forked from OSchip/llvm-project
1334 lines
51 KiB
C++
1334 lines
51 KiB
C++
//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Loops should be simplified before this analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "branch-prob"
|
|
|
|
static cl::opt<bool> PrintBranchProb(
|
|
"print-bpi", cl::init(false), cl::Hidden,
|
|
cl::desc("Print the branch probability info."));
|
|
|
|
cl::opt<std::string> PrintBranchProbFuncName(
|
|
"print-bpi-func-name", cl::Hidden,
|
|
cl::desc("The option to specify the name of the function "
|
|
"whose branch probability info is printed."));
|
|
|
|
INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
|
|
"Branch Probability Analysis", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
|
|
"Branch Probability Analysis", false, true)
|
|
|
|
BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
|
|
: FunctionPass(ID) {
|
|
initializeBranchProbabilityInfoWrapperPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
char BranchProbabilityInfoWrapperPass::ID = 0;
|
|
|
|
// Weights are for internal use only. They are used by heuristics to help to
|
|
// estimate edges' probability. Example:
|
|
//
|
|
// Using "Loop Branch Heuristics" we predict weights of edges for the
|
|
// block BB2.
|
|
// ...
|
|
// |
|
|
// V
|
|
// BB1<-+
|
|
// | |
|
|
// | | (Weight = 124)
|
|
// V |
|
|
// BB2--+
|
|
// |
|
|
// | (Weight = 4)
|
|
// V
|
|
// BB3
|
|
//
|
|
// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
|
|
// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
|
|
static const uint32_t LBH_TAKEN_WEIGHT = 124;
|
|
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
|
|
|
|
/// Unreachable-terminating branch taken probability.
|
|
///
|
|
/// This is the probability for a branch being taken to a block that terminates
|
|
/// (eventually) in unreachable. These are predicted as unlikely as possible.
|
|
/// All reachable probability will proportionally share the remaining part.
|
|
static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
|
|
|
|
/// Heuristics and lookup tables for non-loop branches:
|
|
/// Pointer Heuristics (PH)
|
|
static const uint32_t PH_TAKEN_WEIGHT = 20;
|
|
static const uint32_t PH_NONTAKEN_WEIGHT = 12;
|
|
static const BranchProbability
|
|
PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
|
|
static const BranchProbability
|
|
PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
|
|
|
|
using ProbabilityList = SmallVector<BranchProbability>;
|
|
using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
|
|
|
|
/// Pointer comparisons:
|
|
static const ProbabilityTable PointerTable{
|
|
{ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
|
|
{ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
|
|
};
|
|
|
|
/// Zero Heuristics (ZH)
|
|
static const uint32_t ZH_TAKEN_WEIGHT = 20;
|
|
static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
|
|
static const BranchProbability
|
|
ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
|
|
static const BranchProbability
|
|
ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
|
|
|
|
/// Integer compares with 0:
|
|
static const ProbabilityTable ICmpWithZeroTable{
|
|
{CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == 0 -> Unlikely
|
|
{CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != 0 -> Likely
|
|
{CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0 -> Unlikely
|
|
{CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0 -> Likely
|
|
};
|
|
|
|
/// Integer compares with -1:
|
|
static const ProbabilityTable ICmpWithMinusOneTable{
|
|
{CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == -1 -> Unlikely
|
|
{CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != -1 -> Likely
|
|
// InstCombine canonicalizes X >= 0 into X > -1
|
|
{CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0 -> Likely
|
|
};
|
|
|
|
/// Integer compares with 1:
|
|
static const ProbabilityTable ICmpWithOneTable{
|
|
// InstCombine canonicalizes X <= 0 into X < 1
|
|
{CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
|
|
};
|
|
|
|
/// strcmp and similar functions return zero, negative, or positive, if the
|
|
/// first string is equal, less, or greater than the second. We consider it
|
|
/// likely that the strings are not equal, so a comparison with zero is
|
|
/// probably false, but also a comparison with any other number is also
|
|
/// probably false given that what exactly is returned for nonzero values is
|
|
/// not specified. Any kind of comparison other than equality we know
|
|
/// nothing about.
|
|
static const ProbabilityTable ICmpWithLibCallTable{
|
|
{CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
|
|
{CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
|
|
};
|
|
|
|
// Floating-Point Heuristics (FPH)
|
|
static const uint32_t FPH_TAKEN_WEIGHT = 20;
|
|
static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
|
|
|
|
/// This is the probability for an ordered floating point comparison.
|
|
static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
|
|
/// This is the probability for an unordered floating point comparison, it means
|
|
/// one or two of the operands are NaN. Usually it is used to test for an
|
|
/// exceptional case, so the result is unlikely.
|
|
static const uint32_t FPH_UNO_WEIGHT = 1;
|
|
|
|
static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
|
|
FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
|
|
static const BranchProbability
|
|
FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
|
|
static const BranchProbability
|
|
FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
|
|
static const BranchProbability
|
|
FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
|
|
|
|
/// Floating-Point compares:
|
|
static const ProbabilityTable FCmpTable{
|
|
{FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
|
|
{FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
|
|
};
|
|
|
|
/// Set of dedicated "absolute" execution weights for a block. These weights are
|
|
/// meaningful relative to each other and their derivatives only.
|
|
enum class BlockExecWeight : std::uint32_t {
|
|
/// Special weight used for cases with exact zero probability.
|
|
ZERO = 0x0,
|
|
/// Minimal possible non zero weight.
|
|
LOWEST_NON_ZERO = 0x1,
|
|
/// Weight to an 'unreachable' block.
|
|
UNREACHABLE = ZERO,
|
|
/// Weight to a block containing non returning call.
|
|
NORETURN = LOWEST_NON_ZERO,
|
|
/// Weight to 'unwind' block of an invoke instruction.
|
|
UNWIND = LOWEST_NON_ZERO,
|
|
/// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
|
|
/// with attribute 'cold'.
|
|
COLD = 0xffff,
|
|
/// Default weight is used in cases when there is no dedicated execution
|
|
/// weight set. It is not propagated through the domination line either.
