unable to print symbols for the .hash table: the "
"dynamic symbol table ") +
(this->DynSymRegion ? "is empty" : "was not found"));
return;
}
DataRegion<Elf_Word> ShndxTable(
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
auto Buckets = SysVHash.buckets();
auto Chains = SysVHash.chains();
for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
if (Buckets[Buc] == ELF::STN_UNDEF)
continue;
BitVector Visited(SysVHash.nchain);
for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
if (Ch == ELF::STN_UNDEF)
break;
if (Visited[Ch]) {
this->reportUniqueWarning(".hash section is invalid: bucket " +
Twine(Ch) +
": a cycle was detected in the linked chain");
break;
}
printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
Buc);
Visited[Ch] = true;
}
}
}
template <class ELFT>
void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
if (this->DynamicStringTable.empty())
return;
Elf_Sym_Range DynSyms = this->dynamic_symbols();
const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
if (!FirstSym) {
this->reportUniqueWarning(
Twine("unable to print symbols for the .gnu.hash table: the "
"dynamic symbol table ") +
(this->DynSymRegion ? "is empty" : "was not found"));
return;
}
auto GetSymbol = [&](uint64_t SymIndex,
uint64_t SymsTotal) -> const Elf_Sym * {
if (SymIndex >= SymsTotal) {
this->reportUniqueWarning(
"unable to print hashed symbol with index " + Twine(SymIndex) +
", which is greater than or equal to the number of dynamic symbols "
"(" +
Twine::utohexstr(SymsTotal) + ")");
return nullptr;
}
return FirstSym + SymIndex;
};
Expected<ArrayRef<Elf_Word>> ValuesOrErr =
getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
ArrayRef<Elf_Word> Values;
if (!ValuesOrErr)
this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
"section: " +
toString(ValuesOrErr.takeError()));
else
Values = *ValuesOrErr;
DataRegion<Elf_Word> ShndxTable(
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
if (Buckets[Buc] == ELF::STN_UNDEF)
continue;
uint32_t Index = Buckets[Buc];
// Print whole chain.
while (true) {
uint32_t SymIndex = Index++;
if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
Buc);
else
break;
if (SymIndex < GnuHash.symndx) {
this->reportUniqueWarning(
"unable to read the hash value for symbol with index " +
Twine(SymIndex) +
", which is less than the index of the first hashed symbol (" +
Twine(GnuHash.symndx) + ")");
break;
}
// Chain ends at symbol with stopper bit.
if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
break;
}
}
}
template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
if (this->HashTable) {
OS << "\n Symbol table of .hash for image:\n";
if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
this->reportUniqueWarning(std::move(E));
else
printHashTableSymbols(*this->HashTable);
}
// Try printing the .gnu.hash table.
if (this->GnuHashTable) {
OS << "\n Symbol table of .gnu.hash for image:\n";
if (ELFT::Is64Bits)
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
else
OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
OS << "\n";
if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
this->reportUniqueWarning(std::move(E));
else
printGnuHashTableSymbols(*this->GnuHashTable);
}
}
template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
OS << "There are " << to_string(Sections.size())
<< " section headers, starting at offset "
<< "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
OS << "Section Headers:\n";
auto PrintFields = [&](ArrayRef<Field> V) {
for (const Field &F : V)
printField(F);
OS << "\n";
};
PrintFields({{"[Nr]", 2}, {"Name", 7}});
constexpr bool Is64 = ELFT::Is64Bits;
PrintFields({{"Type", 7},
{Is64 ? "Address" : "Addr", 23},
{"Off", Is64 ? 40 : 32},
{"Size", Is64 ? 47 : 39},
{"ES", Is64 ? 54 : 46},
{"Lk", Is64 ? 59 : 51},
{"Inf", Is64 ? 62 : 54},
{"Al", Is64 ? 66 : 57}});
PrintFields({{"Flags", 7}});
StringRef SecStrTable;
if (Expected<StringRef> SecStrTableOrErr =
this->Obj.getSectionStringTable(Sections, this->WarningHandler))
SecStrTable = *SecStrTableOrErr;
else
this->reportUniqueWarning(SecStrTableOrErr.takeError());
size_t SectionIndex = 0;
const unsigned AddrSize = Is64 ? 16 : 8;
for (const Elf_Shdr &S : Sections) {
StringRef Name = "<?>";
if (Expected<StringRef> NameOrErr =
this->Obj.getSectionName(S, SecStrTable))
Name = *NameOrErr;
else
this->reportUniqueWarning(NameOrErr.takeError());
OS.PadToColumn(2);
OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
PrintFields({{Name, 7}});
PrintFields(
{{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
{to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
{to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
{to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
{to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
{to_string(S.sh_link), Is64 ? 59 : 51},
{to_string(S.sh_info), Is64 ? 63 : 55},
{to_string(S.sh_addralign), Is64 ? 66 : 58}});
OS.PadToColumn(7);
OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
DenseMap<unsigned, StringRef> FlagToName = {
{SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
{SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
{SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
{SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
{SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
{SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
uint64_t Flags = S.sh_flags;
uint64_t UnknownFlags = 0;
ListSeparator LS;
while (Flags) {
// Take the least significant bit as a flag.
uint64_t Flag = Flags & -Flags;
Flags -= Flag;
auto It = FlagToName.find(Flag);
if (It != FlagToName.end())
OS << LS << It->second;
else
UnknownFlags |= Flag;
}
auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
uint64_t FlagsToPrint = UnknownFlags & Mask;
if (!FlagsToPrint)
return;
OS << LS << Name << " ("
<< to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
UnknownFlags &= ~Mask;
};
PrintUnknownFlags(SHF_MASKOS, "OS");
PrintUnknownFlags(SHF_MASKPROC, "PROC");
PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
OS << "\n";
++SectionIndex;
}
}
static inline std::string printPhdrFlags(unsigned Flag) {
std::string Str;
Str = (Flag & PF_R) ? "R" : " ";
Str += (Flag & PF_W) ? "W" : " ";
Str += (Flag & PF_X) ? "E" : " ";
return Str;
}
template <class ELFT>
static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
const typename ELFT::Shdr &Sec) {
if (Sec.sh_flags & ELF::SHF_TLS) {
// .tbss must only be shown in the PT_TLS segment.
if (Sec.sh_type == ELF::SHT_NOBITS)
return Phdr.p_type == ELF::PT_TLS;
// SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
// segments.
return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
(Phdr.p_type == ELF::PT_GNU_RELRO);
}
// PT_TLS must only have SHF_TLS sections.
return Phdr.p_type != ELF::PT_TLS;
}
template <class ELFT>
static bool checkOffsets(const typename ELFT::Phdr &Phdr,
const typename ELFT::Shdr &Sec) {
// SHT_NOBITS sections don't need to have an offset inside the segment.
if (Sec.sh_type == ELF::SHT_NOBITS)
return true;
if (Sec.sh_offset < Phdr.p_offset)
return false;
// Only non-empty sections can be at the end of a segment.
if (Sec.sh_size == 0)
return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
}
// Check that an allocatable section belongs to a virtual address
// space of a segment.
template <class ELFT>
static bool checkVMA(const typename ELFT::Phdr &Phdr,
const typename ELFT::Shdr &Sec) {
if (!(Sec.sh_flags & ELF::SHF_ALLOC))
return true;
if (Sec.sh_addr < Phdr.p_vaddr)
return false;
bool IsTbss =
(Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
// .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
// Only non-empty sections can be at the end of a segment.
if (Sec.sh_size == 0 || IsTbssInNonTLS)
return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
}
template <class ELFT>
static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
const typename ELFT::Shdr &Sec) {
if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
return true;
// We get here when we have an empty section. Only non-empty sections can be
// at the start or at the end of PT_DYNAMIC.
// Is section within the phdr both based on offset and VMA?
bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
(Sec.sh_offset > Phdr.p_offset &&
Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
(Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
return CheckOffset && CheckVA;
}
template <class ELFT>
void GNUELFDumper<ELFT>::printProgramHeaders(
bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
if (PrintProgramHeaders)
printProgramHeaders();
// Display the section mapping along with the program headers, unless
// -section-mapping is explicitly set to false.
if (PrintSectionMapping != cl::BOU_FALSE)
printSectionMapping();
}
template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
unsigned Bias = ELFT::Is64Bits ? 8 : 0;
const Elf_Ehdr &Header = this->Obj.getHeader();
Field Fields[8] = {2, 17, 26, 37 + Bias,
48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
OS << "\nElf file type is "
<< enumToString(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
<< "Entry point " << format_hex(Header.e_entry, 3) << "\n"
<< "There are " << Header.e_phnum << " program headers,"
<< " starting at offset " << Header.e_phoff << "\n\n"
<< "Program Headers:\n";
if (ELFT::Is64Bits)
OS << " Type Offset VirtAddr PhysAddr "
<< " FileSiz MemSiz Flg Align\n";
else
OS << " Type Offset VirtAddr PhysAddr FileSiz "
<< "MemSiz Flg Align\n";
unsigned Width = ELFT::Is64Bits ? 18 : 10;
unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
if (!PhdrsOrErr) {
this->reportUniqueWarning("unable to dump program headers: " +
toString(PhdrsOrErr.takeError()));
return;
}
for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
Fields[6].Str = printPhdrFlags(Phdr.p_flags);
Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
for (const Field &F : Fields)
printField(F);
if (Phdr.p_type == ELF::PT_INTERP) {
OS << "\n";
auto ReportBadInterp = [&](const Twine &Msg) {
this->reportUniqueWarning(
"unable to read program interpreter name at offset 0x" +
Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
};
if (Phdr.p_offset >= this->Obj.getBufSize()) {
ReportBadInterp("it goes past the end of the file (0x" +
Twine::utohexstr(this->Obj.getBufSize()) + ")");
continue;
}
const char *Data =
reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
size_t Len = strnlen(Data, MaxSize);
if (Len == MaxSize) {
ReportBadInterp("it is not null-terminated");
continue;
}
OS << " [Requesting program interpreter: ";
OS << StringRef(Data, Len) << "]";
}
OS << "\n";
}
}
template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
OS << "\n Section to Segment mapping:\n Segment Sections...\n";
DenseSet<const Elf_Shdr *> BelongsToSegment;
int Phnum = 0;
Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
if (!PhdrsOrErr) {
this->reportUniqueWarning(
"can't read program headers to build section to segment mapping: " +
toString(PhdrsOrErr.takeError()));
return;
}
for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
std::string Sections;
OS << format(" %2.2d ", Phnum++);
// Check if each section is in a segment and then print mapping.
