llvm-project/llvm/lib/Target/Hexagon/HexagonInstrInfo.td

2846 lines
114 KiB
TableGen

//==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Hexagon instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
include "HexagonInstrFormats.td"
include "HexagonOperands.td"
//===----------------------------------------------------------------------===//
// Multi-class for logical operators.
multiclass ALU32_rr_ri<string OpcStr, SDNode OpNode> {
def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
!strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
[(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b),
(i32 IntRegs:$c)))]>;
def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c),
!strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")),
[(set (i32 IntRegs:$dst), (OpNode s10Imm:$b,
(i32 IntRegs:$c)))]>;
}
// Multi-class for compare ops.
let isCompare = 1 in {
multiclass CMP64_rr<string OpcStr, PatFrag OpNode> {
def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c),
!strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
[(set (i1 PredRegs:$dst),
(OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>;
}
multiclass CMP32_rr_ri_s10<string OpcStr, string CextOp, PatFrag OpNode> {
let CextOpcode = CextOp in {
let InputType = "reg" in
def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
!strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
[(set (i1 PredRegs:$dst),
(OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1,
opExtentBits = 10, InputType = "imm" in
def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Ext:$c),
!strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
[(set (i1 PredRegs:$dst),
(OpNode (i32 IntRegs:$b), s10ExtPred:$c))]>;
}
}
multiclass CMP32_rr_ri_u9<string OpcStr, string CextOp, PatFrag OpNode> {
let CextOpcode = CextOp in {
let InputType = "reg" in
def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
!strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
[(set (i1 PredRegs:$dst),
(OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
let isExtendable = 1, opExtendable = 2, isExtentSigned = 0,
opExtentBits = 9, InputType = "imm" in
def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Ext:$c),
!strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
[(set (i1 PredRegs:$dst),
(OpNode (i32 IntRegs:$b), u9ExtPred:$c))]>;
}
}
multiclass CMP32_ri_s8<string OpcStr, PatFrag OpNode> {
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in
def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Ext:$c),
!strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
[(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b),
s8ExtPred:$c))]>;
}
}
//===----------------------------------------------------------------------===//
// ALU32/ALU (Instructions with register-register form)
//===----------------------------------------------------------------------===//
def SDTHexagonI64I32I32 : SDTypeProfile<1, 2,
[SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
def HexagonWrapperCombineII :
SDNode<"HexagonISD::WrapperCombineII", SDTHexagonI64I32I32>;
def HexagonWrapperCombineRR :
SDNode<"HexagonISD::WrapperCombineRR", SDTHexagonI64I32I32>;
multiclass ALU32_Pbase<string mnemonic, RegisterClass RC, bit isNot,
bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : ALU32_rr<(outs RC:$dst),
(ins PredRegs:$src1, IntRegs:$src2, IntRegs: $src3),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
") $dst = ")#mnemonic#"($src2, $src3)",
[]>;
}
multiclass ALU32_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ALU32_Pbase<mnemonic, RC, PredNot, 1>;
}
}
let InputType = "reg" in
multiclass ALU32_base<string mnemonic, string CextOp, SDNode OpNode> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_rr in {
let isPredicable = 1 in
def NAME : ALU32_rr<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = "#mnemonic#"($src1, $src2)",
[(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
(i32 IntRegs:$src2)))]>;
let neverHasSideEffects = 1, isPredicated = 1 in {
defm Pt : ALU32_Pred<mnemonic, IntRegs, 0>;
defm NotPt : ALU32_Pred<mnemonic, IntRegs, 1>;
}
}
}
let isCommutable = 1 in {
defm ADD_rr : ALU32_base<"add", "ADD", add>, ImmRegRel, PredNewRel;
defm AND_rr : ALU32_base<"and", "AND", and>, ImmRegRel, PredNewRel;
defm XOR_rr : ALU32_base<"xor", "XOR", xor>, ImmRegRel, PredNewRel;
defm OR_rr : ALU32_base<"or", "OR", or>, ImmRegRel, PredNewRel;
}
defm SUB_rr : ALU32_base<"sub", "SUB", sub>, ImmRegRel, PredNewRel;
// Combines the two integer registers SRC1 and SRC2 into a double register.
let isPredicable = 1 in
class T_Combine : ALU32_rr<(outs DoubleRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = combine($src1, $src2)",
[(set (i64 DoubleRegs:$dst),
(i64 (HexagonWrapperCombineRR (i32 IntRegs:$src1),
(i32 IntRegs:$src2))))]>;
multiclass Combine_base {
let BaseOpcode = "combine" in {
def NAME : T_Combine;
let neverHasSideEffects = 1, isPredicated = 1 in {
defm Pt : ALU32_Pred<"combine", DoubleRegs, 0>;
defm NotPt : ALU32_Pred<"combine", DoubleRegs, 1>;
}
}
}
defm COMBINE_rr : Combine_base, PredNewRel;
// Combines the two immediates SRC1 and SRC2 into a double register.
class COMBINE_imm<Operand imm1, Operand imm2, PatLeaf pat1, PatLeaf pat2> :
ALU32_ii<(outs DoubleRegs:$dst), (ins imm1:$src1, imm2:$src2),
"$dst = combine(#$src1, #$src2)",
[(set (i64 DoubleRegs:$dst),
(i64 (HexagonWrapperCombineII (i32 pat1:$src1), (i32 pat2:$src2))))]>;
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8 in
def COMBINE_Ii : COMBINE_imm<s8Ext, s8Imm, s8ExtPred, s8ImmPred>;
//===----------------------------------------------------------------------===//
// ALU32/ALU (ADD with register-immediate form)
//===----------------------------------------------------------------------===//
multiclass ALU32ri_Pbase<string mnemonic, bit isNot, bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, IntRegs:$src2, s8Ext: $src3),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
") $dst = ")#mnemonic#"($src2, #$src3)",
[]>;
}
multiclass ALU32ri_Pred<string mnemonic, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ALU32ri_Pbase<mnemonic, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ALU32ri_Pbase<mnemonic, PredNot, 1>;
}
}
let isExtendable = 1, InputType = "imm" in
multiclass ALU32ri_base<string mnemonic, string CextOp, SDNode OpNode> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_ri in {
let opExtendable = 2, isExtentSigned = 1, opExtentBits = 16,
isPredicable = 1 in
def NAME : ALU32_ri<(outs IntRegs:$dst),
(ins IntRegs:$src1, s16Ext:$src2),
"$dst = "#mnemonic#"($src1, #$src2)",
[(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
(s16ExtPred:$src2)))]>;
let opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
neverHasSideEffects = 1, isPredicated = 1 in {
defm Pt : ALU32ri_Pred<mnemonic, 0>;
defm NotPt : ALU32ri_Pred<mnemonic, 1>;
}
}
}
defm ADD_ri : ALU32ri_base<"add", "ADD", add>, ImmRegRel, PredNewRel;
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
CextOpcode = "OR", InputType = "imm" in
def OR_ri : ALU32_ri<(outs IntRegs:$dst),
(ins IntRegs:$src1, s10Ext:$src2),
"$dst = or($src1, #$src2)",
[(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
s10ExtPred:$src2))]>, ImmRegRel;
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
InputType = "imm", CextOpcode = "AND" in
def AND_ri : ALU32_ri<(outs IntRegs:$dst),
(ins IntRegs:$src1, s10Ext:$src2),
"$dst = and($src1, #$src2)",
[(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
s10ExtPred:$src2))]>, ImmRegRel;
// Nop.
