forked from OSchip/llvm-project
356 lines
12 KiB
C++
356 lines
12 KiB
C++
//===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the pass which inserts x86 AVX vzeroupper instructions
|
|
// before calls to SSE encoded functions. This avoids transition latency
|
|
// penalty when transferring control between AVX encoded instructions and old
|
|
// SSE encoding mode.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-vzeroupper"
|
|
|
|
static cl::opt<bool>
|
|
UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
|
|
cl::desc("Minimize AVX to SSE transition penalty"),
|
|
cl::init(true));
|
|
|
|
STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
|
|
|
|
namespace {
|
|
|
|
class VZeroUpperInserter : public MachineFunctionPass {
|
|
public:
|
|
VZeroUpperInserter() : MachineFunctionPass(ID) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
StringRef getPassName() const override { return "X86 vzeroupper inserter"; }
|
|
|
|
private:
|
|
void processBasicBlock(MachineBasicBlock &MBB);
|
|
void insertVZeroUpper(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock &MBB);
|
|
void addDirtySuccessor(MachineBasicBlock &MBB);
|
|
|
|
using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY };
|
|
|
|
static const char* getBlockExitStateName(BlockExitState ST);
|
|
|
|
// Core algorithm state:
|
|
// BlockState - Each block is either:
|
|
// - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor
|
|
// vzeroupper instructions in this block.
|
|
// - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
|
|
// block that will ensure that YMM/ZMM is clean on exit.
|
|
// - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no
|
|
// subsequent vzeroupper in the block clears it.
|
|
//
|
|
// AddedToDirtySuccessors - This flag is raised when a block is added to the
|
|
// DirtySuccessors list to ensure that it's not
|
|
// added multiple times.
|
|
//
|
|
// FirstUnguardedCall - Records the location of the first unguarded call in
|
|
// each basic block that may need to be guarded by a
|
|
// vzeroupper. We won't know whether it actually needs
|
|
// to be guarded until we discover a predecessor that
|
|
// is DIRTY_OUT.
|
|
struct BlockState {
|
|
BlockExitState ExitState = PASS_THROUGH;
|
|
bool AddedToDirtySuccessors = false;
|
|
MachineBasicBlock::iterator FirstUnguardedCall;
|
|
|
|
BlockState() = default;
|
|
};
|
|
|
|
using BlockStateMap = SmallVector<BlockState, 8>;
|
|
using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>;
|
|
|
|
BlockStateMap BlockStates;
|
|
DirtySuccessorsWorkList DirtySuccessors;
|
|
bool EverMadeChange;
|
|
bool IsX86INTR;
|
|
const TargetInstrInfo *TII;
|
|
|
|
static char ID;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char VZeroUpperInserter::ID = 0;
|
|
|
|
FunctionPass *llvm::createX86IssueVZeroUpperPass() {
|
|
return new VZeroUpperInserter();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
|
|
switch (ST) {
|
|
case PASS_THROUGH: return "Pass-through";
|
|
case EXITS_DIRTY: return "Exits-dirty";
|
|
case EXITS_CLEAN: return "Exits-clean";
|
|
}
|
|
llvm_unreachable("Invalid block exit state.");
|
|
}
|
|
#endif
|
|
|
|
/// VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
|
|
/// Thus, there is no need to check for Y/ZMM16 and above.
|
|
static bool isYmmOrZmmReg(unsigned Reg) {
|
|
return (Reg >= X86::YMM0 && Reg <= X86::YMM15) ||
|
|
(Reg >= X86::ZMM0 && Reg <= X86::ZMM15);
|
|
}
|
|
|
|
static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) {
|
|
for (std::pair<unsigned, unsigned> LI : MRI.liveins())
|
|
if (isYmmOrZmmReg(LI.first))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) {
|
|
for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
|
|
if (!MO.clobbersPhysReg(reg))
|
|
return false;
|
|
}
|
|
for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) {
|
|
if (!MO.clobbersPhysReg(reg))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool hasYmmOrZmmReg(MachineInstr &MI) {
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO))
|
|
return true;
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (MO.isDebug())
|
|
continue;
|
|
if (isYmmOrZmmReg(MO.getReg()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check if given call instruction has a RegMask operand.
|
|
static bool callHasRegMask(MachineInstr &MI) {
|
|
assert(MI.isCall() && "Can only be called on call instructions.");
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (MO.isRegMask())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Insert a vzeroupper instruction before I.
|
|
void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock &MBB) {
|
|
BuildMI(MBB, I, I->getDebugLoc(), TII->get(X86::VZEROUPPER));
|
|
++NumVZU;
|
|
EverMadeChange = true;
|
|
}
|
|
|
|
/// Add MBB to the DirtySuccessors list if it hasn't already been added.
|
|
void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
|
|
if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
|
|
DirtySuccessors.push_back(&MBB);
|
|
BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
|
|
}
|
|
}
|
|
|
|
/// Loop over all of the instructions in the basic block, inserting vzeroupper
|
|
/// instructions before function calls.
|
|
void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
|
|
// Start by assuming that the block is PASS_THROUGH which implies no unguarded
|
|
// calls.
|
|
BlockExitState CurState = PASS_THROUGH;
|
|
BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
|
|
|
|
for (MachineInstr &MI : MBB) {
|
|
bool IsCall = MI.isCall();
|
|
bool IsReturn = MI.isReturn();
|
|
bool IsControlFlow = IsCall || IsReturn;
|
|
|
|
// No need for vzeroupper before iret in interrupt handler function,
|
|
// epilogue will restore YMM/ZMM registers if needed.
|
|
if (IsX86INTR && IsReturn)
|
|
continue;
|
|
|
|
// An existing VZERO* instruction resets the state.
