forked from OSchip/llvm-project
300 lines
12 KiB
C++
300 lines
12 KiB
C++
//===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// A single header library providing an utility class to break up an array of
|
|
// bytes. Whenever run on the same input, provides the same output, as long as
|
|
// its methods are called in the same order, with the same arguments.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
|
|
#define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
|
|
|
|
#include <algorithm>
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <initializer_list>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
// In addition to the comments below, the API is also briefly documented at
|
|
// https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider
|
|
class FuzzedDataProvider {
|
|
public:
|
|
// |data| is an array of length |size| that the FuzzedDataProvider wraps to
|
|
// provide more granular access. |data| must outlive the FuzzedDataProvider.
|
|
FuzzedDataProvider(const uint8_t *data, size_t size)
|
|
: data_ptr_(data), remaining_bytes_(size) {}
|
|
~FuzzedDataProvider() = default;
|
|
|
|
// Returns a std::vector containing |num_bytes| of input data. If fewer than
|
|
// |num_bytes| of data remain, returns a shorter std::vector containing all
|
|
// of the data that's left. Can be used with any byte sized type, such as
|
|
// char, unsigned char, uint8_t, etc.
|
|
template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes) {
|
|
num_bytes = std::min(num_bytes, remaining_bytes_);
|
|
return ConsumeBytes<T>(num_bytes, num_bytes);
|
|
}
|
|
|
|
// Similar to |ConsumeBytes|, but also appends the terminator value at the end
|
|
// of the resulting vector. Useful, when a mutable null-terminated C-string is
|
|
// needed, for example. But that is a rare case. Better avoid it, if possible,
|
|
// and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods.
|
|
template <typename T>
|
|
std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes,
|
|
T terminator = 0) {
|
|
num_bytes = std::min(num_bytes, remaining_bytes_);
|
|
std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes);
|
|
result.back() = terminator;
|
|
return result;
|
|
}
|
|
|
|
// Returns a std::string containing |num_bytes| of input data. Using this and
|
|
// |.c_str()| on the resulting string is the best way to get an immutable
|
|
// null-terminated C string. If fewer than |num_bytes| of data remain, returns
|
|
// a shorter std::string containing all of the data that's left.
|
|
std::string ConsumeBytesAsString(size_t num_bytes) {
|
|
static_assert(sizeof(std::string::value_type) == sizeof(uint8_t),
|
|
"ConsumeBytesAsString cannot convert the data to a string.");
|
|
|
|
num_bytes = std::min(num_bytes, remaining_bytes_);
|
|
std::string result(
|
|
reinterpret_cast<const std::string::value_type *>(data_ptr_),
|
|
num_bytes);
|
|
Advance(num_bytes);
|
|
return result;
|
|
}
|
|
|
|
// Returns a number in the range [min, max] by consuming bytes from the
|
|
// input data. The value might not be uniformly distributed in the given
|
|
// range. If there's no input data left, always returns |min|. |min| must
|
|
// be less than or equal to |max|.
|
|
template <typename T> T ConsumeIntegralInRange(T min, T max) {
|
|
static_assert(std::is_integral<T>::value, "An integral type is required.");
|
|
static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type.");
|
|
|
|
if (min > max)
|
|
abort();
|
|
|
|
// Use the biggest type possible to hold the range and the result.
|
|
uint64_t range = static_cast<uint64_t>(max) - min;
|
|
uint64_t result = 0;
|
|
size_t offset = 0;
|
|
|
|
while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
|
|
remaining_bytes_ != 0) {
|
|
// Pull bytes off the end of the seed data. Experimentally, this seems to
|
|
// allow the fuzzer to more easily explore the input space. This makes
|
|
// sense, since it works by modifying inputs that caused new code to run,
|
|
// and this data is often used to encode length of data read by
|
|
// |ConsumeBytes|. Separating out read lengths makes it easier modify the
|
|
// contents of the data that is actually read.
|
|
--remaining_bytes_;
|
|
result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
|
|
offset += CHAR_BIT;
|
|
}
|
|
|
|
// Avoid division by 0, in case |range + 1| results in overflow.