let neverHasSideEffects = 1 in
def NOP : ALU32_rr<(outs), (ins),
"nop",
[]>;
// Rd32=sub(#s10,Rs32)
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 10,
CextOpcode = "SUB", InputType = "imm" in
def SUB_ri : ALU32_ri<(outs IntRegs:$dst),
(ins s10Ext:$src1, IntRegs:$src2),
"$dst = sub(#$src1, $src2)",
[(set IntRegs:$dst, (sub s10ExtPred:$src1, IntRegs:$src2))]>,
ImmRegRel;
// Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs).
def : Pat<(not (i32 IntRegs:$src1)),
(SUB_ri -1, (i32 IntRegs:$src1))>;
// Rd = neg(Rs) gets mapped to Rd=sub(#0, Rs).
// Pattern definition for 'neg' was not necessary.
multiclass TFR_Pred<bit PredNot> {
let isPredicatedFalse = PredNot in {
def _c#NAME : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$src1, IntRegs:$src2),
!if(PredNot, "if (!$src1", "if ($src1")#") $dst = $src2",
[]>;
// Predicate new
let isPredicatedNew = 1 in
def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$src1, IntRegs:$src2),
!if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = $src2",
[]>;
}
}
let InputType = "reg", neverHasSideEffects = 1 in
multiclass TFR_base<string CextOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp in {
let isPredicable = 1 in
def NAME : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
"$dst = $src1",
[]>;
let isPredicated = 1 in {
defm Pt : TFR_Pred<0>;
defm NotPt : TFR_Pred<1>;
}
}
}
class T_TFR64_Pred<bit PredNot, bit isPredNew>
: ALU32_rr<(outs DoubleRegs:$dst),
(ins PredRegs:$src1, DoubleRegs:$src2),
!if(PredNot, "if (!$src1", "if ($src1")#
!if(isPredNew, ".new) ", ") ")#"$dst = $src2", []>
{
bits<5> dst;
bits<2> src1;
bits<5> src2;
let IClass = 0b1111;
let Inst{27-24} = 0b1101;
let Inst{13} = isPredNew;
let Inst{7} = PredNot;
let Inst{4-0} = dst;
let Inst{6-5} = src1;
let Inst{20-17} = src2{4-1};
let Inst{16} = 0b1;
let Inst{12-9} = src2{4-1};
let Inst{8} = 0b0;
}
multiclass TFR64_Pred<bit PredNot> {
let isPredicatedFalse = PredNot in {
def _c#NAME : T_TFR64_Pred<PredNot, 0>;
let isPredicatedNew = 1 in
def _cdn#NAME : T_TFR64_Pred<PredNot, 1>; // Predicate new
}
}
let neverHasSideEffects = 1 in
multiclass TFR64_base<string BaseName> {
let BaseOpcode = BaseName in {
let isPredicable = 1 in
def NAME : ALU32Inst <(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1),
"$dst = $src1" > {
bits<5> dst;
bits<5> src1;
let IClass = 0b1111;
let Inst{27-23} = 0b01010;
let Inst{4-0} = dst;
let Inst{20-17} = src1{4-1};
let Inst{16} = 0b1;
let Inst{12-9} = src1{4-1};
let Inst{8} = 0b0;
}
let isPredicated = 1 in {
defm Pt : TFR64_Pred<0>;
defm NotPt : TFR64_Pred<1>;
}
}
}
multiclass TFRI_Pred<bit PredNot> {
let isMoveImm = 1, isPredicatedFalse = PredNot in {
def _c#NAME : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, s12Ext:$src2),
!if(PredNot, "if (!$src1", "if ($src1")#") $dst = #$src2",
[]>;
// Predicate new
let isPredicatedNew = 1 in
def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$src1, s12Ext:$src2),
!if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = #$src2",
[]>;
}
}
let InputType = "imm", isExtendable = 1, isExtentSigned = 1 in
multiclass TFRI_base<string CextOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#I in {
let isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16,
isMoveImm = 1, isPredicable = 1, isReMaterializable = 1 in
def NAME : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1),
"$dst = #$src1",
[(set (i32 IntRegs:$dst), s16ExtPred:$src1)]>;
let opExtendable = 2, opExtentBits = 12, neverHasSideEffects = 1,
isPredicated = 1 in {
defm Pt : TFRI_Pred<0>;
defm NotPt : TFRI_Pred<1>;
}
}
}
defm TFRI : TFRI_base<"TFR">, ImmRegRel, PredNewRel;
defm TFR : TFR_base<"TFR">, ImmRegRel, PredNewRel;
defm TFR64 : TFR64_base<"TFR64">, PredNewRel;
// Transfer control register.
let neverHasSideEffects = 1 in
def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1),
"$dst = $src1",
[]>;
//===----------------------------------------------------------------------===//
// ALU32/ALU -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ALU32/PERM +
//===----------------------------------------------------------------------===//
// Mux.