|
|
DEFAULT = 0xfffff
|
|
};
|
|
|
|
BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
|
|
// Record SCC numbers of blocks in the CFG to identify irreducible loops.
|
|
// FIXME: We could only calculate this if the CFG is known to be irreducible
|
|
// (perhaps cache this info in LoopInfo if we can easily calculate it there?).
|
|
int SccNum = 0;
|
|
for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
|
|
++It, ++SccNum) {
|
|
// Ignore single-block SCCs since they either aren't loops or LoopInfo will
|
|
// catch them.
|
|
const std::vector<const BasicBlock *> &Scc = *It;
|
|
if (Scc.size() == 1)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
|
|
for (const auto *BB : Scc) {
|
|
LLVM_DEBUG(dbgs() << " " << BB->getName());
|
|
SccNums[BB] = SccNum;
|
|
calculateSccBlockType(BB, SccNum);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
}
|
|
}
|
|
|
|
int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
|
|
auto SccIt = SccNums.find(BB);
|
|
if (SccIt == SccNums.end())
|
|
return -1;
|
|
return SccIt->second;
|
|
}
|
|
|
|
void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
|
|
int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
|
|
|
|
for (auto MapIt : SccBlocks[SccNum]) {
|
|
const auto *BB = MapIt.first;
|
|
if (isSCCHeader(BB, SccNum))
|
|
for (const auto *Pred : predecessors(BB))
|
|
if (getSCCNum(Pred) != SccNum)
|
|
Enters.push_back(const_cast<BasicBlock *>(BB));
|
|
}
|
|
}
|
|
|
|
void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
|
|
int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
|
|
for (auto MapIt : SccBlocks[SccNum]) {
|
|
const auto *BB = MapIt.first;
|
|
if (isSCCExitingBlock(BB, SccNum))
|
|
for (const auto *Succ : successors(BB))
|
|
if (getSCCNum(Succ) != SccNum)
|
|
Exits.push_back(const_cast<BasicBlock *>(Succ));
|
|
}
|
|
}
|
|
|
|
uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
|
|
int SccNum) const {
|
|
assert(getSCCNum(BB) == SccNum);
|
|
|
|
assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
|
|
const auto &SccBlockTypes = SccBlocks[SccNum];
|
|
|
|
auto It = SccBlockTypes.find(BB);
|
|
if (It != SccBlockTypes.end()) {
|
|
return It->second;
|
|
}
|
|
return Inner;
|
|
}
|
|
|
|
void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
|
|
int SccNum) {
|
|
assert(getSCCNum(BB) == SccNum);
|
|
uint32_t BlockType = Inner;
|
|
|
|
if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
|
|
// Consider any block that is an entry point to the SCC as
|
|
// a header.
|
|
return getSCCNum(Pred) != SccNum;
|
|
}))
|
|
BlockType |= Header;
|
|
|
|
if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
|
|
return getSCCNum(Succ) != SccNum;
|
|
}))
|
|
BlockType |= Exiting;
|
|
|
|
// Lazily compute the set of headers for a given SCC and cache the results
|
|
// in the SccHeaderMap.
|
|
if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
|
|
SccBlocks.resize(SccNum + 1);
|
|
auto &SccBlockTypes = SccBlocks[SccNum];
|
|
|
|
if (BlockType != Inner) {
|
|
bool IsInserted;
|
|
std::tie(std::ignore, IsInserted) =
|
|
SccBlockTypes.insert(std::make_pair(BB, BlockType));
|
|
assert(IsInserted && "Duplicated block in SCC");
|
|
}
|
|
}
|
|
|
|
BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
|
|
const LoopInfo &LI,
|
|
const SccInfo &SccI)
|
|
: BB(BB) {
|
|
LD.first = LI.getLoopFor(BB);
|
|
if (!LD.first) {
|
|
LD.second = SccI.getSCCNum(BB);
|
|
}
|
|
}
|
|
|
|
bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
|
|
const auto &SrcBlock = Edge.first;
|
|
const auto &DstBlock = Edge.second;
|
|
return (DstBlock.getLoop() &&
|
|
!DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
|
|
// Assume that SCCs can't be nested.
|
|
(DstBlock.getSccNum() != -1 &&
|
|
SrcBlock.getSccNum() != DstBlock.getSccNum());
|
|
}
|
|
|
|
bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
|
|
return isLoopEnteringEdge({Edge.second, Edge.first});
|
|
}
|
|
|
|
bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
|
|
const LoopEdge &Edge) const {
|
|
return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
|
|
}
|
|
|
|
bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
|
|
const auto &SrcBlock = Edge.first;
|
|
const auto &DstBlock = Edge.second;
|
|
return SrcBlock.belongsToSameLoop(DstBlock) &&
|
|
((DstBlock.getLoop() &&
|
|
DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
|
|
(DstBlock.getSccNum() != -1 &&
|
|
SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
|
|
}
|
|
|
|
void BranchProbabilityInfo::getLoopEnterBlocks(
|
|
const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
|
|
if (LB.getLoop()) {
|
|
auto *Header = LB.getLoop()->getHeader();
|
|
Enters.append(pred_begin(Header), pred_end(Header));
|
|
} else {
|
|
assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
|
|
SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
|
|
}
|
|
}
|
|
|
|
void BranchProbabilityInfo::getLoopExitBlocks(
|
|
const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
|
|
if (LB.getLoop()) {
|
|
LB.getLoop()->getExitBlocks(Exits);
|
|
} else {
|
|
assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
|
|
SccI->getSccExitBlocks(LB.getSccNum(), Exits);
|
|
}
|
|
}
|
|
|
|
// Propagate existing explicit probabilities from either profile data or
|
|
// 'expect' intrinsic processing. Examine metadata against unreachable
|
|
// heuristic. The probability of the edge coming to unreachable block is
|
|
// set to min of metadata and unreachable heuristic.
|
|
bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
|
|
const Instruction *TI = BB->getTerminator();
|
|
assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
|
|
if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
|
|
isa<InvokeInst>(TI)))
|
|
return false;
|
|
|
|
MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
|
|
if (!WeightsNode)
|
|
return false;
|
|
|
|
// Check that the number of successors is manageable.