|
|
if (range != std::numeric_limits<decltype(range)>::max())
|
|
result = result % (range + 1);
|
|
|
|
return static_cast<T>(min + result);
|
|
}
|
|
|
|
// Returns a std::string of length from 0 to |max_length|. When it runs out of
|
|
// input data, returns what remains of the input. Designed to be more stable
|
|
// with respect to a fuzzer inserting characters than just picking a random
|
|
// length and then consuming that many bytes with |ConsumeBytes|.
|
|
std::string ConsumeRandomLengthString(size_t max_length) {
|
|
// Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
|
|
// followed by anything else to the end of the string. As a result of this
|
|
// logic, a fuzzer can insert characters into the string, and the string
|
|
// will be lengthened to include those new characters, resulting in a more
|
|
// stable fuzzer than picking the length of a string independently from
|
|
// picking its contents.
|
|
std::string result;
|
|
|
|
// Reserve the anticipated capaticity to prevent several reallocations.
|
|
result.reserve(std::min(max_length, remaining_bytes_));
|
|
for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) {
|
|
char next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
|
|
Advance(1);
|
|
if (next == '\\' && remaining_bytes_ != 0) {
|
|
next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
|
|
Advance(1);
|
|
if (next != '\\')
|
|
break;
|
|
}
|
|
result += next;
|
|
}
|
|
|
|
result.shrink_to_fit();
|
|
return result;
|
|
}
|
|
|
|
// Returns a std::vector containing all remaining bytes of the input data.
|
|
template <typename T> std::vector<T> ConsumeRemainingBytes() {
|
|
return ConsumeBytes<T>(remaining_bytes_);
|
|
}
|
|
|
|
// Returns a std::string containing all remaining bytes of the input data.
|
|
// Prefer using |ConsumeRemainingBytes| unless you actually need a std::string
|
|
// object.
|
|
std::string ConsumeRemainingBytesAsString() {
|
|
return ConsumeBytesAsString(remaining_bytes_);
|
|
}
|
|
|
|
// Returns a number in the range [Type's min, Type's max]. The value might
|
|
// not be uniformly distributed in the given range. If there's no input data
|
|
// left, always returns |min|.
|
|
template <typename T> T ConsumeIntegral() {
|
|
return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
|
|
std::numeric_limits<T>::max());
|
|
}
|
|
|
|
// Reads one byte and returns a bool, or false when no data remains.
|
|
bool ConsumeBool() { return 1 & ConsumeIntegral<uint8_t>(); }
|
|
|
|
// Returns a copy of the value selected from the given fixed-size |array|.
|
|
template <typename T, size_t size>
|
|
T PickValueInArray(const T (&array)[size]) {
|
|
static_assert(size > 0, "The array must be non empty.");
|
|
return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
|
|
}
|
|
|
|
template <typename T>
|
|
T PickValueInArray(std::initializer_list<const T> list) {
|
|
// TODO(Dor1s): switch to static_assert once C++14 is allowed.
|
|
if (!list.size())
|
|
abort();
|
|
|
|
return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1));
|
|
}
|
|
|
|
// Returns an enum value. The enum must start at 0 and be contiguous. It must
|
|
// also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
|
|
// enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
|
|
template <typename T> T ConsumeEnum() {
|
|
static_assert(std::is_enum<T>::value, "|T| must be an enum type.");
|
|
return static_cast<T>(ConsumeIntegralInRange<uint32_t>(
|
|
0, static_cast<uint32_t>(T::kMaxValue)));
|
|
}
|
|
|
|
// Returns a floating point number in the range [0.0, 1.0]. If there's no
|
|
// input data left, always returns 0.
|
|
template <typename T> T ConsumeProbability() {
|
|
static_assert(std::is_floating_point<T>::value,
|
|
"A floating point type is required.");
|
|
|
|
// Use different integral types for different floating point types in order
|
|
// to provide better density of the resulting values.