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
if (Sec.sh_type == ELF::SHT_NULL)
continue;
// readelf additionally makes sure it does not print zero sized sections
// at end of segments and for PT_DYNAMIC both start and end of section
// .tbss must only be shown in PT_TLS section.
if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
Sections +=
unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
" ";
BelongsToSegment.insert(&Sec);
}
}
OS << Sections << "\n";
OS.flush();
}
// Display sections that do not belong to a segment.
std::string Sections;
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
Sections +=
unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
' ';
}
if (!Sections.empty()) {
OS << " None " << Sections << '\n';
OS.flush();
}
}
namespace {
template <class ELFT>
RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
const Relocation<ELFT> &Reloc) {
using Elf_Sym = typename ELFT::Sym;
auto WarnAndReturn = [&](const Elf_Sym *Sym,
const Twine &Reason) -> RelSymbol<ELFT> {
Dumper.reportUniqueWarning(
"unable to get name of the dynamic symbol with index " +
Twine(Reloc.Symbol) + ": " + Reason);
return {Sym, "<corrupt>"};
};
ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
const Elf_Sym *FirstSym = Symbols.begin();
if (!FirstSym)
return WarnAndReturn(nullptr, "no dynamic symbol table found");
// We might have an object without a section header. In this case the size of
// Symbols is zero, because there is no way to know the size of the dynamic
// table. We should allow this case and not print a warning.
if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
return WarnAndReturn(
nullptr,
"index is greater than or equal to the number of dynamic symbols (" +
Twine(Symbols.size()) + ")");
const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
const uint64_t FileSize = Obj.getBufSize();
const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
(uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
if (SymOffset + sizeof(Elf_Sym) > FileSize)
return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
" goes past the end of the file (0x" +
Twine::utohexstr(FileSize) + ")");
const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
if (!ErrOrName)
return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
}
} // namespace
template <class ELFT>
static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
typename ELFT::DynRange Tags) {
size_t Max = 0;
for (const typename ELFT::Dyn &Dyn : Tags)
Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
return Max;
}
template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
Elf_Dyn_Range Table = this->dynamic_table();
if (Table.empty())
return;
OS << "Dynamic section at offset "
<< format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
this->Obj.base(),
1)
<< " contains " << Table.size() << " entries:\n";
// The type name is surrounded with round brackets, hence add 2.
size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
// The "Name/Value" column should be indented from the "Type" column by N
// spaces, where N = MaxTagSize - length of "Type" (4) + trailing
// space (1) = 3.
OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
<< std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
for (auto Entry : Table) {
uintX_t Tag = Entry.getTag();
std::string Type =
std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
<< format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
}
}
template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
this->printDynamicRelocationsHelper();
}
template <class ELFT>
void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
printRelRelaReloc(R, getSymbolForReloc(*this, R));
}
template <class ELFT>
void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
this->forEachRelocationDo(
Sec, opts::RawRelr,
[&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
[&](const Elf_Relr &R) { printRelrReloc(R); });
}
template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
const bool IsMips64EL = this->Obj.isMips64EL();
if (this->DynRelaRegion.Size > 0) {
printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
for (const Elf_Rela &Rela :
this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
}
if (this->DynRelRegion.Size > 0) {
printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
for (const Elf_Rel &Rel :
this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
}
if (this->DynRelrRegion.Size > 0) {
printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
Elf_Relr_Range Relrs =
this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
}
if (this->DynPLTRelRegion.Size) {
if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
for (const Elf_Rela &Rela :
this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
} else {
printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
for (const Elf_Rel &Rel :
this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
}
}
}
template <class ELFT>
void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
// Don't inline the SecName, because it might report a warning to stderr and
// corrupt the output.
StringRef SecName = this->getPrintableSectionName(Sec);
OS << Label << " section '" << SecName << "' "
<< "contains " << EntriesNum << " entries:\n";
StringRef LinkedSecName = "<corrupt>";
if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
this->Obj.getSection(Sec.sh_link))
LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
else
this->reportUniqueWarning("invalid section linked to " +
this->describe(Sec) + ": " +
toString(LinkedSecOrErr.takeError()));
OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
<< " Offset: " << format_hex(Sec.sh_offset, 8)
<< " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
}
template <class ELFT>
void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
if (!Sec)
return;
printGNUVersionSectionProlog(*Sec, "Version symbols",
Sec->sh_size / sizeof(Elf_Versym));
Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
this->getVersionTable(*Sec, /*SymTab=*/nullptr,
/*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
if (!VerTableOrErr) {
this->reportUniqueWarning(VerTableOrErr.takeError());
return;
}
SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr;
if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
this->getVersionMap())
VersionMap = *MapOrErr;
else
this->reportUniqueWarning(MapOrErr.takeError());
ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
std::vector<StringRef> Versions;
for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
unsigned Ndx = VerTable[I].vs_index;
if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
continue;
}
if (!VersionMap) {
Versions.emplace_back("<corrupt>");
continue;
}
bool IsDefault;
Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None);
if (!NameOrErr) {
this->reportUniqueWarning("unable to get a version for entry " +
Twine(I) + " of " + this->describe(*Sec) +
": " + toString(NameOrErr.takeError()));
Versions.emplace_back("<corrupt>");
continue;
}
Versions.emplace_back(*NameOrErr);
}
// readelf prints 4 entries per line.
uint64_t Entries = VerTable.size();
for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
unsigned Ndx = VerTable[VersymRow + I].vs_index;
OS << format("%4x%c", Ndx & VERSYM_VERSION,
Ndx & VERSYM_HIDDEN ? 'h' : ' ');
OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
}
OS << '\n';
}
OS << '\n';
}
static std::string versionFlagToString(unsigned Flags) {
if (Flags == 0)
return "none";
std::string Ret;
auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
if (!(Flags & Flag))
return;
if (!Ret.empty())
Ret += " | ";
Ret += Name;
Flags &= ~Flag;
};
AddFlag(VER_FLG_BASE, "BASE");
AddFlag(VER_FLG_WEAK, "WEAK");
AddFlag(VER_FLG_INFO, "INFO");
AddFlag(~0, "<unknown>");
return Ret;
}
template <class ELFT>
void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
if (!Sec)
return;
printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
if (!V) {
this->reportUniqueWarning(V.takeError());
return;
}
for (const VerDef &Def : *V) {
OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
Def.Offset, Def.Version,
versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
Def.Name.data());
unsigned I = 0;
for (const VerdAux &Aux : Def.AuxV)
OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
Aux.Name.data());
}
OS << '\n';
}
template <class ELFT>
void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
if (!Sec)
return;
unsigned VerneedNum = Sec->sh_info;
printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
Expected<std::vector<VerNeed>> V =
this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
if (!V) {
this->reportUniqueWarning(V.takeError());
return;
}
for (const VerNeed &VN : *V) {
OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
VN.Version, VN.File.data(), VN.Cnt);
for (const VernAux &Aux : VN.AuxV)
OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
Aux.Other);
}
OS << '\n';
}
template <class ELFT>
void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
size_t NBucket = HashTable.nbucket;
size_t NChain = HashTable.nchain;
ArrayRef<Elf_Word> Buckets = HashTable.buckets();
ArrayRef<Elf_Word> Chains = HashTable.chains();
size_t TotalSyms = 0;
// If hash table is correct, we have at least chains with 0 length
size_t MaxChain = 1;
size_t CumulativeNonZero = 0;
if (NChain == 0 || NBucket == 0)
return;
std::vector<size_t> ChainLen(NBucket, 0);
// Go over all buckets and and note chain lengths of each bucket (total
// unique chain lengths).
for (size_t B = 0; B < NBucket; B++) {
BitVector Visited(NChain);
for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
if (C == ELF::STN_UNDEF)
break;
if (Visited[C]) {
this->reportUniqueWarning(".hash section is invalid: bucket " +
Twine(C) +
": a cycle was detected in the linked chain");
break;
}
Visited[C] = true;
if (MaxChain <= ++ChainLen[B])
MaxChain++;
}
TotalSyms += ChainLen[B];
}
if (!TotalSyms)
return;
std::vector<size_t> Count(MaxChain, 0);
// Count how long is the chain for each bucket
for (size_t B = 0; B < NBucket; B++)
++Count[ChainLen[B]];
// Print Number of buckets with each chain lengths and their cumulative
// coverage of the symbols
OS << "Histogram for bucket list length (total of " << NBucket
<< " buckets)\n"
<< " Length Number % of total Coverage\n";
for (size_t I = 0; I < MaxChain; I++) {
CumulativeNonZero += Count[I] * I;
OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
(Count[I] * 100.0) / NBucket,
(CumulativeNonZero * 100.0) / TotalSyms);
}
}
template <class ELFT>
void GNUELFDumper<ELFT>::printGnuHashHistogram(
const Elf_GnuHash &GnuHashTable) {
Expected<ArrayRef<Elf_Word>> ChainsOrErr =
getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
if (!ChainsOrErr) {
this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
toString(ChainsOrErr.takeError()));
return;
}
ArrayRef<Elf_Word> Chains = *ChainsOrErr;
size_t Symndx = GnuHashTable.symndx;
size_t TotalSyms = 0;
size_t MaxChain = 1;
size_t CumulativeNonZero = 0;
size_t NBucket = GnuHashTable.nbuckets;
if (Chains.empty() || NBucket == 0)
return;
ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
std::vector<size_t> ChainLen(NBucket, 0);
for (size_t B = 0; B < NBucket; B++) {
if (!Buckets[B])
continue;
size_t Len = 1;
for (size_t C = Buckets[B] - Symndx;
C < Chains.size() && (Chains[C] & 1) == 0; C++)
if (MaxChain < ++Len)
MaxChain++;
ChainLen[B] = Len;
TotalSyms += Len;
}
MaxChain++;
if (!TotalSyms)
return;
std::vector<size_t> Count(MaxChain, 0);
for (size_t B = 0; B < NBucket; B++)
++Count[ChainLen[B]];
// Print Number of buckets with each chain lengths and their cumulative
// coverage of the symbols
OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
<< " buckets)\n"
<< " Length Number % of total Coverage\n";
for (size_t I = 0; I < MaxChain; I++) {
CumulativeNonZero += Count[I] * I;
OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
(Count[I] * 100.0) / NBucket,
(CumulativeNonZero * 100.0) / TotalSyms);
}
}
// Hash histogram shows statistics of how efficient the hash was for the
// dynamic symbol table. The table shows the number of hash buckets for
// different lengths of chains as an absolute number and percentage of the total
// buckets, and the cumulative coverage of symbols for each set of buckets.
template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
// Print histogram for the .hash section.
if (this->HashTable) {
if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
this->reportUniqueWarning(std::move(E));
else
printHashHistogram(*this->HashTable);
}
// Print histogram for the .gnu.hash section.