def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1,
DoubleRegs:$src2,
DoubleRegs:$src3),
"$dst = vmux($src1, $src2, $src3)",
[]>;
let CextOpcode = "MUX", InputType = "reg" in
def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
IntRegs:$src2, IntRegs:$src3),
"$dst = mux($src1, $src2, $src3)",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))]>, ImmRegRel;
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
CextOpcode = "MUX", InputType = "imm" in
def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2,
IntRegs:$src3),
"$dst = mux($src1, #$src2, $src3)",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 PredRegs:$src1), s8ExtPred:$src2,
(i32 IntRegs:$src3))))]>, ImmRegRel;
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
CextOpcode = "MUX", InputType = "imm" in
def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2,
s8Ext:$src3),
"$dst = mux($src1, $src2, #$src3)",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
s8ExtPred:$src3)))]>, ImmRegRel;
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in
def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2,
s8Imm:$src3),
"$dst = mux($src1, #$src2, #$src3)",
[(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1),
s8ExtPred:$src2,
s8ImmPred:$src3)))]>;
// ALU32 - aslh, asrh, sxtb, sxth, zxtb, zxth
multiclass ALU32_2op_Pbase<string mnemonic, bit isNot, bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : ALU32Inst<(outs IntRegs:$dst),
(ins PredRegs:$src1, IntRegs:$src2),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ",
") $dst = ")#mnemonic#"($src2)">,
Requires<[HasV4T]>;
}
multiclass ALU32_2op_Pred<string mnemonic, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ALU32_2op_Pbase<mnemonic, PredNot, 1>;
}
}
multiclass ALU32_2op_base<string mnemonic> {
let BaseOpcode = mnemonic in {
let isPredicable = 1, neverHasSideEffects = 1 in
def NAME : ALU32Inst<(outs IntRegs:$dst),
(ins IntRegs:$src1),
"$dst = "#mnemonic#"($src1)">;
let Predicates = [HasV4T], validSubTargets = HasV4SubT, isPredicated = 1,
neverHasSideEffects = 1 in {
defm Pt_V4 : ALU32_2op_Pred<mnemonic, 0>;
defm NotPt_V4 : ALU32_2op_Pred<mnemonic, 1>;
}
}
}
defm ASLH : ALU32_2op_base<"aslh">, PredNewRel;
defm ASRH : ALU32_2op_base<"asrh">, PredNewRel;
defm SXTB : ALU32_2op_base<"sxtb">, PredNewRel;
defm SXTH : ALU32_2op_base<"sxth">, PredNewRel;
defm ZXTB : ALU32_2op_base<"zxtb">, PredNewRel;
defm ZXTH : ALU32_2op_base<"zxth">, PredNewRel;
def : Pat <(shl (i32 IntRegs:$src1), (i32 16)),
(ASLH IntRegs:$src1)>;
def : Pat <(sra (i32 IntRegs:$src1), (i32 16)),
(ASRH IntRegs:$src1)>;
def : Pat <(sext_inreg (i32 IntRegs:$src1), i8),
(SXTB IntRegs:$src1)>;
def : Pat <(sext_inreg (i32 IntRegs:$src1), i16),
(SXTH IntRegs:$src1)>;
//===----------------------------------------------------------------------===//
// ALU32/PERM -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ALU32/PRED +
//===----------------------------------------------------------------------===//
// Compare.
defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", "CMPGTU", setugt>, ImmRegRel;
defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", "CMPGT", setgt>, ImmRegRel;
defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", "CMPEQ", seteq>, ImmRegRel;
// SDNode for converting immediate C to C-1.
def DEC_CONST_SIGNED : SDNodeXForm<imm, [{
// Return the byte immediate const-1 as an SDNode.
int32_t imm = N->getSExtValue();
return XformSToSM1Imm(imm);
}]>;
// SDNode for converting immediate C to C-1.
def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{
// Return the byte immediate const-1 as an SDNode.
uint32_t imm = N->getZExtValue();
return XformUToUM1Imm(imm);
}]>;
def CTLZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
"$dst = cl0($src1)",
[(set (i32 IntRegs:$dst), (ctlz (i32 IntRegs:$src1)))]>;
def CTTZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1),
"$dst = ct0($src1)",
[(set (i32 IntRegs:$dst), (cttz (i32 IntRegs:$src1)))]>;
def CTLZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
"$dst = cl0($src1)",
[(set (i32 IntRegs:$dst), (i32 (trunc (ctlz (i64 DoubleRegs:$src1)))))]>;
def CTTZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1),
"$dst = ct0($src1)",
[(set (i32 IntRegs:$dst), (i32 (trunc (cttz (i64 DoubleRegs:$src1)))))]>;
def TSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = tstbit($src1, $src2)",
[(set (i1 PredRegs:$dst),
(setne (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>;
def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = tstbit($src1, $src2)",
[(set (i1 PredRegs:$dst),
(setne (and (shl 1, (u5ImmPred:$src2)), (i32 IntRegs:$src1)), 0))]>;
//===----------------------------------------------------------------------===//
// ALU32/PRED -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ALU64/ALU +
//===----------------------------------------------------------------------===//
// Add.
def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2),
"$dst = add($src1, $src2)",
[(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2)))]>;
// Add halfword.
// Compare.
defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>;
defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>;
defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>;
// Logical operations.
def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2),
"$dst = and($src1, $src2)",
[(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2)))]>;
def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2),
"$dst = or($src1, $src2)",
[(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2)))]>;
def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2),
"$dst = xor($src1, $src2)",
[(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2)))]>;
// Maximum.
def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = max($src2, $src1)",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 (setlt (i32 IntRegs:$src2),
(i32 IntRegs:$src1))),
(i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = maxu($src2, $src1)",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 (setult (i32 IntRegs:$src2),
(i32 IntRegs:$src1))),
(i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2),
"$dst = max($src2, $src1)",
[(set (i64 DoubleRegs:$dst),
(i64 (select (i1 (setlt (i64 DoubleRegs:$src2),
(i64 DoubleRegs:$src1))),
(i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2))))]>;
def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2),
"$dst = maxu($src2, $src1)",
[(set (i64 DoubleRegs:$dst),
(i64 (select (i1 (setult (i64 DoubleRegs:$src2),
(i64 DoubleRegs:$src1))),
(i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2))))]>;
// Minimum.
def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = min($src2, $src1)",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 (setgt (i32 IntRegs:$src2),
(i32 IntRegs:$src1))),
(i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = minu($src2, $src1)",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 (setugt (i32 IntRegs:$src2),
(i32 IntRegs:$src1))),
(i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2),
"$dst = min($src2, $src1)",
[(set (i64 DoubleRegs:$dst),
(i64 (select (i1 (setgt (i64 DoubleRegs:$src2),
(i64 DoubleRegs:$src1))),
(i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2))))]>;
def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2),
"$dst = minu($src2, $src1)",
[(set (i64 DoubleRegs:$dst),
(i64 (select (i1 (setugt (i64 DoubleRegs:$src2),
(i64 DoubleRegs:$src1))),
(i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2))))]>;
// Subtract.
def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2),
"$dst = sub($src1, $src2)",
[(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2)))]>;
// Subtract halfword.
//===----------------------------------------------------------------------===//
// ALU64/ALU -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ALU64/BIT +
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
// ALU64/BIT -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ALU64/PERM +
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
// ALU64/PERM -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// CR +
//===----------------------------------------------------------------------===//
// Logical reductions on predicates.
// Looping instructions.
// Pipelined looping instructions.
// Logical operations on predicates.
def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
"$dst = and($src1, $src2)",
[(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1),
(i1 PredRegs:$src2)))]>;
let neverHasSideEffects = 1 in
def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1,
PredRegs:$src2),
"$dst = and($src1, !$src2)",
[]>;
def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
"$dst = any8($src1)",
[]>;
def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
"$dst = all8($src1)",
[]>;
def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1,
PredRegs:$src2),
"$dst = vitpack($src1, $src2)",
[]>;
def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2,
PredRegs:$src3),
"$dst = valignb($src1, $src2, $src3)",
[]>;
def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
DoubleRegs:$src2,
PredRegs:$src3),
"$dst = vspliceb($src1, $src2, $src3)",
[]>;
def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1),
"$dst = mask($src1)",
[]>;
def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
"$dst = not($src1)",
[(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>;
def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
"$dst = or($src1, $src2)",
[(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1),
(i1 PredRegs:$src2)))]>;
def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
"$dst = xor($src1, $src2)",
[(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1),
(i1 PredRegs:$src2)))]>;
// User control register transfer.