|
|
assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
|
|
|
|
// Ensure there are weights for all of the successors. Note that the first
|
|
// operand to the metadata node is a name, not a weight.
|
|
if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
|
|
return false;
|
|
|
|
// Build up the final weights that will be used in a temporary buffer.
|
|
// Compute the sum of all weights to later decide whether they need to
|
|
// be scaled to fit in 32 bits.
|
|
uint64_t WeightSum = 0;
|
|
SmallVector<uint32_t, 2> Weights;
|
|
SmallVector<unsigned, 2> UnreachableIdxs;
|
|
SmallVector<unsigned, 2> ReachableIdxs;
|
|
Weights.reserve(TI->getNumSuccessors());
|
|
for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
|
|
ConstantInt *Weight =
|
|
mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
|
|
if (!Weight)
|
|
return false;
|
|
assert(Weight->getValue().getActiveBits() <= 32 &&
|
|
"Too many bits for uint32_t");
|
|
Weights.push_back(Weight->getZExtValue());
|
|
WeightSum += Weights.back();
|
|
const LoopBlock SrcLoopBB = getLoopBlock(BB);
|
|
const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1));
|
|
auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
|
|
if (EstimatedWeight &&
|
|
EstimatedWeight.getValue() <=
|
|
static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
|
|
UnreachableIdxs.push_back(I - 1);
|
|
else
|
|
ReachableIdxs.push_back(I - 1);
|
|
}
|
|
assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
|
|
|
|
// If the sum of weights does not fit in 32 bits, scale every weight down
|
|
// accordingly.
|
|
uint64_t ScalingFactor =
|
|
(WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
|
|
|
|
if (ScalingFactor > 1) {
|
|
WeightSum = 0;
|
|
for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
|
|
Weights[I] /= ScalingFactor;
|
|
WeightSum += Weights[I];
|
|
}
|
|
}
|
|
assert(WeightSum <= UINT32_MAX &&
|
|
"Expected weights to scale down to 32 bits");
|
|
|
|
if (WeightSum == 0 || ReachableIdxs.size() == 0) {
|
|
for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
|
|
Weights[I] = 1;
|
|
WeightSum = TI->getNumSuccessors();
|
|
}
|
|
|
|
// Set the probability.
|
|
SmallVector<BranchProbability, 2> BP;
|
|
for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
|
|
BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
|
|
|
|
// Examine the metadata against unreachable heuristic.
|
|
// If the unreachable heuristic is more strong then we use it for this edge.
|
|
if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
|
|
setEdgeProbability(BB, BP);
|
|
return true;
|
|
}
|
|
|
|
auto UnreachableProb = UR_TAKEN_PROB;
|
|
for (auto I : UnreachableIdxs)
|
|
if (UnreachableProb < BP[I]) {
|
|
BP[I] = UnreachableProb;
|
|
}
|
|
|
|
// Sum of all edge probabilities must be 1.0. If we modified the probability
|
|
// of some edges then we must distribute the introduced difference over the
|
|
// reachable blocks.
|
|
//
|
|
// Proportional distribution: the relation between probabilities of the
|
|
// reachable edges is kept unchanged. That is for any reachable edges i and j:
|
|
// newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
|
|
// newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
|
|
// Where K is independent of i,j.
|
|
// newBP[i] == oldBP[i] * K
|
|
// We need to find K.
|
|
// Make sum of all reachables of the left and right parts:
|
|
// sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
|
|
// Sum of newBP must be equal to 1.0:
|
|
// sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
|
|
// sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
|
|
// Where sum_of_unreachable(newBP) is what has been just changed.
|
|
// Finally:
|
|
// K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
|
|
// K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
|
|
BranchProbability NewUnreachableSum = BranchProbability::getZero();
|
|
for (auto I : UnreachableIdxs)
|
|
NewUnreachableSum += BP[I];
|
|
|
|
BranchProbability NewReachableSum =
|
|
BranchProbability::getOne() - NewUnreachableSum;
|
|
|
|
BranchProbability OldReachableSum = BranchProbability::getZero();
|
|
for (auto I : ReachableIdxs)
|
|
OldReachableSum += BP[I];
|
|
|
|
if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
|
|
if (OldReachableSum.isZero()) {
|
|
// If all oldBP[i] are zeroes then the proportional distribution results
|
|
// in all zero probabilities and the error stays big. In this case we
|
|
// evenly spread NewReachableSum over the reachable edges.
|
|
BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
|
|
for (auto I : ReachableIdxs)
|
|
BP[I] = PerEdge;
|
|
} else {
|
|
for (auto I : ReachableIdxs) {
|
|
// We use uint64_t to avoid double rounding error of the following
|
|
// calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
|
|
// The formula is taken from the private constructor
|
|
// BranchProbability(uint32_t Numerator, uint32_t Denominator)
|
|
uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
|
|
BP[I].getNumerator();
|
|
uint32_t Div = static_cast<uint32_t>(
|
|
divideNearest(Mul, OldReachableSum.getNumerator()));
|
|
BP[I] = BranchProbability::getRaw(Div);
|
|
}
|
|
}
|
|
}
|
|
|
|
setEdgeProbability(BB, BP);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
|
|
// between two pointer or pointer and NULL will fail.
|
|
bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
|
|
const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!BI || !BI->isConditional())
|
|
return false;
|
|
|
|
Value *Cond = BI->getCondition();
|
|
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
|
|
if (!CI || !CI->isEquality())
|
|
return false;
|
|
|
|
Value *LHS = CI->getOperand(0);
|
|
|
|
if (!LHS->getType()->isPointerTy())
|
|
return false;
|
|
|
|
assert(CI->getOperand(1)->getType()->isPointerTy());
|
|
|
|
auto Search = PointerTable.find(CI->getPredicate());
|
|
if (Search == PointerTable.end())
|
|
return false;
|
|
setEdgeProbability(BB, Search->second);
|
|
return true;
|
|
}
|
|
|
|
// Compute the unlikely successors to the block BB in the loop L, specifically
|
|
// those that are unlikely because this is a loop, and add them to the
|
|
// UnlikelyBlocks set.