if (this->GnuHashTable) {
if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
this->reportUniqueWarning(std::move(E));
else
printGnuHashHistogram(*this->GnuHashTable);
}
}
template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
OS << "GNUStyle::printCGProfile not implemented\n";
}
template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
OS << "GNUStyle::printBBAddrMaps not implemented\n";
}
static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
std::vector<uint64_t> Ret;
const uint8_t *Cur = Data.begin();
const uint8_t *End = Data.end();
while (Cur != End) {
unsigned Size;
const char *Err;
Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
if (Err)
return createError(Err);
Cur += Size;
}
return Ret;
}
template <class ELFT>
static Expected<std::vector<uint64_t>>
decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
if (!ContentsOrErr)
return ContentsOrErr.takeError();
if (Expected<std::vector<uint64_t>> SymsOrErr =
toULEB128Array(*ContentsOrErr))
return *SymsOrErr;
else
return createError("unable to decode " + describe(Obj, Sec) + ": " +
toString(SymsOrErr.takeError()));
}
template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
if (!this->DotAddrsigSec)
return;
Expected<std::vector<uint64_t>> SymsOrErr =
decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
if (!SymsOrErr) {
this->reportUniqueWarning(SymsOrErr.takeError());
return;
}
StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
OS << "\nAddress-significant symbols section '" << Name << "'"
<< " contains " << SymsOrErr->size() << " entries:\n";
OS << " Num: Name\n";
Field Fields[2] = {0, 8};
size_t SymIndex = 0;
for (uint64_t Sym : *SymsOrErr) {
Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
Fields[1].Str = this->getStaticSymbolName(Sym);
for (const Field &Entry : Fields)
printField(Entry);
OS << "\n";
}
}
template <typename ELFT>
static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
ArrayRef<uint8_t> Data) {
std::string str;
raw_string_ostream OS(str);
uint32_t PrData;
auto DumpBit = [&](uint32_t Flag, StringRef Name) {
if (PrData & Flag) {
PrData &= ~Flag;
OS << Name;
if (PrData)
OS << ", ";
}
};
switch (Type) {
default:
OS << format("<application-specific type 0x%x>", Type);
return OS.str();
case GNU_PROPERTY_STACK_SIZE: {
OS << "stack size: ";
if (DataSize == sizeof(typename ELFT::uint))
OS << formatv("{0:x}",
(uint64_t)(*(const typename ELFT::Addr *)Data.data()));
else
OS << format("<corrupt length: 0x%x>", DataSize);
return OS.str();
}
case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
OS << "no copy on protected";
if (DataSize)
OS << format(" <corrupt length: 0x%x>", DataSize);
return OS.str();
case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
case GNU_PROPERTY_X86_FEATURE_1_AND:
OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
: "x86 feature: ");
if (DataSize != 4) {
OS << format("<corrupt length: 0x%x>", DataSize);
return OS.str();
}
PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
if (PrData == 0) {
OS << "<None>";
return OS.str();
}
if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
} else {
DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
}
if (PrData)
OS << format("<unknown flags: 0x%x>", PrData);
return OS.str();
case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
case GNU_PROPERTY_X86_FEATURE_2_USED:
OS << "x86 feature "
<< (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
if (DataSize != 4) {
OS << format("<corrupt length: 0x%x>", DataSize);
return OS.str();
}
PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
if (PrData == 0) {
OS << "<None>";
return OS.str();
}
DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
if (PrData)
OS << format("<unknown flags: 0x%x>", PrData);
return OS.str();
case GNU_PROPERTY_X86_ISA_1_NEEDED:
case GNU_PROPERTY_X86_ISA_1_USED:
OS << "x86 ISA "
<< (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
if (DataSize != 4) {
OS << format("<corrupt length: 0x%x>", DataSize);
return OS.str();
}
PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
if (PrData == 0) {
OS << "<None>";
return OS.str();
}
DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
if (PrData)
OS << format("<unknown flags: 0x%x>", PrData);
return OS.str();
}
}
template <typename ELFT>
static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
using Elf_Word = typename ELFT::Word;
SmallVector<std::string, 4> Properties;
while (Arr.size() >= 8) {
uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
Arr = Arr.drop_front(8);
// Take padding size into account if present.
uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
std::string str;
raw_string_ostream OS(str);
if (Arr.size() < PaddedSize) {
OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
Properties.push_back(OS.str());
break;
}
Properties.push_back(
getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
Arr = Arr.drop_front(PaddedSize);
}
if (!Arr.empty())
Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
return Properties;
}
struct GNUAbiTag {
std::string OSName;
std::string ABI;
bool IsValid;
};
template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
typedef typename ELFT::Word Elf_Word;
ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
reinterpret_cast<const Elf_Word *>(Desc.end()));
if (Words.size() < 4)
return {"", "", /*IsValid=*/false};
static const char *OSNames[] = {
"Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
};
StringRef OSName = "Unknown";
if (Words[0] < array_lengthof(OSNames))
OSName = OSNames[Words[0]];
uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
std::string str;
raw_string_ostream ABI(str);
ABI << Major << "." << Minor << "." << Patch;
return {std::string(OSName), ABI.str(), /*IsValid=*/true};
}
static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
std::string str;
raw_string_ostream OS(str);
for (uint8_t B : Desc)
OS << format_hex_no_prefix(B, 2);
return OS.str();
}
static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
}
template <typename ELFT>
static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
ArrayRef<uint8_t> Desc) {
// Return true if we were able to pretty-print the note, false otherwise.
switch (NoteType) {
default:
return false;
case ELF::NT_GNU_ABI_TAG: {
const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
if (!AbiTag.IsValid)
OS << " <corrupt GNU_ABI_TAG>";
else
OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
break;
}
case ELF::NT_GNU_BUILD_ID: {
OS << " Build ID: " << getGNUBuildId(Desc);
break;
}
case ELF::NT_GNU_GOLD_VERSION:
OS << " Version: " << getDescAsStringRef(Desc);
break;
case ELF::NT_GNU_PROPERTY_TYPE_0:
OS << " Properties:";
for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
OS << " " << Property << "\n";
break;
}
OS << '\n';
return true;
}
template <typename ELFT>
static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
ArrayRef<uint8_t> Desc) {
switch (NoteType) {
default:
return false;
case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
OS << " Version: " << getDescAsStringRef(Desc);
break;
case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
OS << " Producer: " << getDescAsStringRef(Desc);
break;
case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
OS << " Producer version: " << getDescAsStringRef(Desc);
break;
}
OS << '\n';
return true;
}
const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
{"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
{"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
{"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
{"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
{"LA48", NT_FREEBSD_FCTL_LA48},
{"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
};
struct FreeBSDNote {
std::string Type;
std::string Value;
};
template <typename ELFT>
static Optional<FreeBSDNote>
getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
if (IsCore)
return None; // No pretty-printing yet.
switch (NoteType) {
case ELF::NT_FREEBSD_ABI_TAG:
if (Desc.size() != 4)
return None;
return FreeBSDNote{
"ABI tag",
utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
case ELF::NT_FREEBSD_ARCH_TAG:
return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
case ELF::NT_FREEBSD_FEATURE_CTL: {
if (Desc.size() != 4)
return None;
unsigned Value =
support::endian::read32<ELFT::TargetEndianness>(Desc.data());
std::string FlagsStr;
raw_string_ostream OS(FlagsStr);
printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
if (OS.str().empty())
OS << "0x" << utohexstr(Value);
else
OS << "(0x" << utohexstr(Value) << ")";
return FreeBSDNote{"Feature flags", OS.str()};
}
default:
return None;
}
}
struct AMDNote {
std::string Type;
std::string Value;
};
template <typename ELFT>
static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
switch (NoteType) {
default:
return {"", ""};
case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
struct CodeObjectVersion {
uint32_t MajorVersion;
uint32_t MinorVersion;
};
if (Desc.size() != sizeof(CodeObjectVersion))
return {"AMD HSA Code Object Version",
"Invalid AMD HSA Code Object Version"};
std::string VersionString;
raw_string_ostream StrOS(VersionString);
auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
StrOS << "[Major: " << Version->MajorVersion
<< ", Minor: " << Version->MinorVersion << "]";
return {"AMD HSA Code Object Version", VersionString};
}
case ELF::NT_AMD_HSA_HSAIL: {
struct HSAILProperties {
uint32_t HSAILMajorVersion;
uint32_t HSAILMinorVersion;
uint8_t Profile;
uint8_t MachineModel;
uint8_t DefaultFloatRound;
};
if (Desc.size() != sizeof(HSAILProperties))
return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
std::string HSAILPropetiesString;
raw_string_ostream StrOS(HSAILPropetiesString);
StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
<< ", HSAIL Minor: " << Properties->HSAILMinorVersion
<< ", Profile: " << uint32_t(Properties->Profile)
<< ", Machine Model: " << uint32_t(Properties->MachineModel)
<< ", Default Float Round: "
<< uint32_t(Properties->DefaultFloatRound) << "]";
return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
}
case ELF::NT_AMD_HSA_ISA_VERSION: {
struct IsaVersion {
uint16_t VendorNameSize;
uint16_t ArchitectureNameSize;
uint32_t Major;
uint32_t Minor;
uint32_t Stepping;
};
if (Desc.size() < sizeof(IsaVersion))
return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
if (Desc.size() < sizeof(IsaVersion) +
Isa->VendorNameSize + Isa->ArchitectureNameSize ||
Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
std::string IsaString;
raw_string_ostream StrOS(IsaString);
StrOS << "[Vendor: "
<< StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
<< ", Architecture: "
<< StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
Isa->ArchitectureNameSize - 1)
<< ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
<< ", Stepping: " << Isa->Stepping << "]";
return {"AMD HSA ISA Version", IsaString};
}
case ELF::NT_AMD_HSA_METADATA: {
if (Desc.size() == 0)
return {"AMD HSA Metadata", ""};
return {
"AMD HSA Metadata",
std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
}
case ELF::NT_AMD_HSA_ISA_NAME: {
if (Desc.size() == 0)
return {"AMD HSA ISA Name", ""};
return {
"AMD HSA ISA Name",
std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
}
case ELF::NT_AMD_PAL_METADATA: {
struct PALMetadata {
uint32_t Key;
uint32_t Value;
};
if (Desc.size() % sizeof(PALMetadata) != 0)
return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
std::string MetadataString;
raw_string_ostream StrOS(MetadataString);
for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
}
return {"AMD PAL Metadata", MetadataString};
}
}
}
struct AMDGPUNote {
std::string Type;
std::string Value;
};
template <typename ELFT>
static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
switch (NoteType) {
default:
return {"", ""};
case ELF::NT_AMDGPU_METADATA: {
StringRef MsgPackString =
StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
msgpack::Document MsgPackDoc;
if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
return {"", ""};
AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
std::string MetadataString;
if (!Verifier.verify(MsgPackDoc.getRoot()))
MetadataString = "Invalid AMDGPU Metadata\n";
raw_string_ostream StrOS(MetadataString);
if (MsgPackDoc.getRoot().isScalar()) {
// TODO: passing a scalar root to toYAML() asserts:
// (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
// "plain scalar documents are not supported")
// To avoid this crash we print the raw data instead.
return {"", ""};
}
MsgPackDoc.toYAML(StrOS);
return {"AMDGPU Metadata", StrOS.str()};
}
}
}
struct CoreFileMapping {
uint64_t Start, End, Offset;
StringRef Filename;
};
struct CoreNote {
uint64_t PageSize;
std::vector<CoreFileMapping> Mappings;
};
static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
// Expected format of the NT_FILE note description:
// 1. # of file mappings (call it N)
// 2. Page size
// 3. N (start, end, offset) triples
// 4. N packed filenames (null delimited)
// Each field is an Elf_Addr, except for filenames which are char* strings.