//===----------------------------------------------------------------------===//
// CR -
//===----------------------------------------------------------------------===//
def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone,
[SDNPHasChain]>;
def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>;
let InputType = "imm", isBarrier = 1, isPredicable = 1,
Defs = [PC], isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
opExtentBits = 24 in
class T_JMP <dag InsDag, list<dag> JumpList = []>
: JInst<(outs), InsDag,
"jump $dst" , JumpList> {
bits<24> dst;
let IClass = 0b0101;
let Inst{27-25} = 0b100;
let Inst{24-16} = dst{23-15};
let Inst{13-1} = dst{14-2};
}
let InputType = "imm", isExtendable = 1, opExtendable = 1, isExtentSigned = 1,
Defs = [PC], isPredicated = 1, opExtentBits = 17 in
class T_JMP_c <bit PredNot, bit isPredNew, bit isTaken>:
JInst<(outs ), (ins PredRegs:$src, brtarget:$dst),
!if(PredNot, "if (!$src", "if ($src")#
!if(isPredNew, ".new) ", ") ")#"jump"#
!if(isPredNew, !if(isTaken, ":t ", ":nt "), " ")#"$dst"> {
let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), "");
let isPredicatedFalse = PredNot;
let isPredicatedNew = isPredNew;
bits<2> src;
bits<17> dst;
let IClass = 0b0101;
let Inst{27-24} = 0b1100;
let Inst{21} = PredNot;
let Inst{12} = !if(isPredNew, isTaken, zero);
let Inst{11} = isPredNew;
let Inst{9-8} = src;
let Inst{23-22} = dst{16-15};
let Inst{20-16} = dst{14-10};
let Inst{13} = dst{9};
let Inst{7-1} = dst{8-2};
}
let isBarrier = 1, Defs = [PC], isPredicable = 1, InputType = "reg" in
class T_JMPr<dag InsDag = (ins IntRegs:$dst)>
: JRInst<(outs ), InsDag,
"jumpr $dst" ,
[]> {
bits<5> dst;
let IClass = 0b0101;
let Inst{27-21} = 0b0010100;
let Inst{20-16} = dst;
}
let Defs = [PC], isPredicated = 1, InputType = "reg" in
class T_JMPr_c <bit PredNot, bit isPredNew, bit isTaken>:
JRInst <(outs ), (ins PredRegs:$src, IntRegs:$dst),
!if(PredNot, "if (!$src", "if ($src")#
!if(isPredNew, ".new) ", ") ")#"jumpr"#
!if(isPredNew, !if(isTaken, ":t ", ":nt "), " ")#"$dst"> {
let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), "");
let isPredicatedFalse = PredNot;
let isPredicatedNew = isPredNew;
bits<2> src;
bits<5> dst;
let IClass = 0b0101;
let Inst{27-22} = 0b001101;
let Inst{21} = PredNot;
let Inst{20-16} = dst;
let Inst{12} = !if(isPredNew, isTaken, zero);
let Inst{11} = isPredNew;
let Inst{9-8} = src;
let Predicates = !if(isPredNew, [HasV3T], [HasV2T]);
let validSubTargets = !if(isPredNew, HasV3SubT, HasV2SubT);
}
multiclass JMP_Pred<bit PredNot> {
def _#NAME : T_JMP_c<PredNot, 0, 0>;
// Predicate new
def _#NAME#new_t : T_JMP_c<PredNot, 1, 1>; // taken
def _#NAME#new_nt : T_JMP_c<PredNot, 1, 0>; // not taken
}
multiclass JMP_base<string BaseOp> {
let BaseOpcode = BaseOp in {
def NAME : T_JMP<(ins brtarget:$dst), [(br bb:$dst)]>;
defm t : JMP_Pred<0>;
defm f : JMP_Pred<1>;
}
}
multiclass JMPR_Pred<bit PredNot> {
def NAME: T_JMPr_c<PredNot, 0, 0>;
// Predicate new
def NAME#new_tV3 : T_JMPr_c<PredNot, 1, 1>; // taken
def NAME#new_ntV3 : T_JMPr_c<PredNot, 1, 0>; // not taken
}
multiclass JMPR_base<string BaseOp> {
let BaseOpcode = BaseOp in {
def NAME : T_JMPr;
defm _t : JMPR_Pred<0>;
defm _f : JMPR_Pred<1>;
}
}
let isTerminator = 1, neverHasSideEffects = 1 in {
let isBranch = 1 in
defm JMP : JMP_base<"JMP">, PredNewRel;
let isBranch = 1, isIndirectBranch = 1 in
defm JMPR : JMPR_base<"JMPr">, PredNewRel;
let isReturn = 1, isCodeGenOnly = 1 in
defm JMPret : JMPR_base<"JMPret">, PredNewRel;
}
def : Pat<(retflag),
(JMPret (i32 R31))>;
def : Pat <(brcond (i1 PredRegs:$src1), bb:$offset),
(JMP_t (i1 PredRegs:$src1), bb:$offset)>;
// A return through builtin_eh_return.