|
|
static void
|
|
computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
|
|
SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
|
|
// Sometimes in a loop we have a branch whose condition is made false by
|
|
// taking it. This is typically something like
|
|
// int n = 0;
|
|
// while (...) {
|
|
// if (++n >= MAX) {
|
|
// n = 0;
|
|
// }
|
|
// }
|
|
// In this sort of situation taking the branch means that at the very least it
|
|
// won't be taken again in the next iteration of the loop, so we should
|
|
// consider it less likely than a typical branch.
|
|
//
|
|
// We detect this by looking back through the graph of PHI nodes that sets the
|
|
// value that the condition depends on, and seeing if we can reach a successor
|
|
// block which can be determined to make the condition false.
|
|
//
|
|
// FIXME: We currently consider unlikely blocks to be half as likely as other
|
|
// blocks, but if we consider the example above the likelyhood is actually
|
|
// 1/MAX. We could therefore be more precise in how unlikely we consider
|
|
// blocks to be, but it would require more careful examination of the form
|
|
// of the comparison expression.
|
|
const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!BI || !BI->isConditional())
|
|
return;
|
|
|
|
// Check if the branch is based on an instruction compared with a constant
|
|
CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
|
|
if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
|
|
!isa<Constant>(CI->getOperand(1)))
|
|
return;
|
|
|
|
// Either the instruction must be a PHI, or a chain of operations involving
|
|
// constants that ends in a PHI which we can then collapse into a single value
|
|
// if the PHI value is known.
|
|
Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
|
|
PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
|
|
Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
|
|
// Collect the instructions until we hit a PHI
|
|
SmallVector<BinaryOperator *, 1> InstChain;
|
|
while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
|
|
isa<Constant>(CmpLHS->getOperand(1))) {
|
|
// Stop if the chain extends outside of the loop
|
|
if (!L->contains(CmpLHS))
|
|
return;
|
|
InstChain.push_back(cast<BinaryOperator>(CmpLHS));
|
|
CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
|
|
if (CmpLHS)
|
|
CmpPHI = dyn_cast<PHINode>(CmpLHS);
|
|
}
|
|
if (!CmpPHI || !L->contains(CmpPHI))
|
|
return;
|
|
|
|
// Trace the phi node to find all values that come from successors of BB
|
|
SmallPtrSet<PHINode*, 8> VisitedInsts;
|
|
SmallVector<PHINode*, 8> WorkList;
|
|
WorkList.push_back(CmpPHI);
|
|
VisitedInsts.insert(CmpPHI);
|
|
while (!WorkList.empty()) {
|
|
PHINode *P = WorkList.pop_back_val();
|
|
for (BasicBlock *B : P->blocks()) {
|
|
// Skip blocks that aren't part of the loop
|
|
if (!L->contains(B))
|
|
continue;
|
|
Value *V = P->getIncomingValueForBlock(B);
|
|
// If the source is a PHI add it to the work list if we haven't
|
|
// already visited it.
|
|
if (PHINode *PN = dyn_cast<PHINode>(V)) {
|
|
if (VisitedInsts.insert(PN).second)
|
|
WorkList.push_back(PN);
|
|
continue;
|
|
}
|
|
// If this incoming value is a constant and B is a successor of BB, then
|
|
// we can constant-evaluate the compare to see if it makes the branch be
|
|
// taken or not.
|
|
Constant *CmpLHSConst = dyn_cast<Constant>(V);
|
|
if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
|
|
continue;
|
|
// First collapse InstChain
|
|
for (Instruction *I : llvm::reverse(InstChain)) {
|
|
CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
|
|
cast<Constant>(I->getOperand(1)), true);
|
|
if (!CmpLHSConst)
|
|
break;
|
|
}
|
|
if (!CmpLHSConst)
|
|
continue;
|
|
// Now constant-evaluate the compare
|
|
Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
|
|
CmpLHSConst, CmpConst, true);
|
|
// If the result means we don't branch to the block then that block is
|
|
// unlikely.
|
|
if (Result &&
|
|
((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
|
|
(Result->isOneValue() && B == BI->getSuccessor(1))))
|
|
UnlikelyBlocks.insert(B);
|
|
}
|
|
}
|
|
}
|
|
|
|
Optional<uint32_t>
|
|
BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
|
|
auto WeightIt = EstimatedBlockWeight.find(BB);
|
|
if (WeightIt == EstimatedBlockWeight.end())
|
|
return None;
|
|
return WeightIt->second;
|
|
}
|
|
|
|
Optional<uint32_t>
|
|
BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
|
|
auto WeightIt = EstimatedLoopWeight.find(L);
|
|
if (WeightIt == EstimatedLoopWeight.end())
|
|
return None;
|
|
return WeightIt->second;
|
|
}
|
|
|
|
Optional<uint32_t>
|
|
BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
|
|
// For edges entering a loop take weight of a loop rather than an individual
|
|
// block in the loop.
|
|
return isLoopEnteringEdge(Edge)
|
|
? getEstimatedLoopWeight(Edge.second.getLoopData())
|
|
: getEstimatedBlockWeight(Edge.second.getBlock());
|
|
}
|
|
|
|
template <class IterT>
|
|
Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
|
|
const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
|
|
SmallVector<uint32_t, 4> Weights;
|
|
Optional<uint32_t> MaxWeight;
|
|
for (const BasicBlock *DstBB : Successors) {
|
|
const LoopBlock DstLoopBB = getLoopBlock(DstBB);
|
|
auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
|
|
|
|
if (!Weight)
|
|
return None;
|
|
|
|
if (!MaxWeight || MaxWeight.getValue() < Weight.getValue())
|
|
MaxWeight = Weight;
|
|
}
|
|
|
|
return MaxWeight;
|
|
}
|
|
|
|
// Updates \p LoopBB's weight and returns true. If \p LoopBB has already
|
|
// an associated weight it is unchanged and false is returned.