|
|
if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) {
|
|
CurState = EXITS_CLEAN;
|
|
continue;
|
|
}
|
|
|
|
// Shortcut: don't need to check regular instructions in dirty state.
|
|
if (!IsControlFlow && CurState == EXITS_DIRTY)
|
|
continue;
|
|
|
|
if (hasYmmOrZmmReg(MI)) {
|
|
// We found a ymm/zmm-using instruction; this could be an AVX/AVX512
|
|
// instruction, or it could be control flow.
|
|
CurState = EXITS_DIRTY;
|
|
continue;
|
|
}
|
|
|
|
// Check for control-flow out of the current function (which might
|
|
// indirectly execute SSE instructions).
|
|
if (!IsControlFlow)
|
|
continue;
|
|
|
|
// If the call has no RegMask, skip it as well. It usually happens on
|
|
// helper function calls (such as '_chkstk', '_ftol2') where standard
|
|
// calling convention is not used (RegMask is not used to mark register
|
|
// clobbered and register usage (def/implicit-def/use) is well-defined and
|
|
// explicitly specified.
|
|
if (IsCall && !callHasRegMask(MI))
|
|
continue;
|
|
|
|
// The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15
|
|
// registers. In addition, the processor changes back to Clean state, after
|
|
// which execution of SSE instructions or AVX instructions has no transition
|
|
// penalty. Add the VZEROUPPER instruction before any function call/return
|
|
// that might execute SSE code.
|
|
// FIXME: In some cases, we may want to move the VZEROUPPER into a
|
|
// predecessor block.
|
|
if (CurState == EXITS_DIRTY) {
|
|
// After the inserted VZEROUPPER the state becomes clean again, but
|
|
// other YMM/ZMM may appear before other subsequent calls or even before
|
|
// the end of the BB.
|
|
insertVZeroUpper(MI, MBB);
|
|
CurState = EXITS_CLEAN;
|
|
} else if (CurState == PASS_THROUGH) {
|
|
// If this block is currently in pass-through state and we encounter a
|
|
// call then whether we need a vzeroupper or not depends on whether this
|
|
// block has successors that exit dirty. Record the location of the call,
|
|
// and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
|
|
// It will be inserted later if necessary.
|
|
BlockStates[MBB.getNumber()].FirstUnguardedCall = MI;
|
|
CurState = EXITS_CLEAN;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
|
|
<< getBlockExitStateName(CurState) << '\n');
|
|
|
|
if (CurState == EXITS_DIRTY)
|
|
for (MachineBasicBlock *Succ : MBB.successors())
|
|
addDirtySuccessor(*Succ);
|
|
|
|
BlockStates[MBB.getNumber()].ExitState = CurState;
|
|
}
|
|
|
|
/// Loop over all of the basic blocks, inserting vzeroupper instructions before
|
|
/// function calls.
|
|
bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
|
|
if (!UseVZeroUpper)
|
|
return false;
|
|
|
|
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
|
|
if (!ST.hasAVX() || !ST.insertVZEROUPPER())
|
|
return false;
|
|
TII = ST.getInstrInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
EverMadeChange = false;
|
|
IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR;
|
|
|
|
bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI);
|
|
|
|
// Fast check: if the function doesn't use any ymm/zmm registers, we don't
|
|
// need to insert any VZEROUPPER instructions. This is constant-time, so it
|
|
// is cheap in the common case of no ymm/zmm use.
|
|
bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm;
|
|
for (auto *RC : {&X86::VR256RegClass, &X86::VR512_0_15RegClass}) {
|
|
if (!YmmOrZmmUsed) {
|
|
for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
|
|
i++) {
|
|
if (!MRI.reg_nodbg_empty(*i)) {
|
|
YmmOrZmmUsed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!YmmOrZmmUsed)
|
|
return false;
|
|
|
|
assert(BlockStates.empty() && DirtySuccessors.empty() &&
|
|
"X86VZeroUpper state should be clear");
|
|
BlockStates.resize(MF.getNumBlockIDs());
|
|
|
|
// Process all blocks. This will compute block exit states, record the first
|
|
// unguarded call in each block, and add successors of dirty blocks to the
|
|
// DirtySuccessors list.
|
|
for (MachineBasicBlock &MBB : MF)
|
|
processBasicBlock(MBB);
|
|
|
|
// If any YMM/ZMM regs are live-in to this function, add the entry block to
|
|
// the DirtySuccessors list
|
|
if (FnHasLiveInYmmOrZmm)
|
|
addDirtySuccessor(MF.front());
|
|
|
|
// Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
|
|
// vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
|
|
// through PASS_THROUGH blocks.
|
|
while (!DirtySuccessors.empty()) {
|
|
MachineBasicBlock &MBB = *DirtySuccessors.back();
|
|
DirtySuccessors.pop_back();
|
|
BlockState &BBState = BlockStates[MBB.getNumber()];
|
|
|
|
// MBB is a successor of a dirty block, so its first call needs to be
|
|
// guarded.
|
|
if (BBState.FirstUnguardedCall != MBB.end())
|
|
insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
|
|
|
|
// If this successor was a pass-through block, then it is now dirty. Its
|
|
// successors need to be added to the worklist (if they haven't been
|
|
// already).
|
|
if (BBState.ExitState == PASS_THROUGH) {
|
|
LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber()
|
|
<< " was Pass-through, is now Dirty-out.\n");
|
|
for (MachineBasicBlock *Succ : MBB.successors())
|
|
addDirtySuccessor(*Succ);
|
|
}
|
|
}
|
|
|
|
BlockStates.clear();
|
|
return EverMadeChange;
|
|
}
|