let isReturn = 1, isTerminator = 1, isBarrier = 1, neverHasSideEffects = 1,
isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
def EH_RETURN_JMPR : T_JMPr;
def : Pat<(eh_return),
(EH_RETURN_JMPR (i32 R31))>;
def : Pat<(HexagonBR_JT (i32 IntRegs:$dst)),
(JMPR (i32 IntRegs:$dst))>;
def : Pat<(brind (i32 IntRegs:$dst)),
(JMPR (i32 IntRegs:$dst))>;
//===----------------------------------------------------------------------===//
// JR -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// LD +
//===----------------------------------------------------------------------===//
///
// Load -- MEMri operand
multiclass LD_MEMri_Pbase<string mnemonic, RegisterClass RC,
bit isNot, bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : LDInst2<(outs RC:$dst),
(ins PredRegs:$src1, MEMri:$addr),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#"$dst = "#mnemonic#"($addr)",
[]>;
}
multiclass LD_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 0>;
// Predicate new
defm _cdn#NAME : LD_MEMri_Pbase<mnemonic, RC, PredNot, 1>;
}
}
let isExtendable = 1, neverHasSideEffects = 1 in
multiclass LD_MEMri<string mnemonic, string CextOp, RegisterClass RC,
bits<5> ImmBits, bits<5> PredImmBits> {
let CextOpcode = CextOp, BaseOpcode = CextOp in {
let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits,
isPredicable = 1 in
def NAME : LDInst2<(outs RC:$dst), (ins MEMri:$addr),
"$dst = "#mnemonic#"($addr)",
[]>;
let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits,
isPredicated = 1 in {
defm Pt : LD_MEMri_Pred<mnemonic, RC, 0 >;
defm NotPt : LD_MEMri_Pred<mnemonic, RC, 1 >;
}
}
}
let addrMode = BaseImmOffset, isMEMri = "true" in {
let accessSize = ByteAccess in {
defm LDrib: LD_MEMri < "memb", "LDrib", IntRegs, 11, 6>, AddrModeRel;
defm LDriub: LD_MEMri < "memub" , "LDriub", IntRegs, 11, 6>, AddrModeRel;
}
let accessSize = HalfWordAccess in {
defm LDrih: LD_MEMri < "memh", "LDrih", IntRegs, 12, 7>, AddrModeRel;
defm LDriuh: LD_MEMri < "memuh", "LDriuh", IntRegs, 12, 7>, AddrModeRel;
}
let accessSize = WordAccess in
defm LDriw: LD_MEMri < "memw", "LDriw", IntRegs, 13, 8>, AddrModeRel;
let accessSize = DoubleWordAccess in
defm LDrid: LD_MEMri < "memd", "LDrid", DoubleRegs, 14, 9>, AddrModeRel;
}
def : Pat < (i32 (sextloadi8 ADDRriS11_0:$addr)),
(LDrib ADDRriS11_0:$addr) >;
def : Pat < (i32 (zextloadi8 ADDRriS11_0:$addr)),
(LDriub ADDRriS11_0:$addr) >;
def : Pat < (i32 (sextloadi16 ADDRriS11_1:$addr)),
(LDrih ADDRriS11_1:$addr) >;
def : Pat < (i32 (zextloadi16 ADDRriS11_1:$addr)),
(LDriuh ADDRriS11_1:$addr) >;
def : Pat < (i32 (load ADDRriS11_2:$addr)),
(LDriw ADDRriS11_2:$addr) >;
def : Pat < (i64 (load ADDRriS11_3:$addr)),
(LDrid ADDRriS11_3:$addr) >;
// Load - Base with Immediate offset addressing mode
multiclass LD_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp,
bit isNot, bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : LDInst2<(outs RC:$dst),
(ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#"$dst = "#mnemonic#"($src2+#$src3)",
[]>;
}
multiclass LD_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp,
bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>;
// Predicate new
defm _cdn#NAME : LD_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>;
}
}
let isExtendable = 1, neverHasSideEffects = 1 in
multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC,
Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
bits<5> PredImmBits> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits,
isPredicable = 1, AddedComplexity = 20 in
def NAME : LDInst2<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset),
"$dst = "#mnemonic#"($src1+#$offset)",
[]>;
let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits,
isPredicated = 1 in {
defm Pt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 0 >;
defm NotPt : LD_Idxd_Pred<mnemonic, RC, predImmOp, 1 >;
}
}
}
let addrMode = BaseImmOffset in {
let accessSize = ByteAccess in {
defm LDrib_indexed: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext,
11, 6>, AddrModeRel;
defm LDriub_indexed: LD_Idxd <"memub" , "LDriub", IntRegs, s11_0Ext, u6_0Ext,
11, 6>, AddrModeRel;
}
let accessSize = HalfWordAccess in {
defm LDrih_indexed: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext,
12, 7>, AddrModeRel;
defm LDriuh_indexed: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext,
12, 7>, AddrModeRel;
}
let accessSize = WordAccess in
defm LDriw_indexed: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext,
13, 8>, AddrModeRel;
let accessSize = DoubleWordAccess in
defm LDrid_indexed: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext,
14, 9>, AddrModeRel;
}
let AddedComplexity = 20 in {
def : Pat < (i32 (sextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))),
(LDrib_indexed IntRegs:$src1, s11_0ExtPred:$offset) >;
def : Pat < (i32 (zextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))),
(LDriub_indexed IntRegs:$src1, s11_0ExtPred:$offset) >;
def : Pat < (i32 (sextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))),
(LDrih_indexed IntRegs:$src1, s11_1ExtPred:$offset) >;
def : Pat < (i32 (zextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))),
(LDriuh_indexed IntRegs:$src1, s11_1ExtPred:$offset) >;
def : Pat < (i32 (load (add IntRegs:$src1, s11_2ExtPred:$offset))),
(LDriw_indexed IntRegs:$src1, s11_2ExtPred:$offset) >;
def : Pat < (i64 (load (add IntRegs:$src1, s11_3ExtPred:$offset))),
(LDrid_indexed IntRegs:$src1, s11_3ExtPred:$offset) >;
}
//===----------------------------------------------------------------------===//
// Post increment load
//===----------------------------------------------------------------------===//
multiclass LD_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp,
bit isNot, bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2),
(ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#"$dst = "#mnemonic#"($src2++#$offset)",
[],
"$src2 = $dst2">;
}
multiclass LD_PostInc_Pred<string mnemonic, RegisterClass RC,
Operand ImmOp, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>;
// Predicate new
let Predicates = [HasV4T], validSubTargets = HasV4SubT in
defm _cdn#NAME#_V4 : LD_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>;
}
}
multiclass LD_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
Operand ImmOp> {
let BaseOpcode = "POST_"#BaseOp in {
let isPredicable = 1 in
def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2),
(ins IntRegs:$src1, ImmOp:$offset),
"$dst = "#mnemonic#"($src1++#$offset)",
[],
"$src1 = $dst2">;
let isPredicated = 1 in {
defm Pt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 0 >;
defm NotPt : LD_PostInc_Pred<mnemonic, RC, ImmOp, 1 >;
}
}
}
let hasCtrlDep = 1, neverHasSideEffects = 1, addrMode = PostInc in {
defm POST_LDrib : LD_PostInc<"memb", "LDrib", IntRegs, s4_0Imm>,
PredNewRel;
defm POST_LDriub : LD_PostInc<"memub", "LDriub", IntRegs, s4_0Imm>,
PredNewRel;
defm POST_LDrih : LD_PostInc<"memh", "LDrih", IntRegs, s4_1Imm>,
PredNewRel;
defm POST_LDriuh : LD_PostInc<"memuh", "LDriuh", IntRegs, s4_1Imm>,
PredNewRel;
defm POST_LDriw : LD_PostInc<"memw", "LDriw", IntRegs, s4_2Imm>,
PredNewRel;
defm POST_LDrid : LD_PostInc<"memd", "LDrid", DoubleRegs, s4_3Imm>,
PredNewRel;
}
def : Pat< (i32 (extloadi1 ADDRriS11_0:$addr)),
(i32 (LDrib ADDRriS11_0:$addr)) >;
// Load byte any-extend.
def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)),
(i32 (LDrib ADDRriS11_0:$addr)) >;
// Indexed load byte any-extend.
let AddedComplexity = 20 in
def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))),
(i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >;
def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)),
(i32 (LDrih ADDRriS11_1:$addr))>;
let AddedComplexity = 20 in
def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))),
(i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >;
let AddedComplexity = 10 in
def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)),
(i32 (LDriub ADDRriS11_0:$addr))>;
let AddedComplexity = 20 in
def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))),
(i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>;
// Load predicate.
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
isPseudo = 1, Defs = [R10,R11,D5], neverHasSideEffects = 1 in
def LDriw_pred : LDInst2<(outs PredRegs:$dst),
(ins MEMri:$addr),
"Error; should not emit",
[]>;
// Deallocate stack frame.
let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in {
def DEALLOCFRAME : LDInst2<(outs), (ins),
"deallocframe",
[]>;
}
// Load and unpack bytes to halfwords.