|
|
//
|
|
// Please note by the algorithm the weight is not expected to change once set
|
|
// thus 'false' status is used to track visited blocks.
|
|
bool BranchProbabilityInfo::updateEstimatedBlockWeight(
|
|
LoopBlock &LoopBB, uint32_t BBWeight,
|
|
SmallVectorImpl<BasicBlock *> &BlockWorkList,
|
|
SmallVectorImpl<LoopBlock> &LoopWorkList) {
|
|
BasicBlock *BB = LoopBB.getBlock();
|
|
|
|
// In general, weight is assigned to a block when it has final value and
|
|
// can't/shouldn't be changed. However, there are cases when a block
|
|
// inherently has several (possibly "contradicting") weights. For example,
|
|
// "unwind" block may also contain "cold" call. In that case the first
|
|
// set weight is favored and all consequent weights are ignored.
|
|
if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
|
|
return false;
|
|
|
|
for (BasicBlock *PredBlock : predecessors(BB)) {
|
|
LoopBlock PredLoop = getLoopBlock(PredBlock);
|
|
// Add affected block/loop to a working list.
|
|
if (isLoopExitingEdge({PredLoop, LoopBB})) {
|
|
if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
|
|
LoopWorkList.push_back(PredLoop);
|
|
} else if (!EstimatedBlockWeight.count(PredBlock))
|
|
BlockWorkList.push_back(PredBlock);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Starting from \p BB traverse through dominator blocks and assign \p BBWeight
|
|
// to all such blocks that are post dominated by \BB. In other words to all
|
|
// blocks that the one is executed if and only if another one is executed.
|
|
// Importantly, we skip loops here for two reasons. First weights of blocks in
|
|
// a loop should be scaled by trip count (yet possibly unknown). Second there is
|
|
// no any value in doing that because that doesn't give any additional
|
|
// information regarding distribution of probabilities inside the loop.
|
|
// Exception is loop 'enter' and 'exit' edges that are handled in a special way
|
|
// at calcEstimatedHeuristics.
|
|
//
|
|
// In addition, \p WorkList is populated with basic blocks if at leas one
|
|
// successor has updated estimated weight.
|
|
void BranchProbabilityInfo::propagateEstimatedBlockWeight(
|
|
const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
|
|
uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
|
|
SmallVectorImpl<LoopBlock> &LoopWorkList) {
|
|
const BasicBlock *BB = LoopBB.getBlock();
|
|
const auto *DTStartNode = DT->getNode(BB);
|
|
const auto *PDTStartNode = PDT->getNode(BB);
|
|
|
|
// TODO: Consider propagating weight down the domination line as well.
|
|
for (const auto *DTNode = DTStartNode; DTNode != nullptr;
|
|
DTNode = DTNode->getIDom()) {
|
|
auto *DomBB = DTNode->getBlock();
|
|
// Consider blocks which lie on one 'line'.
|
|
if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
|
|
// If BB doesn't post dominate DomBB it will not post dominate dominators
|
|
// of DomBB as well.
|
|
break;
|
|
|
|
LoopBlock DomLoopBB = getLoopBlock(DomBB);
|
|
const LoopEdge Edge{DomLoopBB, LoopBB};
|
|
// Don't propagate weight to blocks belonging to different loops.
|
|
if (!isLoopEnteringExitingEdge(Edge)) {
|
|
if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
|
|
LoopWorkList))
|
|
// If DomBB has weight set then all it's predecessors are already
|
|
// processed (since we propagate weight up to the top of IR each time).
|
|
break;
|
|
} else if (isLoopExitingEdge(Edge)) {
|
|
LoopWorkList.push_back(DomLoopBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
|
|
const BasicBlock *BB) {
|
|
// Returns true if \p BB has call marked with "NoReturn" attribute.
|
|
auto hasNoReturn = [&](const BasicBlock *BB) {
|
|
for (const auto &I : reverse(*BB))
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I))
|
|
if (CI->hasFnAttr(Attribute::NoReturn))
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
// Important note regarding the order of checks. They are ordered by weight
|
|
// from lowest to highest. Doing that allows to avoid "unstable" results
|
|
// when several conditions heuristics can be applied simultaneously.
|
|
if (isa<UnreachableInst>(BB->getTerminator()) ||
|
|
// If this block is terminated by a call to
|
|
// @llvm.experimental.deoptimize then treat it like an unreachable
|
|
// since it is expected to practically never execute.
|
|
// TODO: Should we actually treat as never returning call?
|
|
BB->getTerminatingDeoptimizeCall())
|
|
return hasNoReturn(BB)
|
|
? static_cast<uint32_t>(BlockExecWeight::NORETURN)
|
|
: static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
|
|
|
|
// Check if the block is 'unwind' handler of some invoke instruction.
|
|
for (const auto *Pred : predecessors(BB))
|
|
if (Pred)
|
|
if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
|
|
if (II->getUnwindDest() == BB)
|
|
return static_cast<uint32_t>(BlockExecWeight::UNWIND);
|
|
|
|
// Check if the block contains 'cold' call.
|
|
for (const auto &I : *BB)
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I))
|
|
if (CI->hasFnAttr(Attribute::Cold))
|
|
return static_cast<uint32_t>(BlockExecWeight::COLD);
|
|
|
|
return None;
|
|
}
|
|
|
|
// Does RPO traversal over all blocks in \p F and assigns weights to
|
|
// 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
|
|
// best to propagate the weight to up/down the IR.
|
|
void BranchProbabilityInfo::computeEestimateBlockWeight(
|
|
const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
|
|
SmallVector<BasicBlock *, 8> BlockWorkList;
|
|
SmallVector<LoopBlock, 8> LoopWorkList;
|
|
|
|
// By doing RPO we make sure that all predecessors already have weights
|
|
// calculated before visiting theirs successors.
|
|
ReversePostOrderTraversal<const Function *> RPOT(&F);
|
|
for (const auto *BB : RPOT)
|
|
if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
|
|
// If we were able to find estimated weight for the block set it to this
|
|
// block and propagate up the IR.