CoreNote Ret;
const int Bytes = Desc.getAddressSize();
if (!Desc.isValidOffsetForAddress(2))
return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
" is too short, expected at least 0x" +
Twine::utohexstr(Bytes * 2));
if (Desc.getData().back() != 0)
return createError("the note is not NUL terminated");
uint64_t DescOffset = 0;
uint64_t FileCount = Desc.getAddress(&DescOffset);
Ret.PageSize = Desc.getAddress(&DescOffset);
if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
return createError("unable to read file mappings (found " +
Twine(FileCount) + "): the note of size 0x" +
Twine::utohexstr(Desc.size()) + " is too short");
uint64_t FilenamesOffset = 0;
DataExtractor Filenames(
Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
Desc.isLittleEndian(), Desc.getAddressSize());
Ret.Mappings.resize(FileCount);
size_t I = 0;
for (CoreFileMapping &Mapping : Ret.Mappings) {
++I;
if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
return createError(
"unable to read the file name for the mapping with index " +
Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
" is truncated");
Mapping.Start = Desc.getAddress(&DescOffset);
Mapping.End = Desc.getAddress(&DescOffset);
Mapping.Offset = Desc.getAddress(&DescOffset);
Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
}
return Ret;
}
template <typename ELFT>
static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
// Length of "0x<address>" string.
const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
OS << " " << right_justify("Start", FieldWidth) << " "
<< right_justify("End", FieldWidth) << " "
<< right_justify("Page Offset", FieldWidth) << '\n';
for (const CoreFileMapping &Mapping : Note.Mappings) {
OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
<< format_hex(Mapping.End, FieldWidth) << " "
<< format_hex(Mapping.Offset, FieldWidth) << "\n "
<< Mapping.Filename << '\n';
}
}
const NoteType GenericNoteTypes[] = {
{ELF::NT_VERSION, "NT_VERSION (version)"},
{ELF::NT_ARCH, "NT_ARCH (architecture)"},
{ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
{ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
};
const NoteType GNUNoteTypes[] = {
{ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
{ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
{ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
{ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
{ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
};
const NoteType FreeBSDCoreNoteTypes[] = {
{ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
{ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
{ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
{ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
{ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
{ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
{ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
{ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
{ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
"NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
{ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
};
const NoteType FreeBSDNoteTypes[] = {
{ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
{ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
{ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
{ELF::NT_FREEBSD_FEATURE_CTL,
"NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
};
const NoteType NetBSDCoreNoteTypes[] = {
{ELF::NT_NETBSDCORE_PROCINFO,
"NT_NETBSDCORE_PROCINFO (procinfo structure)"},
{ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
{ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
};
const NoteType OpenBSDCoreNoteTypes[] = {
{ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
{ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
{ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
{ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
{ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
};
const NoteType AMDNoteTypes[] = {
{ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
"NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
{ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
{ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
{ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
{ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
{ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
};
const NoteType AMDGPUNoteTypes[] = {
{ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
};
const NoteType LLVMOMPOFFLOADNoteTypes[] = {
{ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
"NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
{ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
"NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
{ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
"NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
};
const NoteType CoreNoteTypes[] = {
{ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
{ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
{ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
{ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
{ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
{ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
{ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
{ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
{ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
{ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
{ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
{ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
{ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
{ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
{ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
{ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
{ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
{ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
{ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
{ELF::NT_PPC_TM_CFPR,
"NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
{ELF::NT_PPC_TM_CVMX,
"NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
{ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
{ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
{ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
{ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
{ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
{ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
{ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
{ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
{ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
{ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
{ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
{ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
{ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
{ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
{ELF::NT_S390_LAST_BREAK,
"NT_S390_LAST_BREAK (s390 last breaking event address)"},
{ELF::NT_S390_SYSTEM_CALL,
"NT_S390_SYSTEM_CALL (s390 system call restart data)"},
{ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
{ELF::NT_S390_VXRS_LOW,
"NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
{ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
{ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
{ELF::NT_S390_GS_BC,
"NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
{ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
{ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
{ELF::NT_ARM_HW_BREAK,
"NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
{ELF::NT_ARM_HW_WATCH,
"NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
{ELF::NT_FILE, "NT_FILE (mapped files)"},
{ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
{ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
};
template <class ELFT>
StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
uint32_t Type = Note.getType();
auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
for (const NoteType &N : V)
if (N.ID == Type)
return N.Name;
return "";
};
StringRef Name = Note.getName();
if (Name == "GNU")
return FindNote(GNUNoteTypes);
if (Name == "FreeBSD") {
if (ELFType == ELF::ET_CORE) {
// FreeBSD also places the generic core notes in the FreeBSD namespace.
StringRef Result = FindNote(FreeBSDCoreNoteTypes);
if (!Result.empty())
return Result;
return FindNote(CoreNoteTypes);
} else {
return FindNote(FreeBSDNoteTypes);
}
}
if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
StringRef Result = FindNote(NetBSDCoreNoteTypes);
if (!Result.empty())
return Result;
return FindNote(CoreNoteTypes);
}
if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
// OpenBSD also places the generic core notes in the OpenBSD namespace.
StringRef Result = FindNote(OpenBSDCoreNoteTypes);
if (!Result.empty())
return Result;
return FindNote(CoreNoteTypes);
}
if (Name == "AMD")
return FindNote(AMDNoteTypes);
if (Name == "AMDGPU")
return FindNote(AMDGPUNoteTypes);
if (Name == "LLVMOMPOFFLOAD")
return FindNote(LLVMOMPOFFLOADNoteTypes);
if (ELFType == ELF::ET_CORE)
return FindNote(CoreNoteTypes);
return FindNote(GenericNoteTypes);
}
template <class ELFT>
static void printNotesHelper(
const ELFDumper<ELFT> &Dumper,
llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
typename ELFT::Addr)>
StartNotesFn,
llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
llvm::function_ref<void()> FinishNotesFn) {
const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
if (!IsCoreFile && !Sections.empty()) {
for (const typename ELFT::Shdr &S : Sections) {
if (S.sh_type != SHT_NOTE)
continue;
StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
S.sh_size);
Error Err = Error::success();
size_t I = 0;
for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
if (Error E = ProcessNoteFn(Note, IsCoreFile))
Dumper.reportUniqueWarning(
"unable to read note with index " + Twine(I) + " from the " +
describe(Obj, S) + ": " + toString(std::move(E)));
++I;
}
if (Err)
Dumper.reportUniqueWarning("unable to read notes from the " +
describe(Obj, S) + ": " +
toString(std::move(Err)));
FinishNotesFn();
}
return;
}
Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
if (!PhdrsOrErr) {
Dumper.reportUniqueWarning(
"unable to read program headers to locate the PT_NOTE segment: " +
toString(PhdrsOrErr.takeError()));
return;
}
for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
if (P.p_type != PT_NOTE)
continue;
StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
Error Err = Error::success();
size_t Index = 0;
for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
if (Error E = ProcessNoteFn(Note, IsCoreFile))
Dumper.reportUniqueWarning("unable to read note with index " +
Twine(Index) +
" from the PT_NOTE segment with index " +
Twine(I) + ": " + toString(std::move(E)));
++Index;
}
if (Err)
Dumper.reportUniqueWarning(
"unable to read notes from the PT_NOTE segment with index " +
Twine(I) + ": " + toString(std::move(Err)));
FinishNotesFn();
}
}
template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
bool IsFirstHeader = true;
auto PrintHeader = [&](Optional<StringRef> SecName,
const typename ELFT::Off Offset,
const typename ELFT::Addr Size) {
// Print a newline between notes sections to match GNU readelf.
if (!IsFirstHeader) {
OS << '\n';
} else {
IsFirstHeader = false;
}
OS << "Displaying notes found ";
if (SecName)
OS << "in: " << *SecName << "\n";
else
OS << "at file offset " << format_hex(Offset, 10) << " with length "
<< format_hex(Size, 10) << ":\n";
OS << " Owner Data size \tDescription\n";
};
auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
StringRef Name = Note.getName();
ArrayRef<uint8_t> Descriptor = Note.getDesc();
Elf_Word Type = Note.getType();
// Print the note owner/type.
OS << " " << left_justify(Name, 20) << ' '
<< format_hex(Descriptor.size(), 10) << '\t';
StringRef NoteType =
getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
if (!NoteType.empty())
OS << NoteType << '\n';
else
OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
// Print the description, or fallback to printing raw bytes for unknown
// owners/if we fail to pretty-print the contents.
if (Name == "GNU") {
if (printGNUNote<ELFT>(OS, Type, Descriptor))
return Error::success();
} else if (Name == "FreeBSD") {
if (Optional<FreeBSDNote> N =
getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
OS << " " << N->Type << ": " << N->Value << '\n';
return Error::success();
}
} else if (Name == "AMD") {
const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
if (!N.Type.empty()) {
OS << " " << N.Type << ":\n " << N.Value << '\n';
return Error::success();
}
} else if (Name == "AMDGPU") {
const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
if (!N.Type.empty()) {
OS << " " << N.Type << ":\n " << N.Value << '\n';
return Error::success();
}
} else if (Name == "LLVMOMPOFFLOAD") {
if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
return Error::success();
} else if (Name == "CORE") {
if (Type == ELF::NT_FILE) {
DataExtractor DescExtractor(Descriptor,
ELFT::TargetEndianness == support::little,
sizeof(Elf_Addr));
if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
printCoreNote<ELFT>(OS, *NoteOrErr);
return Error::success();
} else {
return NoteOrErr.takeError();
}
}
}
if (!Descriptor.empty()) {
OS << " description data:";
for (uint8_t B : Descriptor)
OS << " " << format("%02x", B);
OS << '\n';
}
return Error::success();
};
printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
}
template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
OS << "printELFLinkerOptions not implemented!\n";
}
template <class ELFT>
void ELFDumper<ELFT>::printDependentLibsHelper(
function_ref<void(const Elf_Shdr &)> OnSectionStart,
function_ref<void(StringRef, uint64_t)> OnLibEntry) {
auto Warn = [this](unsigned SecNdx, StringRef Msg) {
this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
Twine(SecNdx) + " is broken: " + Msg);
};
unsigned I = -1;
for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
++I;
if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
continue;
OnSectionStart(Shdr);
Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
if (!ContentsOrErr) {
Warn(I, toString(ContentsOrErr.takeError()));
continue;
}
ArrayRef<uint8_t> Contents = *ContentsOrErr;
if (!Contents.empty() && Contents.back() != 0) {
Warn(I, "the content is not null-terminated");
continue;
}
for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
StringRef Lib((const char *)I);
OnLibEntry(Lib, I - Contents.begin());
I += Lib.size() + 1;
}
}
}
template <class ELFT>
void ELFDumper<ELFT>::forEachRelocationDo(
const Elf_Shdr &Sec, bool RawRelr,
llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
const Elf_Shdr &, const Elf_Shdr *)>
RelRelaFn,
llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
auto Warn = [&](Error &&E,
const Twine &Prefix = "unable to read relocations from") {
this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
toString(std::move(E)));
};
// SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
// For them we should not treat the value of the sh_link field as an index of
// a symbol table.