//===----------------------------------------------------------------------===//
// LD -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/ALU +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/ALU -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/COMPLEX +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/COMPLEX -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/MPYH +
//===----------------------------------------------------------------------===//
// Multiply and use lower result.
// Rd=+mpyi(Rs,#u8)
let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 8 in
def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Ext:$src2),
"$dst =+ mpyi($src1, #$src2)",
[(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
u8ExtPred:$src2))]>;
// Rd=-mpyi(Rs,#u8)
def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2),
"$dst =- mpyi($src1, #$src2)",
[(set (i32 IntRegs:$dst), (ineg (mul (i32 IntRegs:$src1),
u8ImmPred:$src2)))]>;
// Rd=mpyi(Rs,#m9)
// s9 is NOT the same as m9 - but it works.. so far.
// Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8)
// depending on the value of m9. See Arch Spec.
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9,
CextOpcode = "MPYI", InputType = "imm" in
def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2),
"$dst = mpyi($src1, #$src2)",
[(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
s9ExtPred:$src2))]>, ImmRegRel;
// Rd=mpyi(Rs,Rt)
let CextOpcode = "MPYI", InputType = "reg" in
def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = mpyi($src1, $src2)",
[(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
(i32 IntRegs:$src2)))]>, ImmRegRel;
// Rx+=mpyi(Rs,#u8)
let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8,
CextOpcode = "MPYI_acc", InputType = "imm" in
def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3),
"$dst += mpyi($src2, #$src3)",
[(set (i32 IntRegs:$dst),
(add (mul (i32 IntRegs:$src2), u8ExtPred:$src3),
(i32 IntRegs:$src1)))],
"$src1 = $dst">, ImmRegRel;
// Rx+=mpyi(Rs,Rt)
let CextOpcode = "MPYI_acc", InputType = "reg" in
def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
"$dst += mpyi($src2, $src3)",
[(set (i32 IntRegs:$dst),
(add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
(i32 IntRegs:$src1)))],
"$src1 = $dst">, ImmRegRel;
// Rx-=mpyi(Rs,#u8)
let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8 in
def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3),
"$dst -= mpyi($src2, #$src3)",
[(set (i32 IntRegs:$dst),
(sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
u8ExtPred:$src3)))],
"$src1 = $dst">;
// Multiply and use upper result.
// Rd=mpy(Rs,Rt.H):<<1:rnd:sat
// Rd=mpy(Rs,Rt.L):<<1:rnd:sat
// Rd=mpy(Rs,Rt)
def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = mpy($src1, $src2)",
[(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1),
(i32 IntRegs:$src2)))]>;
// Rd=mpy(Rs,Rt):rnd
// Rd=mpyu(Rs,Rt)
def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = mpyu($src1, $src2)",
[(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1),
(i32 IntRegs:$src2)))]>;
// Multiply and use full result.
// Rdd=mpyu(Rs,Rt)
def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = mpyu($src1, $src2)",
[(set (i64 DoubleRegs:$dst),
(mul (i64 (anyext (i32 IntRegs:$src1))),
(i64 (anyext (i32 IntRegs:$src2)))))]>;
// Rdd=mpy(Rs,Rt)
def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = mpy($src1, $src2)",
[(set (i64 DoubleRegs:$dst),
(mul (i64 (sext (i32 IntRegs:$src1))),
(i64 (sext (i32 IntRegs:$src2)))))]>;
// Multiply and accumulate, use full result.
// Rxx[+-]=mpy(Rs,Rt)
// Rxx+=mpy(Rs,Rt)
def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
"$dst += mpy($src2, $src3)",
[(set (i64 DoubleRegs:$dst),
(add (mul (i64 (sext (i32 IntRegs:$src2))),
(i64 (sext (i32 IntRegs:$src3)))),
(i64 DoubleRegs:$src1)))],
"$src1 = $dst">;
// Rxx-=mpy(Rs,Rt)
def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
"$dst -= mpy($src2, $src3)",
[(set (i64 DoubleRegs:$dst),
(sub (i64 DoubleRegs:$src1),
(mul (i64 (sext (i32 IntRegs:$src2))),
(i64 (sext (i32 IntRegs:$src3))))))],
"$src1 = $dst">;
// Rxx[+-]=mpyu(Rs,Rt)
// Rxx+=mpyu(Rs,Rt)
def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
IntRegs:$src2, IntRegs:$src3),
"$dst += mpyu($src2, $src3)",
[(set (i64 DoubleRegs:$dst),
(add (mul (i64 (anyext (i32 IntRegs:$src2))),
(i64 (anyext (i32 IntRegs:$src3)))),
(i64 DoubleRegs:$src1)))], "$src1 = $dst">;
// Rxx-=mpyu(Rs,Rt)
def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
"$dst -= mpyu($src2, $src3)",
[(set (i64 DoubleRegs:$dst),
(sub (i64 DoubleRegs:$src1),
(mul (i64 (anyext (i32 IntRegs:$src2))),
(i64 (anyext (i32 IntRegs:$src3))))))],
"$src1 = $dst">;
let InputType = "reg", CextOpcode = "ADD_acc" in
def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
IntRegs:$src2, IntRegs:$src3),
"$dst += add($src2, $src3)",
[(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
(i32 IntRegs:$src3)),
(i32 IntRegs:$src1)))],
"$src1 = $dst">, ImmRegRel;
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
InputType = "imm", CextOpcode = "ADD_acc" in
def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
IntRegs:$src2, s8Ext:$src3),
"$dst += add($src2, #$src3)",
[(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
s8_16ExtPred:$src3),
(i32 IntRegs:$src1)))],
"$src1 = $dst">, ImmRegRel;
let CextOpcode = "SUB_acc", InputType = "reg" in
def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
IntRegs:$src2, IntRegs:$src3),
"$dst -= add($src2, $src3)",
[(set (i32 IntRegs:$dst),
(sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">, ImmRegRel;
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8,
CextOpcode = "SUB_acc", InputType = "imm" in
def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
IntRegs:$src2, s8Ext:$src3),
"$dst -= add($src2, #$src3)",
[(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1),
(add (i32 IntRegs:$src2),
s8_16ExtPred:$src3)))],
"$src1 = $dst">, ImmRegRel;
//===----------------------------------------------------------------------===//
// MTYPE/MPYH -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/MPYS +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/MPYS -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/VB +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/VB -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/VH +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MTYPE/VH -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ST +
//===----------------------------------------------------------------------===//
///
// Store doubleword.