|
|
propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT,
|
|
BBWeight.getValue(), BlockWorkList,
|
|
LoopWorkList);
|
|
|
|
// BlockWorklist/LoopWorkList contains blocks/loops with at least one
|
|
// successor/exit having estimated weight. Try to propagate weight to such
|
|
// blocks/loops from successors/exits.
|
|
// Process loops and blocks. Order is not important.
|
|
do {
|
|
while (!LoopWorkList.empty()) {
|
|
const LoopBlock LoopBB = LoopWorkList.pop_back_val();
|
|
|
|
if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
|
|
continue;
|
|
|
|
SmallVector<BasicBlock *, 4> Exits;
|
|
getLoopExitBlocks(LoopBB, Exits);
|
|
auto LoopWeight = getMaxEstimatedEdgeWeight(
|
|
LoopBB, make_range(Exits.begin(), Exits.end()));
|
|
|
|
if (LoopWeight) {
|
|
// If we never exit the loop then we can enter it once at maximum.
|
|
if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
|
|
LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
|
|
|
|
EstimatedLoopWeight.insert(
|
|
{LoopBB.getLoopData(), LoopWeight.getValue()});
|
|
// Add all blocks entering the loop into working list.
|
|
getLoopEnterBlocks(LoopBB, BlockWorkList);
|
|
}
|
|
}
|
|
|
|
while (!BlockWorkList.empty()) {
|
|
// We can reach here only if BlockWorkList is not empty.
|
|
const BasicBlock *BB = BlockWorkList.pop_back_val();
|
|
if (EstimatedBlockWeight.count(BB))
|
|
continue;
|
|
|
|
// We take maximum over all weights of successors. In other words we take
|
|
// weight of "hot" path. In theory we can probably find a better function
|
|
// which gives higher accuracy results (comparing to "maximum") but I
|
|
// can't
|
|
// think of any right now. And I doubt it will make any difference in
|
|
// practice.
|
|
const LoopBlock LoopBB = getLoopBlock(BB);
|
|
auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
|
|
|
|
if (MaxWeight)
|
|
propagateEstimatedBlockWeight(LoopBB, DT, PDT, MaxWeight.getValue(),
|
|
BlockWorkList, LoopWorkList);
|
|
}
|
|
} while (!BlockWorkList.empty() || !LoopWorkList.empty());
|
|
}
|
|
|
|
// Calculate edge probabilities based on block's estimated weight.
|
|
// Note that gathered weights were not scaled for loops. Thus edges entering
|
|
// and exiting loops requires special processing.
|
|
bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
|
|
assert(BB->getTerminator()->getNumSuccessors() > 1 &&
|
|
"expected more than one successor!");
|
|
|
|
const LoopBlock LoopBB = getLoopBlock(BB);
|
|
|
|
SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
|
|
uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
|
|
if (LoopBB.getLoop())
|
|
computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
|
|
|
|
// Changed to 'true' if at least one successor has estimated weight.
|
|
bool FoundEstimatedWeight = false;
|
|
SmallVector<uint32_t, 4> SuccWeights;
|
|
uint64_t TotalWeight = 0;
|
|
// Go over all successors of BB and put their weights into SuccWeights.
|
|
for (const BasicBlock *SuccBB : successors(BB)) {
|
|
Optional<uint32_t> Weight;
|
|
const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
|
|
const LoopEdge Edge{LoopBB, SuccLoopBB};
|
|
|
|
Weight = getEstimatedEdgeWeight(Edge);
|
|
|
|
if (isLoopExitingEdge(Edge) &&
|
|
// Avoid adjustment of ZERO weight since it should remain unchanged.
|
|
Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
|
|
// Scale down loop exiting weight by trip count.
|
|
Weight = std::max(
|
|
static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
|
|
Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
|
|
TC);
|
|
}
|
|
bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
|
|
if (IsUnlikelyEdge &&
|
|
// Avoid adjustment of ZERO weight since it should remain unchanged.
|
|
Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
|
|
// 'Unlikely' blocks have twice lower weight.
|
|
Weight = std::max(
|
|
static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
|
|
Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
|
|
2);
|
|
}
|
|
|
|
if (Weight)
|
|
FoundEstimatedWeight = true;
|
|
|
|
auto WeightVal =
|
|
Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
|
|
TotalWeight += WeightVal;
|
|
SuccWeights.push_back(WeightVal);
|
|
}
|
|
|
|
// If non of blocks have estimated weight bail out.
|
|
// If TotalWeight is 0 that means weight of each successor is 0 as well and
|
|
// equally likely. Bail out early to not deal with devision by zero.
|
|
if (!FoundEstimatedWeight || TotalWeight == 0)
|
|
return false;
|
|
|
|
assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
|
|
const unsigned SuccCount = SuccWeights.size();
|
|
|
|
// If the sum of weights does not fit in 32 bits, scale every weight down
|
|
// accordingly.
|
|
if (TotalWeight > UINT32_MAX) {
|
|
uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
|
|
TotalWeight = 0;
|
|
for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
|
|
SuccWeights[Idx] /= ScalingFactor;
|
|
if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
|
|
SuccWeights[Idx] =
|
|
static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
|
|
TotalWeight += SuccWeights[Idx];
|
|
}
|
|
assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
|
|
}
|
|
|
|
// Finally set probabilities to edges according to estimated block weights.
|
|
SmallVector<BranchProbability, 4> EdgeProbabilities(
|
|
SuccCount, BranchProbability::getUnknown());
|
|
|
|
for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
|
|
EdgeProbabilities[Idx] =
|
|
BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
|
|
}
|
|
setEdgeProbability(BB, EdgeProbabilities);
|
|
return true;
|
|
}
|
|
|
|
bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
|
|
const TargetLibraryInfo *TLI) {
|
|
const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!BI || !BI->isConditional())
|
|
return false;
|
|
|
|
Value *Cond = BI->getCondition();
|
|
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
|
|
if (!CI)
|
|
return false;
|
|
|
|
auto GetConstantInt = [](Value *V) {
|
|
if (auto *I = dyn_cast<BitCastInst>(V))
|
|
return dyn_cast<ConstantInt>(I->getOperand(0));
|
|
return dyn_cast<ConstantInt>(V);
|
|
};
|
|
|
|
Value *RHS = CI->getOperand(1);
|
|
ConstantInt *CV = GetConstantInt(RHS);
|
|
if (!CV)
|
|
return false;
|
|
|
|
// If the LHS is the result of AND'ing a value with a single bit bitmask,
|
|
// we don't have information about probabilities.