const Elf_Shdr *SymTab;
if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
if (!SymTabOrErr) {
Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
return;
}
SymTab = *SymTabOrErr;
}
unsigned RelNdx = 0;
const bool IsMips64EL = this->Obj.isMips64EL();
switch (Sec.sh_type) {
case ELF::SHT_REL:
if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
for (const Elf_Rel &R : *RangeOrErr)
RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
} else {
Warn(RangeOrErr.takeError());
}
break;
case ELF::SHT_RELA:
if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
for (const Elf_Rela &R : *RangeOrErr)
RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
} else {
Warn(RangeOrErr.takeError());
}
break;
case ELF::SHT_RELR:
case ELF::SHT_ANDROID_RELR: {
Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
if (!RangeOrErr) {
Warn(RangeOrErr.takeError());
break;
}
if (RawRelr) {
for (const Elf_Relr &R : *RangeOrErr)
RelrFn(R);
break;
}
for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
/*SymTab=*/nullptr);
break;
}
case ELF::SHT_ANDROID_REL:
case ELF::SHT_ANDROID_RELA:
if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
for (const Elf_Rela &R : *RelasOrErr)
RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
} else {
Warn(RelasOrErr.takeError());
}
break;
}
}
template <class ELFT>
StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
StringRef Name = "<?>";
if (Expected<StringRef> SecNameOrErr =
Obj.getSectionName(Sec, this->WarningHandler))
Name = *SecNameOrErr;
else
this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
": " + toString(SecNameOrErr.takeError()));
return Name;
}
template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
bool SectionStarted = false;
struct NameOffset {
StringRef Name;
uint64_t Offset;
};
std::vector<NameOffset> SecEntries;
NameOffset Current;
auto PrintSection = [&]() {
OS << "Dependent libraries section " << Current.Name << " at offset "
<< format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
<< " entries:\n";
for (NameOffset Entry : SecEntries)
OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name
<< "\n";
OS << "\n";
SecEntries.clear();
};
auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
if (SectionStarted)
PrintSection();
SectionStarted = true;
Current.Offset = Shdr.sh_offset;
Current.Name = this->getPrintableSectionName(Shdr);
};
auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
SecEntries.push_back(NameOffset{Lib, Offset});
};
this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
if (SectionStarted)
PrintSection();
}
template <class ELFT>
SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) {
SmallVector<uint32_t> SymbolIndexes;
if (!this->AddressToIndexMap.hasValue()) {
// Populate the address to index map upon the first invocation of this
// function.
this->AddressToIndexMap.emplace();
if (this->DotSymtabSec) {
if (Expected<Elf_Sym_Range> SymsOrError =
Obj.symbols(this->DotSymtabSec)) {
uint32_t Index = (uint32_t)-1;
for (const Elf_Sym &Sym : *SymsOrError) {
++Index;
if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
continue;
Expected<uint64_t> SymAddrOrErr =
ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
if (!SymAddrOrErr) {
std::string Name = this->getStaticSymbolName(Index);
reportUniqueWarning("unable to get address of symbol '" + Name +
"': " + toString(SymAddrOrErr.takeError()));
return SymbolIndexes;
}
(*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
}
} else {
reportUniqueWarning("unable to read the symbol table: " +
toString(SymsOrError.takeError()));
}
}
}
auto Symbols = this->AddressToIndexMap->find(SymValue);
if (Symbols == this->AddressToIndexMap->end())
return SymbolIndexes;
for (uint32_t Index : Symbols->second) {
// Check if the symbol is in the right section. FunctionSec == None
// means "any section".
if (FunctionSec) {
const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
if (Expected<const Elf_Shdr *> SecOrErr =
Obj.getSection(Sym, this->DotSymtabSec,
this->getShndxTable(this->DotSymtabSec))) {
if (*FunctionSec != *SecOrErr)
continue;
} else {
std::string Name = this->getStaticSymbolName(Index);
// Note: it is impossible to trigger this error currently, it is
// untested.
reportUniqueWarning("unable to get section of symbol '" + Name +
"': " + toString(SecOrErr.takeError()));
return SymbolIndexes;
}
}
SymbolIndexes.push_back(Index);
}
return SymbolIndexes;
}
template <class ELFT>
bool ELFDumper<ELFT>::printFunctionStackSize(
uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
SmallVector<uint32_t> FuncSymIndexes =
this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
if (FuncSymIndexes.empty())
reportUniqueWarning(
"could not identify function symbol for stack size entry in " +
describe(StackSizeSec));
// Extract the size. The expectation is that Offset is pointing to the right
// place, i.e. past the function address.
Error Err = Error::success();
uint64_t StackSize = Data.getULEB128(Offset, &Err);
if (Err) {
reportUniqueWarning("could not extract a valid stack size from " +
describe(StackSizeSec) + ": " +
toString(std::move(Err)));
return false;
}
if (FuncSymIndexes.empty()) {
printStackSizeEntry(StackSize, {"?"});
} else {
SmallVector<std::string> FuncSymNames;
for (uint32_t Index : FuncSymIndexes)
FuncSymNames.push_back(this->getStaticSymbolName(Index));
printStackSizeEntry(StackSize, FuncSymNames);
}
return true;
}
template <class ELFT>
void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
ArrayRef<std::string> FuncNames) {
OS.PadToColumn(2);
OS << format_decimal(Size, 11);
OS.PadToColumn(18);
OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
}
template <class ELFT>
void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
const Elf_Shdr &RelocSec, unsigned Ndx,
const Elf_Shdr *SymTab,
const Elf_Shdr *FunctionSec,
const Elf_Shdr &StackSizeSec,
const RelocationResolver &Resolver,
DataExtractor Data) {
// This function ignores potentially erroneous input, unless it is directly
// related to stack size reporting.
const Elf_Sym *Sym = nullptr;
Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
if (!TargetOrErr)
reportUniqueWarning("unable to get the target of relocation with index " +
Twine(Ndx) + " in " + describe(RelocSec) + ": " +
toString(TargetOrErr.takeError()));
else
Sym = TargetOrErr->Sym;
uint64_t RelocSymValue = 0;
if (Sym) {
Expected<const Elf_Shdr *> SectionOrErr =
this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
if (!SectionOrErr) {
reportUniqueWarning(
"cannot identify the section for relocation symbol '" +
(*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
} else if (*SectionOrErr != FunctionSec) {
reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
"' is not in the expected section");
// Pretend that the symbol is in the correct section and report its
// stack size anyway.
FunctionSec = *SectionOrErr;
}
RelocSymValue = Sym->st_value;
}
uint64_t Offset = R.Offset;
if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
reportUniqueWarning("found invalid relocation offset (0x" +
Twine::utohexstr(Offset) + ") into " +
describe(StackSizeSec) +
" while trying to extract a stack size entry");
return;
}
uint64_t SymValue =
Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset),
R.Addend.getValueOr(0));
this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
&Offset);
}
template <class ELFT>
void ELFDumper<ELFT>::printNonRelocatableStackSizes(
std::function<void()> PrintHeader) {
// This function ignores potentially erroneous input, unless it is directly
// related to stack size reporting.
for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
if (this->getPrintableSectionName(Sec) != ".stack_sizes")
continue;
PrintHeader();
ArrayRef<uint8_t> Contents =
unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
uint64_t Offset = 0;
while (Offset < Contents.size()) {
// The function address is followed by a ULEB representing the stack
// size. Check for an extra byte before we try to process the entry.
if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
reportUniqueWarning(
describe(Sec) +
" ended while trying to extract a stack size entry");
break;
}
uint64_t SymValue = Data.getAddress(&Offset);
if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
&Offset))
break;
}
}
}
template <class ELFT>
void ELFDumper<ELFT>::getSectionAndRelocations(
std::function<bool(const Elf_Shdr &)> IsMatch,
llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
if (IsMatch(Sec))
if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
.second)
continue;
if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
continue;
Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
if (!RelSecOrErr) {
reportUniqueWarning(describe(Sec) +
": failed to get a relocated section: " +
toString(RelSecOrErr.takeError()));
continue;
}
const Elf_Shdr *ContentsSec = *RelSecOrErr;
if (IsMatch(*ContentsSec))
SecToRelocMap[ContentsSec] = &Sec;
}
}
template <class ELFT>
void ELFDumper<ELFT>::printRelocatableStackSizes(
std::function<void()> PrintHeader) {
// Build a map between stack size sections and their corresponding relocation
// sections.
llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
StringRef SectionName;
if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
SectionName = *NameOrErr;
else
consumeError(NameOrErr.takeError());
return SectionName == ".stack_sizes";
};
getSectionAndRelocations(IsMatch, StackSizeRelocMap);
for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
PrintHeader();
const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
// Warn about stack size sections without a relocation section.
if (!RelocSec) {
reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
") does not have a corresponding "
"relocation section"),
FileName);
continue;
}
// A .stack_sizes section header's sh_link field is supposed to point
// to the section that contains the functions whose stack sizes are
// described in it.