|
|
using IntegralType =
|
|
typename std::conditional<sizeof(T) <= sizeof(uint32_t), uint32_t,
|
|
uint64_t>::type;
|
|
|
|
T result = static_cast<T>(ConsumeIntegral<IntegralType>());
|
|
result /= static_cast<T>(std::numeric_limits<IntegralType>::max());
|
|
return result;
|
|
}
|
|
|
|
// Returns a floating point value in the range [Type's lowest, Type's max] by
|
|
// consuming bytes from the input data. If there's no input data left, always
|
|
// returns approximately 0.
|
|
template <typename T> T ConsumeFloatingPoint() {
|
|
return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(),
|
|
std::numeric_limits<T>::max());
|
|
}
|
|
|
|
// Returns a floating point value in the given range by consuming bytes from
|
|
// the input data. If there's no input data left, returns |min|. Note that
|
|
// |min| must be less than or equal to |max|.
|
|
template <typename T> T ConsumeFloatingPointInRange(T min, T max) {
|
|
if (min > max)
|
|
abort();
|
|
|
|
T range = .0;
|
|
T result = min;
|
|
constexpr T zero(.0);
|
|
if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) {
|
|
// The diff |max - min| would overflow the given floating point type. Use
|
|
// the half of the diff as the range and consume a bool to decide whether
|
|
// the result is in the first of the second part of the diff.
|
|
range = (max / 2.0) - (min / 2.0);
|
|
if (ConsumeBool()) {
|
|
result += range;
|
|
}
|
|
} else {
|
|
range = max - min;
|
|
}
|
|
|
|
return result + range * ConsumeProbability<T>();
|
|
}
|
|
|
|
// Reports the remaining bytes available for fuzzed input.
|
|
size_t remaining_bytes() { return remaining_bytes_; }
|
|
|
|
private:
|
|
FuzzedDataProvider(const FuzzedDataProvider &) = delete;
|
|
FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete;
|
|
|
|
void Advance(size_t num_bytes) {
|
|
if (num_bytes > remaining_bytes_)
|
|
abort();
|
|
|
|
data_ptr_ += num_bytes;
|
|
remaining_bytes_ -= num_bytes;
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<T> ConsumeBytes(size_t size, size_t num_bytes_to_consume) {
|
|
static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type.");
|
|
|
|
// The point of using the size-based constructor below is to increase the
|
|
// odds of having a vector object with capacity being equal to the length.
|
|
// That part is always implementation specific, but at least both libc++ and
|
|
// libstdc++ allocate the requested number of bytes in that constructor,
|
|
// which seems to be a natural choice for other implementations as well.
|
|
// To increase the odds even more, we also call |shrink_to_fit| below.
|
|
std::vector<T> result(size);
|
|
std::memcpy(result.data(), data_ptr_, num_bytes_to_consume);
|
|
Advance(num_bytes_to_consume);
|
|
|
|
// Even though |shrink_to_fit| is also implementation specific, we expect it
|
|
// to provide an additional assurance in case vector's constructor allocated
|
|
// a buffer which is larger than the actual amount of data we put inside it.
|
|
result.shrink_to_fit();
|
|
return result;
|
|
}
|
|
|
|
template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value) {
|
|
static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types.");
|
|
static_assert(!std::numeric_limits<TU>::is_signed,
|
|
"Source type must be unsigned.");
|
|
|
|
// TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream.
|
|
if (std::numeric_limits<TS>::is_modulo)
|
|
return static_cast<TS>(value);
|
|
|
|
// Avoid using implementation-defined unsigned to signer conversions.
|
|
// To learn more, see https://stackoverflow.com/questions/13150449.
|
|
if (value <= std::numeric_limits<TS>::max())
|
|
return static_cast<TS>(value);
|
|
else {
|
|
constexpr auto TS_min = std::numeric_limits<TS>::min();
|
|
return TS_min + static_cast<char>(value - TS_min);
|
|
}
|
|
}
|
|
|
|
const uint8_t *data_ptr_;
|
|
size_t remaining_bytes_;
|
|
};
|
|
|
|
#endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
|