|
|
if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
|
|
if (LHS->getOpcode() == Instruction::And)
|
|
if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
|
|
if (AndRHS->getValue().isPowerOf2())
|
|
return false;
|
|
|
|
// Check if the LHS is the return value of a library function
|
|
LibFunc Func = NumLibFuncs;
|
|
if (TLI)
|
|
if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
|
|
if (Function *CalledFn = Call->getCalledFunction())
|
|
TLI->getLibFunc(*CalledFn, Func);
|
|
|
|
ProbabilityTable::const_iterator Search;
|
|
if (Func == LibFunc_strcasecmp ||
|
|
Func == LibFunc_strcmp ||
|
|
Func == LibFunc_strncasecmp ||
|
|
Func == LibFunc_strncmp ||
|
|
Func == LibFunc_memcmp ||
|
|
Func == LibFunc_bcmp) {
|
|
Search = ICmpWithLibCallTable.find(CI->getPredicate());
|
|
if (Search == ICmpWithLibCallTable.end())
|
|
return false;
|
|
} else if (CV->isZero()) {
|
|
Search = ICmpWithZeroTable.find(CI->getPredicate());
|
|
if (Search == ICmpWithZeroTable.end())
|
|
return false;
|
|
} else if (CV->isOne()) {
|
|
Search = ICmpWithOneTable.find(CI->getPredicate());
|
|
if (Search == ICmpWithOneTable.end())
|
|
return false;
|
|
} else if (CV->isMinusOne()) {
|
|
Search = ICmpWithMinusOneTable.find(CI->getPredicate());
|
|
if (Search == ICmpWithMinusOneTable.end())
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
setEdgeProbability(BB, Search->second);
|
|
return true;
|
|
}
|
|
|
|
bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
|
|
const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!BI || !BI->isConditional())
|
|
return false;
|
|
|
|
Value *Cond = BI->getCondition();
|
|
FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
|
|
if (!FCmp)
|
|
return false;
|
|
|
|
ProbabilityList ProbList;
|
|
if (FCmp->isEquality()) {
|
|
ProbList = !FCmp->isTrueWhenEqual() ?
|
|
// f1 == f2 -> Unlikely
|
|
ProbabilityList({FPTakenProb, FPUntakenProb}) :
|
|
// f1 != f2 -> Likely
|
|
ProbabilityList({FPUntakenProb, FPTakenProb});
|
|
} else {
|
|
auto Search = FCmpTable.find(FCmp->getPredicate());
|
|
if (Search == FCmpTable.end())
|
|
return false;
|
|
ProbList = Search->second;
|
|
}
|
|
|
|
setEdgeProbability(BB, ProbList);
|
|
return true;
|
|
}
|
|
|
|
void BranchProbabilityInfo::releaseMemory() {
|
|
Probs.clear();
|
|
Handles.clear();
|
|
}
|
|
|
|
bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &) {
|
|
// Check whether the analysis, all analyses on functions, or the function's
|
|
// CFG have been preserved.
|
|
auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
|
|
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
|
|
PAC.preservedSet<CFGAnalyses>());
|
|
}
|
|
|
|
void BranchProbabilityInfo::print(raw_ostream &OS) const {
|
|
OS << "---- Branch Probabilities ----\n";
|
|
// We print the probabilities from the last function the analysis ran over,
|
|
// or the function it is currently running over.
|
|
assert(LastF && "Cannot print prior to running over a function");
|
|
for (const auto &BI : *LastF) {
|
|
for (const BasicBlock *Succ : successors(&BI))
|
|
printEdgeProbability(OS << " ", &BI, Succ);
|
|
}
|
|
}
|
|
|
|
bool BranchProbabilityInfo::
|
|
isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
|
|
// Hot probability is at least 4/5 = 80%
|
|
// FIXME: Compare against a static "hot" BranchProbability.
|
|
return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
|
|
}
|
|
|
|
/// Get the raw edge probability for the edge. If can't find it, return a
|
|
/// default probability 1/N where N is the number of successors. Here an edge is
|
|
/// specified using PredBlock and an
|
|
/// index to the successors.
|
|
BranchProbability
|
|
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
|
|
unsigned IndexInSuccessors) const {
|
|
auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
|
|
assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
|
|
(Probs.end() == I) &&
|
|
"Probability for I-th successor must always be defined along with the "
|
|
"probability for the first successor");
|
|
|
|
if (I != Probs.end())
|
|
return I->second;
|
|
|
|
return {1, static_cast<uint32_t>(succ_size(Src))};
|
|
}
|
|
|
|
BranchProbability
|
|
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
|
|
const_succ_iterator Dst) const {
|
|
return getEdgeProbability(Src, Dst.getSuccessorIndex());
|
|
}
|
|
|
|
/// Get the raw edge probability calculated for the block pair. This returns the
|
|
/// sum of all raw edge probabilities from Src to Dst.
|
|
BranchProbability
|
|
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
|
|
const BasicBlock *Dst) const {
|
|
if (!Probs.count(std::make_pair(Src, 0)))
|
|
return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
|
|
|
|
auto Prob = BranchProbability::getZero();
|
|
for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
|
|
if (*I == Dst)
|
|
Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
|
|
|
|
return Prob;
|
|
}
|
|
|
|
/// Set the edge probability for all edges at once.
|
|
void BranchProbabilityInfo::setEdgeProbability(
|
|
const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
|
|
assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
|
|
eraseBlock(Src); // Erase stale data if any.
|
|
if (Probs.size() == 0)
|
|
return; // Nothing to set.