const Elf_Shdr *FunctionSec = unwrapOrError(
this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
SupportsRelocation IsSupportedFn;
RelocationResolver Resolver;
std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
ArrayRef<uint8_t> Contents =
unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
forEachRelocationDo(
*RelocSec, /*RawRelr=*/false,
[&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
const Elf_Shdr *SymTab) {
if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
reportUniqueWarning(
describe(*RelocSec) +
" contains an unsupported relocation with index " + Twine(Ndx) +
": " + Obj.getRelocationTypeName(R.Type));
return;
}
this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
*StackSizesELFSec, Resolver, Data);
},
[](const Elf_Relr &) {
llvm_unreachable("can't get here, because we only support "
"SHT_REL/SHT_RELA sections");
});
}
}
template <class ELFT>
void GNUELFDumper<ELFT>::printStackSizes() {
bool HeaderHasBeenPrinted = false;
auto PrintHeader = [&]() {
if (HeaderHasBeenPrinted)
return;
OS << "\nStack Sizes:\n";
OS.PadToColumn(9);
OS << "Size";
OS.PadToColumn(18);
OS << "Functions\n";
HeaderHasBeenPrinted = true;
};
// For non-relocatable objects, look directly for sections whose name starts
// with .stack_sizes and process the contents.
if (this->Obj.getHeader().e_type == ELF::ET_REL)
this->printRelocatableStackSizes(PrintHeader);
else
this->printNonRelocatableStackSizes(PrintHeader);
}
template <class ELFT>
void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
size_t Bias = ELFT::Is64Bits ? 8 : 0;
auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
OS.PadToColumn(2);
OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
OS.PadToColumn(11 + Bias);
OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
OS.PadToColumn(22 + Bias);
OS << format_hex_no_prefix(*E, 8 + Bias);
OS.PadToColumn(31 + 2 * Bias);
OS << Purpose << "\n";
};
OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
OS << " Canonical gp value: "
<< format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
OS << " Reserved entries:\n";
if (ELFT::Is64Bits)
OS << " Address Access Initial Purpose\n";
else
OS << " Address Access Initial Purpose\n";
PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
if (Parser.getGotModulePointer())
PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
if (!Parser.getLocalEntries().empty()) {
OS << "\n";
OS << " Local entries:\n";
if (ELFT::Is64Bits)
OS << " Address Access Initial\n";
else
OS << " Address Access Initial\n";
for (auto &E : Parser.getLocalEntries())
PrintEntry(&E, "");
}
if (Parser.IsStatic)
return;
if (!Parser.getGlobalEntries().empty()) {
OS << "\n";
OS << " Global entries:\n";
if (ELFT::Is64Bits)
OS << " Address Access Initial Sym.Val."
<< " Type Ndx Name\n";
else
OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
DataRegion<Elf_Word> ShndxTable(
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
for (auto &E : Parser.getGlobalEntries()) {
const Elf_Sym &Sym = *Parser.getGotSym(&E);
const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
std::string SymName = this->getFullSymbolName(
Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
OS.PadToColumn(2);
OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
OS.PadToColumn(11 + Bias);
OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
OS.PadToColumn(22 + Bias);
OS << to_string(format_hex_no_prefix(E, 8 + Bias));
OS.PadToColumn(31 + 2 * Bias);
OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
OS.PadToColumn(40 + 3 * Bias);
OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
OS.PadToColumn(48 + 3 * Bias);
OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
ShndxTable);
OS.PadToColumn(52 + 3 * Bias);
OS << SymName << "\n";
}
}
if (!Parser.getOtherEntries().empty())
OS << "\n Number of TLS and multi-GOT entries "
<< Parser.getOtherEntries().size() << "\n";
}
template <class ELFT>
void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
size_t Bias = ELFT::Is64Bits ? 8 : 0;
auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
OS.PadToColumn(2);
OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
OS.PadToColumn(11 + Bias);
OS << format_hex_no_prefix(*E, 8 + Bias);
OS.PadToColumn(20 + 2 * Bias);
OS << Purpose << "\n";
};
OS << "PLT GOT:\n\n";
OS << " Reserved entries:\n";
OS << " Address Initial Purpose\n";
PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
if (Parser.getPltModulePointer())
PrintEntry(Parser.getPltModulePointer(), "Module pointer");
if (!Parser.getPltEntries().empty()) {
OS << "\n";
OS << " Entries:\n";
OS << " Address Initial Sym.Val. Type Ndx Name\n";
DataRegion<Elf_Word> ShndxTable(
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
for (auto &E : Parser.getPltEntries()) {
const Elf_Sym &Sym = *Parser.getPltSym(&E);
const Elf_Sym &FirstSym = *cantFail(
this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
std::string SymName = this->getFullSymbolName(
Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
OS.PadToColumn(2);
OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
OS.PadToColumn(11 + Bias);
OS << to_string(format_hex_no_prefix(E, 8 + Bias));
OS.PadToColumn(20 + 2 * Bias);
OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
OS.PadToColumn(29 + 3 * Bias);
OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
OS.PadToColumn(37 + 3 * Bias);
OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
ShndxTable);
OS.PadToColumn(41 + 3 * Bias);
OS << SymName << "\n";
}
}
}
template <class ELFT>
Expected<const Elf_Mips_ABIFlags<ELFT> *>
getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
if (Sec == nullptr)
return nullptr;
constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
Expected<ArrayRef<uint8_t>> DataOrErr =
Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
if (!DataOrErr)
return createError(ErrPrefix + toString(DataOrErr.takeError()));
if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
return createError(ErrPrefix + "it has a wrong size (" +
Twine(DataOrErr->size()) + ")");
return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
}
template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
getMipsAbiFlagsSection(*this))
Flags = *SecOrErr;
else
this->reportUniqueWarning(SecOrErr.takeError());
if (!Flags)
return;
OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
OS << "ISA: MIPS" << int(Flags->isa_level);
if (Flags->isa_rev > 1)
OS << "r" << int(Flags->isa_rev);
OS << "\n";
OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
OS << "FP ABI: "
<< enumToString(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) << "\n";
OS << "ISA Extension: "
<< enumToString(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
if (Flags->ases == 0)
OS << "ASEs: None\n";
else
// FIXME: Print each flag on a separate line.
OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
<< "\n";
OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
OS << "\n";
}
template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
const Elf_Ehdr &E = this->Obj.getHeader();
{
DictScope D(W, "ElfHeader");
{
DictScope D(W, "Ident");
W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
makeArrayRef(ElfDataEncoding));
W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
auto OSABI = makeArrayRef(ElfOSABI);
if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
switch (E.e_machine) {
case ELF::EM_AMDGPU:
OSABI = makeArrayRef(AMDGPUElfOSABI);
break;
case ELF::EM_ARM:
OSABI = makeArrayRef(ARMElfOSABI);
break;
case ELF::EM_TI_C6000:
OSABI = makeArrayRef(C6000ElfOSABI);
break;
}
}
W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
}
std::string TypeStr;
if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
TypeStr = Ent->Name.str();
} else {
if (E.e_type >= ET_LOPROC)
TypeStr = "Processor Specific";
else if (E.e_type >= ET_LOOS)
TypeStr = "OS Specific";
else
TypeStr = "Unknown";
}
W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")");
W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
W.printNumber("Version", E.e_version);
W.printHex("Entry", E.e_entry);
W.printHex("ProgramHeaderOffset", E.e_phoff);
W.printHex("SectionHeaderOffset", E.e_shoff);
if (E.e_machine == EM_MIPS)
W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
unsigned(ELF::EF_MIPS_MACH));
else if (E.e_machine == EM_AMDGPU) {
switch (E.e_ident[ELF::EI_ABIVERSION]) {
default:
W.printHex("Flags", E.e_flags);
break;
case 0:
// ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
LLVM_FALLTHROUGH;
case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
W.printFlags("Flags", E.e_flags,
makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
unsigned(ELF::EF_AMDGPU_MACH));
break;
case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
W.printFlags("Flags", E.e_flags,
makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
unsigned(ELF::EF_AMDGPU_MACH),
unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
break;
}
} else if (E.e_machine == EM_RISCV)
W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
else if (E.e_machine == EM_AVR)
W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
unsigned(ELF::EF_AVR_ARCH_MASK));
else
W.printFlags("Flags", E.e_flags);
W.printNumber("HeaderSize", E.e_ehsize);
W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
W.printNumber("ProgramHeaderCount", E.e_phnum);
W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
W.printString("SectionHeaderCount",
getSectionHeadersNumString(this->Obj, this->FileName));
W.printString("StringTableSectionIndex",
getSectionHeaderTableIndexString(this->Obj, this->FileName));
}
}
template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
DictScope Lists(W, "Groups");
std::vector<GroupSection> V = this->getGroups();
DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
for (const GroupSection &G : V) {
DictScope D(W, "Group");
W.printNumber("Name", G.Name, G.ShName);
W.printNumber("Index", G.Index);
W.printNumber("Link", G.Link);
W.printNumber("Info", G.Info);
W.printHex("Type", getGroupType(G.Type), G.Type);
W.startLine() << "Signature: " << G.Signature << "\n";
ListScope L(W, "Section(s) in group");
for (const GroupMember &GM : G.Members) {
const GroupSection *MainGroup = Map[GM.Index];
if (MainGroup != &G)
this->reportUniqueWarning(
"section with index " + Twine(GM.Index) +
", included in the group section with index " +
Twine(MainGroup->Index) +
", was also found in the group section with index " +
Twine(G.Index));
W.startLine() << GM.Name << " (" << GM.Index << ")\n";
}
}
if (V.empty())
W.startLine() << "There are no group sections in the file.\n";
}
template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
ListScope D(W, "Relocations");
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
if (!isRelocationSec<ELFT>(Sec))
continue;
StringRef Name = this->getPrintableSectionName(Sec);
unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
W.indent();
this->printRelocationsHelper(Sec);
W.unindent();
W.startLine() << "}\n";
}
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
W.startLine() << W.hex(R) << "\n";
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
const RelSymbol<ELFT> &RelSym) {
StringRef SymbolName = RelSym.Name;
SmallString<32> RelocName;
this->Obj.getRelocationTypeName(R.Type, RelocName);
if (opts::ExpandRelocs) {
DictScope Group(W, "Relocation");
W.printHex("Offset", R.Offset);
W.printNumber("Type", RelocName, R.Type);
W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
if (R.Addend)
W.printHex("Addend", (uintX_t)*R.Addend);
} else {
raw_ostream &OS = W.startLine();
OS << W.hex(R.Offset) << " " << RelocName << " "
<< (!SymbolName.empty() ? SymbolName : "-");
if (R.Addend)
OS << " " << W.hex((uintX_t)*R.Addend);
OS << "\n";
}
}
template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
ListScope SectionsD(W, "Sections");
int SectionIndex = -1;
std::vector<EnumEntry<unsigned>> FlagsList =
getSectionFlagsForTarget(this->Obj.getHeader().e_machine);
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
DictScope SectionD(W, "Section");
W.printNumber("Index", ++SectionIndex);
W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
W.printHex("Type",
object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
Sec.sh_type),
Sec.sh_type);
W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
W.printHex("Address", Sec.sh_addr);
W.printHex("Offset", Sec.sh_offset);
W.printNumber("Size", Sec.sh_size);
W.printNumber("Link", Sec.sh_link);
W.printNumber("Info", Sec.sh_info);
W.printNumber("AddressAlignment", Sec.sh_addralign);
W.printNumber("EntrySize", Sec.sh_entsize);
if (opts::SectionRelocations) {
ListScope D(W, "Relocations");
this->printRelocationsHelper(Sec);
}
if (opts::SectionSymbols) {
ListScope D(W, "Symbols");
if (this->DotSymtabSec) {
StringRef StrTable = unwrapOrError(
this->FileName,
this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
typename ELFT::SymRange Symbols = unwrapOrError(
this->FileName, this->Obj.symbols(this->DotSymtabSec));
for (const Elf_Sym &Sym : Symbols) {
const Elf_Shdr *SymSec = unwrapOrError(
this->FileName,
this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
if (SymSec == &Sec)
printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
false);
}
}
}
if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
ArrayRef<uint8_t> Data =
unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
W.printBinaryBlock(
"SectionData",
StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
}
}
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printSymbolSection(
const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable) const {
auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
if (Symbol.isUndefined())
return StringRef("Undefined");
if (Symbol.isProcessorSpecific())
return StringRef("Processor Specific");
if (Symbol.isOSSpecific())
return StringRef("Operating System Specific");
if (Symbol.isAbsolute())
return StringRef("Absolute");
if (Symbol.isCommon())
return StringRef("Common");
if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
return StringRef("Reserved");
return None;
};
if (Optional<StringRef> Type = GetSectionSpecialType()) {
W.printHex("Section", *Type, Symbol.st_shndx);
return;
}
Expected<unsigned> SectionIndex =
this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
if (!SectionIndex) {
assert(Symbol.st_shndx == SHN_XINDEX &&
"getSymbolSectionIndex should only fail due to an invalid "
"SHT_SYMTAB_SHNDX table/reference");
this->reportUniqueWarning(SectionIndex.takeError());
W.printHex("Section", "Reserved", SHN_XINDEX);
return;
}
Expected<StringRef> SectionName =
this->getSymbolSectionName(Symbol, *SectionIndex);
if (!SectionName) {
// Don't report an invalid section name if the section headers are missing.