//===----------------------------------------------------------------------===//
// Post increment store
//===----------------------------------------------------------------------===//
multiclass ST_PostInc_Pbase<string mnemonic, RegisterClass RC, Operand ImmOp,
bit isNot, bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : STInst2PI<(outs IntRegs:$dst),
(ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($src2++#$offset) = $src3",
[],
"$src2 = $dst">;
}
multiclass ST_PostInc_Pred<string mnemonic, RegisterClass RC,
Operand ImmOp, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 0>;
// Predicate new
let Predicates = [HasV4T], validSubTargets = HasV4SubT in
defm _cdn#NAME#_V4 : ST_PostInc_Pbase<mnemonic, RC, ImmOp, PredNot, 1>;
}
}
let hasCtrlDep = 1, isNVStorable = 1, neverHasSideEffects = 1 in
multiclass ST_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
Operand ImmOp> {
let hasCtrlDep = 1, BaseOpcode = "POST_"#BaseOp in {
let isPredicable = 1 in
def NAME : STInst2PI<(outs IntRegs:$dst),
(ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
mnemonic#"($src1++#$offset) = $src2",
[],
"$src1 = $dst">;
let isPredicated = 1 in {
defm Pt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 0 >;
defm NotPt : ST_PostInc_Pred<mnemonic, RC, ImmOp, 1 >;
}
}
}
defm POST_STbri: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel;
defm POST_SThri: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel;
defm POST_STwri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel;
let isNVStorable = 0 in
defm POST_STdri: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm>, AddrModeRel;
def : Pat<(post_truncsti8 (i32 IntRegs:$src1), IntRegs:$src2,
s4_3ImmPred:$offset),
(POST_STbri IntRegs:$src2, s4_0ImmPred:$offset, IntRegs:$src1)>;
def : Pat<(post_truncsti16 (i32 IntRegs:$src1), IntRegs:$src2,
s4_3ImmPred:$offset),
(POST_SThri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
def : Pat<(post_store (i32 IntRegs:$src1), IntRegs:$src2, s4_2ImmPred:$offset),
(POST_STwri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>;
def : Pat<(post_store (i64 DoubleRegs:$src1), IntRegs:$src2,
s4_3ImmPred:$offset),
(POST_STdri IntRegs:$src2, s4_3ImmPred:$offset, DoubleRegs:$src1)>;
//===----------------------------------------------------------------------===//
// multiclass for the store instructions with MEMri operand.
//===----------------------------------------------------------------------===//
multiclass ST_MEMri_Pbase<string mnemonic, RegisterClass RC, bit isNot,
bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : STInst2<(outs),
(ins PredRegs:$src1, MEMri:$addr, RC: $src2),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($addr) = $src2",
[]>;
}
multiclass ST_MEMri_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ST_MEMri_Pbase<mnemonic, RC, PredNot, 0>;
// Predicate new
let validSubTargets = HasV4SubT, Predicates = [HasV4T] in
defm _cdn#NAME#_V4 : ST_MEMri_Pbase<mnemonic, RC, PredNot, 1>;
}
}
let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in
multiclass ST_MEMri<string mnemonic, string CextOp, RegisterClass RC,
bits<5> ImmBits, bits<5> PredImmBits> {
let CextOpcode = CextOp, BaseOpcode = CextOp in {
let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
isPredicable = 1 in
def NAME : STInst2<(outs),
(ins MEMri:$addr, RC:$src),
mnemonic#"($addr) = $src",
[]>;
let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
isPredicated = 1 in {
defm Pt : ST_MEMri_Pred<mnemonic, RC, 0>;
defm NotPt : ST_MEMri_Pred<mnemonic, RC, 1>;
}
}
}
let addrMode = BaseImmOffset, isMEMri = "true" in {
let accessSize = ByteAccess in
defm STrib: ST_MEMri < "memb", "STrib", IntRegs, 11, 6>, AddrModeRel;
let accessSize = HalfWordAccess in
defm STrih: ST_MEMri < "memh", "STrih", IntRegs, 12, 7>, AddrModeRel;
let accessSize = WordAccess in
defm STriw: ST_MEMri < "memw", "STriw", IntRegs, 13, 8>, AddrModeRel;
let accessSize = DoubleWordAccess, isNVStorable = 0 in
defm STrid: ST_MEMri < "memd", "STrid", DoubleRegs, 14, 9>, AddrModeRel;
}
def : Pat<(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr),
(STrib ADDRriS11_0:$addr, (i32 IntRegs:$src1))>;
def : Pat<(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr),
(STrih ADDRriS11_1:$addr, (i32 IntRegs:$src1))>;
def : Pat<(store (i32 IntRegs:$src1), ADDRriS11_2:$addr),
(STriw ADDRriS11_2:$addr, (i32 IntRegs:$src1))>;
def : Pat<(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr),
(STrid ADDRriS11_3:$addr, (i64 DoubleRegs:$src1))>;
//===----------------------------------------------------------------------===//
// multiclass for the store instructions with base+immediate offset
// addressing mode
//===----------------------------------------------------------------------===//
multiclass ST_Idxd_Pbase<string mnemonic, RegisterClass RC, Operand predImmOp,
bit isNot, bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : STInst2<(outs),
(ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($src2+#$src3) = $src4",
[]>;
}
multiclass ST_Idxd_Pred<string mnemonic, RegisterClass RC, Operand predImmOp,
bit PredNot> {
let isPredicatedFalse = PredNot, isPredicated = 1 in {
defm _c#NAME : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 0>;
// Predicate new
let validSubTargets = HasV4SubT, Predicates = [HasV4T] in
defm _cdn#NAME#_V4 : ST_Idxd_Pbase<mnemonic, RC, predImmOp, PredNot, 1>;
}
}
let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in
multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC,
Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
bits<5> PredImmBits> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
isPredicable = 1 in
def NAME : STInst2<(outs),
(ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
mnemonic#"($src1+#$src2) = $src3",
[]>;
let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits in {
defm Pt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 0>;
defm NotPt : ST_Idxd_Pred<mnemonic, RC, predImmOp, 1>;
}
}
}
let addrMode = BaseImmOffset, InputType = "reg" in {
let accessSize = ByteAccess in
defm STrib_indexed: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext,
u6_0Ext, 11, 6>, AddrModeRel, ImmRegRel;
let accessSize = HalfWordAccess in
defm STrih_indexed: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext,
u6_1Ext, 12, 7>, AddrModeRel, ImmRegRel;
let accessSize = WordAccess in
defm STriw_indexed: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext,
u6_2Ext, 13, 8>, AddrModeRel, ImmRegRel;
let accessSize = DoubleWordAccess, isNVStorable = 0 in
defm STrid_indexed: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext,
u6_3Ext, 14, 9>, AddrModeRel;
}
let AddedComplexity = 10 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src1), (add IntRegs:$src2,
s11_0ExtPred:$offset)),
(STrib_indexed IntRegs:$src2, s11_0ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(truncstorei16 (i32 IntRegs:$src1), (add IntRegs:$src2,
s11_1ExtPred:$offset)),
(STrih_indexed IntRegs:$src2, s11_1ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(store (i32 IntRegs:$src1), (add IntRegs:$src2,
s11_2ExtPred:$offset)),
(STriw_indexed IntRegs:$src2, s11_2ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(store (i64 DoubleRegs:$src1), (add IntRegs:$src2,
s11_3ExtPred:$offset)),
(STrid_indexed IntRegs:$src2, s11_3ImmPred:$offset,
(i64 DoubleRegs:$src1))>;
}
// memh(Rx++#s4:1)=Rt.H
// Store word.