|
|
|
|
Handles.insert(BasicBlockCallbackVH(Src, this));
|
|
uint64_t TotalNumerator = 0;
|
|
for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
|
|
this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
|
|
LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
|
|
<< " successor probability to " << Probs[SuccIdx]
|
|
<< "\n");
|
|
TotalNumerator += Probs[SuccIdx].getNumerator();
|
|
}
|
|
|
|
// Because of rounding errors the total probability cannot be checked to be
|
|
// 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
|
|
// Instead, every single probability in Probs must be as accurate as possible.
|
|
// This results in error 1/denominator at most, thus the total absolute error
|
|
// should be within Probs.size / BranchProbability::getDenominator.
|
|
assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
|
|
assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
|
|
(void)TotalNumerator;
|
|
}
|
|
|
|
void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
|
|
BasicBlock *Dst) {
|
|
eraseBlock(Dst); // Erase stale data if any.
|
|
unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
|
|
assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
|
|
if (NumSuccessors == 0)
|
|
return; // Nothing to set.
|
|
if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
|
|
return; // No probability is set for edges from Src. Keep the same for Dst.
|
|
|
|
Handles.insert(BasicBlockCallbackVH(Dst, this));
|
|
for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
|
|
auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
|
|
this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
|
|
LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
|
|
<< " successor probability to " << Prob << "\n");
|
|
}
|
|
}
|
|
|
|
raw_ostream &
|
|
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
|
|
const BasicBlock *Src,
|
|
const BasicBlock *Dst) const {
|
|
const BranchProbability Prob = getEdgeProbability(Src, Dst);
|
|
OS << "edge " << Src->getName() << " -> " << Dst->getName()
|
|
<< " probability is " << Prob
|
|
<< (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
|
|
|
|
return OS;
|
|
}
|
|
|
|
void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
|
|
LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
|
|
|
|
// Note that we cannot use successors of BB because the terminator of BB may
|
|
// have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
|
|
// Instead we remove prob data for the block by iterating successors by their
|
|
// indices from 0 till the last which exists. There could not be prob data for
|
|
// a pair (BB, N) if there is no data for (BB, N-1) because the data is always
|
|
// set for all successors from 0 to M at once by the method
|
|
// setEdgeProbability().
|
|
Handles.erase(BasicBlockCallbackVH(BB, this));
|
|
for (unsigned I = 0;; ++I) {
|
|
auto MapI = Probs.find(std::make_pair(BB, I));
|
|
if (MapI == Probs.end()) {
|
|
assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
|
|
"Must be no more successors");
|
|
return;
|
|
}
|
|
Probs.erase(MapI);
|
|
}
|
|
}
|
|
|
|
void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
|
|
const TargetLibraryInfo *TLI,
|
|
DominatorTree *DT,
|
|
PostDominatorTree *PDT) {
|
|
LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
|
|
<< " ----\n\n");
|
|
LastF = &F; // Store the last function we ran on for printing.
|
|
LI = &LoopI;
|
|
|
|
SccI = std::make_unique<SccInfo>(F);
|
|
|
|
assert(EstimatedBlockWeight.empty());
|
|
assert(EstimatedLoopWeight.empty());
|
|
|
|
std::unique_ptr<DominatorTree> DTPtr;
|
|
std::unique_ptr<PostDominatorTree> PDTPtr;
|
|
|
|
if (!DT) {
|
|
DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
|
|
DT = DTPtr.get();
|
|
}
|
|
|
|
if (!PDT) {
|
|
PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
|
|
PDT = PDTPtr.get();
|
|
}
|
|
|
|
computeEestimateBlockWeight(F, DT, PDT);
|
|
|
|
// Walk the basic blocks in post-order so that we can build up state about
|
|
// the successors of a block iteratively.
|
|
for (auto BB : post_order(&F.getEntryBlock())) {
|
|
LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
|
|
<< "\n");
|
|
// If there is no at least two successors, no sense to set probability.
|
|
if (BB->getTerminator()->getNumSuccessors() < 2)
|
|
continue;
|
|
if (calcMetadataWeights(BB))
|
|
continue;
|
|
if (calcEstimatedHeuristics(BB))
|
|
continue;
|
|
if (calcPointerHeuristics(BB))
|
|
continue;
|
|
if (calcZeroHeuristics(BB, TLI))
|
|
continue;
|
|
if (calcFloatingPointHeuristics(BB))
|
|
continue;
|
|
}
|
|
|
|
EstimatedLoopWeight.clear();
|
|
EstimatedBlockWeight.clear();
|
|
SccI.reset();
|
|
|
|
if (PrintBranchProb &&
|
|
(PrintBranchProbFuncName.empty() ||
|
|
F.getName().equals(PrintBranchProbFuncName))) {
|
|
print(dbgs());
|
|
}
|
|
}
|
|
|
|
void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
|
|
AnalysisUsage &AU) const {
|
|
// We require DT so it's available when LI is available. The LI updating code
|
|
// asserts that DT is also present so if we don't make sure that we have DT
|
|
// here, that assert will trigger.
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<PostDominatorTreeWrapperPass>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
|
|
const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
const TargetLibraryInfo &TLI =
|
|
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
PostDominatorTree &PDT =
|
|
getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
|
|
BPI.calculate(F, LI, &TLI, &DT, &PDT);
|
|
return false;
|
|
}
|
|
|
|
void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
|
|
|
|
void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
|
|
const Module *) const {
|
|
BPI.print(OS);
|
|
}
|
|
|
|
AnalysisKey BranchProbabilityAnalysis::Key;
|
|
BranchProbabilityInfo
|
|
BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
|
|
BranchProbabilityInfo BPI;
|
|
BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
|
|
&AM.getResult<TargetLibraryAnalysis>(F),
|
|
&AM.getResult<DominatorTreeAnalysis>(F),
|
|
&AM.getResult<PostDominatorTreeAnalysis>(F));
|
|
return BPI;
|
|
}
|
|
|
|
PreservedAnalyses
|
|
BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
OS << "Printing analysis results of BPI for function "
|
|
<< "'" << F.getName() << "':"
|
|
<< "\n";
|
|
AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
|
|
return PreservedAnalyses::all();
|
|
}
|