// In such situations, all sections will be "invalid".
if (!this->ObjF.sections().empty())
this->reportUniqueWarning(SectionName.takeError());
else
consumeError(SectionName.takeError());
W.printHex("Section", "<?>", *SectionIndex);
} else {
W.printHex("Section", *SectionName, *SectionIndex);
}
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
DataRegion<Elf_Word> ShndxTable,
Optional<StringRef> StrTable,
bool IsDynamic,
bool /*NonVisibilityBitsUsed*/) const {
std::string FullSymbolName = this->getFullSymbolName(
Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
unsigned char SymbolType = Symbol.getType();
DictScope D(W, "Symbol");
W.printNumber("Name", FullSymbolName, Symbol.st_name);
W.printHex("Value", Symbol.st_value);
W.printNumber("Size", Symbol.st_size);
W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
else
W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
if (Symbol.st_other == 0)
// Usually st_other flag is zero. Do not pollute the output
// by flags enumeration in that case.
W.printNumber("Other", 0);
else {
std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
std::end(ElfSymOtherFlags));
if (this->Obj.getHeader().e_machine == EM_MIPS) {
// Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
// flag overlapped with other ST_MIPS_xxx flags. So consider both
// cases separately.
if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
SymOtherFlags.insert(SymOtherFlags.end(),
std::begin(ElfMips16SymOtherFlags),
std::end(ElfMips16SymOtherFlags));
else
SymOtherFlags.insert(SymOtherFlags.end(),
std::begin(ElfMipsSymOtherFlags),
std::end(ElfMipsSymOtherFlags));
} else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
SymOtherFlags.insert(SymOtherFlags.end(),
std::begin(ElfAArch64SymOtherFlags),
std::end(ElfAArch64SymOtherFlags));
} else if (this->Obj.getHeader().e_machine == EM_RISCV) {
SymOtherFlags.insert(SymOtherFlags.end(),
std::begin(ElfRISCVSymOtherFlags),
std::end(ElfRISCVSymOtherFlags));
}
W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
}
printSymbolSection(Symbol, SymIndex, ShndxTable);
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
bool PrintDynamicSymbols) {
if (PrintSymbols) {
ListScope Group(W, "Symbols");
this->printSymbolsHelper(false);
}
if (PrintDynamicSymbols) {
ListScope Group(W, "DynamicSymbols");
this->printSymbolsHelper(true);
}
}
template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
Elf_Dyn_Range Table = this->dynamic_table();
if (Table.empty())
return;
W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
// The "Name/Value" column should be indented from the "Type" column by N
// spaces, where N = MaxTagSize - length of "Type" (4) + trailing
// space (1) = -3.
W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
<< "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
for (auto Entry : Table) {
uintX_t Tag = Entry.getTag();
std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
<< " "
<< format(ValueFmt.c_str(),
this->Obj.getDynamicTagAsString(Tag).c_str())
<< Value << "\n";
}
W.startLine() << "]\n";
}
template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
W.startLine() << "Dynamic Relocations {\n";
W.indent();
this->printDynamicRelocationsHelper();
W.unindent();
W.startLine() << "}\n";
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printProgramHeaders(
bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
if (PrintProgramHeaders)
printProgramHeaders();
if (PrintSectionMapping == cl::BOU_TRUE)
printSectionMapping();
}
template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
ListScope L(W, "ProgramHeaders");
Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
if (!PhdrsOrErr) {
this->reportUniqueWarning("unable to dump program headers: " +
toString(PhdrsOrErr.takeError()));
return;
}
for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
DictScope P(W, "ProgramHeader");
StringRef Type =
segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
W.printHex("Offset", Phdr.p_offset);
W.printHex("VirtualAddress", Phdr.p_vaddr);
W.printHex("PhysicalAddress", Phdr.p_paddr);
W.printNumber("FileSize", Phdr.p_filesz);
W.printNumber("MemSize", Phdr.p_memsz);
W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
W.printNumber("Alignment", Phdr.p_align);
}
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
ListScope SS(W, "VersionSymbols");
if (!Sec)
return;
StringRef StrTable;
ArrayRef<Elf_Sym> Syms;
const Elf_Shdr *SymTabSec;
Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
if (!VerTableOrErr) {
this->reportUniqueWarning(VerTableOrErr.takeError());
return;
}
if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
return;
ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
for (size_t I = 0, E = Syms.size(); I < E; ++I) {
DictScope S(W, "Symbol");
W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
W.printString("Name",
this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
/*IsDynamic=*/true));
}
}
const EnumEntry<unsigned> SymVersionFlags[] = {
{"Base", "BASE", VER_FLG_BASE},
{"Weak", "WEAK", VER_FLG_WEAK},
{"Info", "INFO", VER_FLG_INFO}};
template <class ELFT>
void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
ListScope SD(W, "VersionDefinitions");
if (!Sec)
return;
Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
if (!V) {
this->reportUniqueWarning(V.takeError());
return;
}
for (const VerDef &D : *V) {
DictScope Def(W, "Definition");
W.printNumber("Version", D.Version);
W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
W.printNumber("Index", D.Ndx);
W.printNumber("Hash", D.Hash);
W.printString("Name", D.Name.c_str());
W.printList(
"Predecessors", D.AuxV,
[](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
}
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
ListScope SD(W, "VersionRequirements");
if (!Sec)
return;
Expected<std::vector<VerNeed>> V =
this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
if (!V) {
this->reportUniqueWarning(V.takeError());
return;
}
for (const VerNeed &VN : *V) {
DictScope Entry(W, "Dependency");
W.printNumber("Version", VN.Version);
W.printNumber("Count", VN.Cnt);
W.printString("FileName", VN.File.c_str());
ListScope L(W, "Entries");
for (const VernAux &Aux : VN.AuxV) {
DictScope Entry(W, "Entry");
W.printNumber("Hash", Aux.Hash);
W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
W.printNumber("Index", Aux.Other);
W.printString("Name", Aux.Name.c_str());
}
}
}
template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
W.startLine() << "Hash Histogram not implemented!\n";
}
// Returns true if rel/rela section exists, and populates SymbolIndices.
// Otherwise returns false.
template <class ELFT>
static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
const ELFFile<ELFT> &Obj,
const LLVMELFDumper<ELFT> *Dumper,
SmallVector<uint32_t, 128> &SymbolIndices) {
if (!CGRelSection) {
Dumper->reportUniqueWarning(
"relocation section for a call graph section doesn't exist");
return false;
}
if (CGRelSection->sh_type == SHT_REL) {
typename ELFT::RelRange CGProfileRel;
Expected<typename ELFT::RelRange> CGProfileRelOrError =
Obj.rels(*CGRelSection);
if (!CGProfileRelOrError) {
Dumper->reportUniqueWarning("unable to load relocations for "
"SHT_LLVM_CALL_GRAPH_PROFILE section: " +
toString(CGProfileRelOrError.takeError()));
return false;
}
CGProfileRel = *CGProfileRelOrError;
for (const typename ELFT::Rel &Rel : CGProfileRel)
SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
} else {
// MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
// the format to SHT_RELA
// (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
typename ELFT::RelaRange CGProfileRela;
Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
Obj.relas(*CGRelSection);
if (!CGProfileRelaOrError) {
Dumper->reportUniqueWarning("unable to load relocations for "
"SHT_LLVM_CALL_GRAPH_PROFILE section: " +
toString(CGProfileRelaOrError.takeError()));
return false;
}
CGProfileRela = *CGProfileRelaOrError;
for (const typename ELFT::Rela &Rela : CGProfileRela)
SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
}
return true;
}
template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
};
this->getSectionAndRelocations(IsMatch, SecToRelocMap);
for (const auto &CGMapEntry : SecToRelocMap) {
const Elf_Shdr *CGSection = CGMapEntry.first;
const Elf_Shdr *CGRelSection = CGMapEntry.second;
Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
if (!CGProfileOrErr) {
this->reportUniqueWarning(
"unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
toString(CGProfileOrErr.takeError()));
return;
}
SmallVector<uint32_t, 128> SymbolIndices;
bool UseReloc =
getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
this->reportUniqueWarning(
"number of from/to pairs does not match number of frequencies");
UseReloc = false;
}
ListScope L(W, "CGProfile");
for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
DictScope D(W, "CGProfileEntry");
if (UseReloc) {
uint32_t From = SymbolIndices[I * 2];
uint32_t To = SymbolIndices[I * 2 + 1];
W.printNumber("From", this->getStaticSymbolName(From), From);
W.printNumber("To", this->getStaticSymbolName(To), To);
}
W.printNumber("Weight", CGPE.cgp_weight);
}
}
}
template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP)
continue;
Optional<const Elf_Shdr *> FunctionSec = None;
if (IsRelocatable)
FunctionSec =
unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
ListScope L(W, "BBAddrMap");
Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
this->Obj.decodeBBAddrMap(Sec);
if (!BBAddrMapOrErr) {
this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
toString(BBAddrMapOrErr.takeError()));
continue;
}
for (const BBAddrMap &AM : *BBAddrMapOrErr) {
DictScope D(W, "Function");
W.printHex("At", AM.Addr);
SmallVector<uint32_t> FuncSymIndex =
this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
std::string FuncName = "<?>";
if (FuncSymIndex.empty())
this->reportUniqueWarning(
"could not identify function symbol for address (0x" +
Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
else
FuncName = this->getStaticSymbolName(FuncSymIndex.front());
W.printString("Name", FuncName);
ListScope L(W, "BB entries");
for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
DictScope L(W);
W.printHex("Offset", BBE.Offset);
W.printHex("Size", BBE.Size);
W.printBoolean("HasReturn", BBE.HasReturn);
W.printBoolean("HasTailCall", BBE.HasTailCall);
W.printBoolean("IsEHPad", BBE.IsEHPad);
W.printBoolean("CanFallThrough", BBE.CanFallThrough);
}
}
}
}
template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
ListScope L(W, "Addrsig");
if (!this->DotAddrsigSec)
return;
Expected<std::vector<uint64_t>> SymsOrErr =
decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
if (!SymsOrErr) {
this->reportUniqueWarning(SymsOrErr.takeError());
return;
}
for (uint64_t Sym : *SymsOrErr)
W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
}
template <typename ELFT>
static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
ScopedPrinter &W) {
// Return true if we were able to pretty-print the note, false otherwise.
switch (NoteType) {
default:
return false;
case ELF::NT_GNU_ABI_TAG: {
const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
if (!AbiTag.IsValid) {
W.printString("ABI", "<corrupt GNU_ABI_TAG>");
return false;
} else {
W.printString("OS", AbiTag.OSName);
W.printString("ABI", AbiTag.ABI);
}
break;
}
case ELF::NT_GNU_BUILD_ID: {
W.printString("Build ID", getGNUBuildId(Desc));
break;
}
case ELF::NT_GNU_GOLD_VERSION:
W.printString("Version", getDescAsStringRef(Desc));
break;
case ELF::NT_GNU_PROPERTY_TYPE_0:
ListScope D(W, "Property");
for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
W.printString(Property);
break;
}
return true;
}
template <typename ELFT>
static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
ArrayRef<uint8_t> Desc,
ScopedPrinter &W) {
switch (NoteType) {
default:
return false;
case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
W.printString("Version", getDescAsStringRef(Desc));
break;
case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
W.printString("Producer", getDescAsStringRef(Desc));
break;
case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
W.printString("Producer version", getDescAsStringRef(Desc));
break;
}
return true;
}
static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
W.printNumber("Page Size", Note.PageSize);
for (const CoreFileMapping &Mapping : Note.Mappings) {
ListScope D(W, "Mapping");
W.printHex("Start", Mapping.Start);
W.printHex("End", Mapping.End);
W.printHex("Offset", Mapping.Offset);
W.printString("Filename", Mapping.Filename);
}
}
template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
ListScope L(W, "Notes");
std::unique_ptr<DictScope> NoteScope;
auto StartNotes = [&](Optional<StringRef> SecName,
const typename ELFT::Off Offset,
const typename ELFT::Addr Size) {
NoteScope = std::make_unique<DictScope>(W, "NoteSection");
W.printString("Name", SecName ? *SecName : "<?>");
W.printHex("Offset", Offset);
W.printHex("Size", Size);
};
auto EndNotes = [&] { NoteScope.reset(); };
auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
DictScope D2(W, "Note");
StringRef Name = Note.getName();
ArrayRef<uint8_t> Descriptor = Note.getDesc();
Elf_Word Type = Note.getType();
// Print the note owner/type.
W.printString("Owner", Name);
W.printHex("Data size", Descriptor.size());
StringRef NoteType =
getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
if (!NoteType.empty())
W.printString("Type", NoteType);
else
W.printString("Type",
"Unknown (" + to_string(format_hex(Type, 10)) + ")");
// Print the description, or fallback to printing raw bytes for unknown
// owners/if we fail to pretty-print the contents.
if (Name == "GNU") {
if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
return Error::success();
} else if (Name == "FreeBSD") {
if (Optional<FreeBSDNote> N =
getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
W.printString(N->Type, N->Value);
return Error::success();
}
} else if (Name == "AMD") {
const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
if (!N.Type.empty()) {
W.printString(N.Type, N.Value);
return Error::success();
}
} else if (Name == "AMDGPU") {
const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
if (!N.Type.empty()) {
W.printString(N.Type, N.Value);
return Error::success();
}
} else if (Name == "LLVMOMPOFFLOAD") {
if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
return Error::success();
} else if (Name == "CORE") {
if (Type == ELF::NT_FILE) {
DataExtractor DescExtractor(Descriptor,
ELFT::TargetEndianness == support::little,
sizeof(Elf_Addr));
if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
printCoreNoteLLVMStyle(*N, W);
return Error::success();
} else {
return N.takeError();
}
}
}
if (!Descriptor.empty()) {
W.printBinaryBlock("Description data", Descriptor);
}
return Error::success();
};
printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
}
template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
ListScope L(W, "LinkerOptions");
unsigned I = -1;
for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
++I;
if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
continue;
Expected<ArrayRef<uint8_t>> ContentsOrErr =
this->Obj.getSectionContents(Shdr);
if (!ContentsOrErr) {
this->reportUniqueWarning("unable to read the content of the "
"SHT_LLVM_LINKER_OPTIONS section: " +
toString(ContentsOrErr.takeError()));
continue;
}
if (ContentsOrErr->empty())
continue;
if (ContentsOrErr->back() != 0) {
this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
Twine(I) +
" is broken: the "
"content is not null-terminated");
continue;
}
SmallVector<StringRef, 16> Strings;
toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
if (Strings.size() % 2 != 0) {
this->reportUniqueWarning(
"SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
" is broken: an incomplete "
"key-value pair was found. The last possible key was: \"" +
Strings.back() + "\"");
continue;
}
for (size_t I = 0; I < Strings.size(); I += 2)
W.printString(Strings[I], Strings[I + 1]);
}
}
template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
ListScope L(W, "DependentLibs");
this->printDependentLibsHelper(
[](const Elf_Shdr &) {},
[this](StringRef Lib, uint64_t) { W.printString(Lib); });
}
template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
ListScope L(W, "StackSizes");
if (this->Obj.getHeader().e_type == ELF::ET_REL)
this->printRelocatableStackSizes([]() {});
else
this->printNonRelocatableStackSizes([]() {});
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
ArrayRef<std::string> FuncNames) {
DictScope D(W, "Entry");
W.printList("Functions", FuncNames);
W.printHex("Size", Size);
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
auto PrintEntry = [&](const Elf_Addr *E) {
W.printHex("Address", Parser.getGotAddress(E));
W.printNumber("Access", Parser.getGotOffset(E));
W.printHex("Initial", *E);
};
DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
W.printHex("Canonical gp value", Parser.getGp());
{
ListScope RS(W, "Reserved entries");
{
DictScope D(W, "Entry");
PrintEntry(Parser.getGotLazyResolver());
W.printString("Purpose", StringRef("Lazy resolver"));
}
if (Parser.getGotModulePointer()) {
DictScope D(W, "Entry");
PrintEntry(Parser.getGotModulePointer());
W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
}
}
{
ListScope LS(W, "Local entries");
for (auto &E : Parser.getLocalEntries()) {
DictScope D(W, "Entry");
PrintEntry(&E);
}
}
if (Parser.IsStatic)
return;
{
ListScope GS(W, "Global entries");
for (auto &E : Parser.getGlobalEntries()) {
DictScope D(W, "Entry");
PrintEntry(&E);
const Elf_Sym &Sym = *Parser.getGotSym(&E);
W.printHex("Value", Sym.st_value);
W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
DataRegion<Elf_Word> ShndxTable(
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
printSymbolSection(Sym, SymIndex, ShndxTable);
std::string SymName = this->getFullSymbolName(
Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
W.printNumber("Name", SymName, Sym.st_name);
}
}
W.printNumber("Number of TLS and multi-GOT entries",
uint64_t(Parser.getOtherEntries().size()));
}
template <class ELFT>
void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
auto PrintEntry = [&](const Elf_Addr *E) {
W.printHex("Address", Parser.getPltAddress(E));
W.printHex("Initial", *E);
};
DictScope GS(W, "PLT GOT");
{
ListScope RS(W, "Reserved entries");
{
DictScope D(W, "Entry");
PrintEntry(Parser.getPltLazyResolver());
W.printString("Purpose", StringRef("PLT lazy resolver"));
}
if (auto E = Parser.getPltModulePointer()) {
DictScope D(W, "Entry");
PrintEntry(E);
W.printString("Purpose", StringRef("Module pointer"));
}
}
{
ListScope LS(W, "Entries");
DataRegion<Elf_Word> ShndxTable(
(const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
for (auto &E : Parser.getPltEntries()) {
DictScope D(W, "Entry");
PrintEntry(&E);
const Elf_Sym &Sym = *Parser.getPltSym(&E);
W.printHex("Value", Sym.st_value);
W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
ShndxTable);
const Elf_Sym *FirstSym = cantFail(
this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
std::string SymName = this->getFullSymbolName(
Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
W.printNumber("Name", SymName, Sym.st_name);
}
}
}
template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
const Elf_Mips_ABIFlags<ELFT> *Flags;
if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
getMipsAbiFlagsSection(*this)) {
Flags = *SecOrErr;
if (!Flags) {
W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
return;
}
} else {
this->reportUniqueWarning(SecOrErr.takeError());
return;
}
raw_ostream &OS = W.getOStream();
DictScope GS(W, "MIPS ABI Flags");
W.printNumber("Version", Flags->version);
W.startLine() << "ISA: ";
if (Flags->isa_rev <= 1)
OS << format("MIPS%u", Flags->isa_level);
else
OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
OS << "\n";
W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
W.printHex("Flags 2", Flags->flags2);
}
template <class ELFT>
void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
ArrayRef<std::string> InputFilenames,
const Archive *A) {
FileScope = std::make_unique<DictScope>(this->W, FileStr);
DictScope D(this->W, "FileSummary");
this->W.printString("File", FileStr);
this->W.printString("Format", Obj.getFileFormatName());
this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
this->W.printString(
"AddressSize",
std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
this->printLoadName();
}