// Store predicate.
let Defs = [R10,R11,D5], neverHasSideEffects = 1 in
def STriw_pred : STInst2<(outs),
(ins MEMri:$addr, PredRegs:$src1),
"Error; should not emit",
[]>;
// Allocate stack frame.
let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in {
def ALLOCFRAME : STInst2<(outs),
(ins i32imm:$amt),
"allocframe(#$amt)",
[]>;
}
//===----------------------------------------------------------------------===//
// ST -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// STYPE/ALU +
//===----------------------------------------------------------------------===//
// Logical NOT.
def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
"$dst = not($src1)",
[(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>;
// Sign extend word to doubleword.
def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1),
"$dst = sxtw($src1)",
[(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>;
//===----------------------------------------------------------------------===//
// STYPE/ALU -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// STYPE/BIT +
//===----------------------------------------------------------------------===//
// clrbit.
def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = clrbit($src1, #$src2)",
[(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
(not
(shl 1, u5ImmPred:$src2))))]>;
def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = clrbit($src1, #$src2)",
[]>;
// Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31).
def : Pat <(and (i32 IntRegs:$src1), 2147483647),
(CLRBIT_31 (i32 IntRegs:$src1), 31)>;
// setbit.
def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = setbit($src1, #$src2)",
[(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
(shl 1, u5ImmPred:$src2)))]>;
// Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31).
def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = setbit($src1, #$src2)",
[]>;
def : Pat <(or (i32 IntRegs:$src1), -2147483648),
(SETBIT_31 (i32 IntRegs:$src1), 31)>;
// togglebit.
def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = setbit($src1, #$src2)",
[(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1),
(shl 1, u5ImmPred:$src2)))]>;
// Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31).
def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = togglebit($src1, #$src2)",
[]>;
def : Pat <(xor (i32 IntRegs:$src1), -2147483648),
(TOGBIT_31 (i32 IntRegs:$src1), 31)>;
// Predicate transfer.
let neverHasSideEffects = 1 in
def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1),
"$dst = $src1 /* Should almost never emit this. */",
[]>;
def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1),
"$dst = $src1 /* Should almost never emit this. */",
[(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>;
//===----------------------------------------------------------------------===//
// STYPE/PRED -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// STYPE/SHIFT +
//===----------------------------------------------------------------------===//
// Shift by immediate.
def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = asr($src1, #$src2)",
[(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
u5ImmPred:$src2))]>;
def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
"$dst = asr($src1, #$src2)",
[(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
u6ImmPred:$src2))]>;
def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = asl($src1, #$src2)",
[(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
u5ImmPred:$src2))]>;
def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
"$dst = asl($src1, #$src2)",
[(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
u6ImmPred:$src2))]>;
def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = lsr($src1, #$src2)",
[(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
u5ImmPred:$src2))]>;
def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
"$dst = lsr($src1, #$src2)",
[(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
u6ImmPred:$src2))]>;
// Shift by immediate and add.
let AddedComplexity = 100 in
def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
u3Imm:$src3),
"$dst = addasl($src1, $src2, #$src3)",
[(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1),
(shl (i32 IntRegs:$src2),
u3ImmPred:$src3)))]>;
// Shift by register.
def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = asl($src1, $src2)",
[(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
(i32 IntRegs:$src2)))]>;
def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = asr($src1, $src2)",
[(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
(i32 IntRegs:$src2)))]>;
def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = lsl($src1, $src2)",
[(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
(i32 IntRegs:$src2)))]>;
def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = lsr($src1, $src2)",
[(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
(i32 IntRegs:$src2)))]>;
def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
"$dst = asl($src1, $src2)",
[(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
(i32 IntRegs:$src2)))]>;
def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
"$dst = lsl($src1, $src2)",
[(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
(i32 IntRegs:$src2)))]>;
def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
IntRegs:$src2),
"$dst = asr($src1, $src2)",
[(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
(i32 IntRegs:$src2)))]>;
def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
IntRegs:$src2),
"$dst = lsr($src1, $src2)",
[(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
(i32 IntRegs:$src2)))]>;
//===----------------------------------------------------------------------===//
// STYPE/SHIFT -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// STYPE/VH +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// STYPE/VH -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// STYPE/VW +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// STYPE/VW -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// SYSTEM/SUPER +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// SYSTEM/USER +
//===----------------------------------------------------------------------===//
def SDHexagonBARRIER: SDTypeProfile<0, 0, []>;
def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER,
[SDNPHasChain]>;
let hasSideEffects = 1, isSolo = 1 in
def BARRIER : SYSInst<(outs), (ins),
"barrier",
[(HexagonBARRIER)]>;
//===----------------------------------------------------------------------===//
// SYSTEM/SUPER -
//===----------------------------------------------------------------------===//
// TFRI64 - assembly mapped.
let isReMaterializable = 1 in
def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1),
"$dst = #$src1",
[(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>;
// Pseudo instruction to encode a set of conditional transfers.
// This instruction is used instead of a mux and trades-off codesize
// for performance. We conduct this transformation optimistically in
// the hope that these instructions get promoted to dot-new transfers.
let AddedComplexity = 100, isPredicated = 1 in
def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
IntRegs:$src2,
IntRegs:$src3),
"Error; should not emit",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 PredRegs:$src1),
(i32 IntRegs:$src2),
(i32 IntRegs:$src3))))]>;
let AddedComplexity = 100, isPredicated = 1 in
def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3),
"Error; should not emit",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
s12ImmPred:$src3)))]>;
let AddedComplexity = 100, isPredicated = 1 in
def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3),
"Error; should not emit",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2,
(i32 IntRegs:$src3))))]>;
let AddedComplexity = 100, isPredicated = 1 in
def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst),
(ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3),
"Error; should not emit",
[(set (i32 IntRegs:$dst),
(i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2,
s12ImmPred:$src3)))]>;
// Generate frameindex addresses.
let isReMaterializable = 1 in
def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1),
"$dst = add($src1)",
[(set (i32 IntRegs:$dst), ADDRri:$src1)]>;
//
// CR - Type.
//
let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2),
"loop0($offset, #$src2)",
[]>;
}
let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2),
"loop0($offset, $src2)",
[]>;
}
let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1,
Defs = [PC, LC0], Uses = [SA0, LC0] in {
def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset),
":endloop0",
[]>;
}
// Support for generating global address.
// Taken from X86InstrInfo.td.
def SDTHexagonCONST32 : SDTypeProfile<1, 1, [
SDTCisVT<0, i32>,
SDTCisVT<1, i32>,
SDTCisPtrTy<0>]>;
def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>;
def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;
// HI/LO Instructions
let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
"$dst.l = #LO($global)",
[]>;
let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
"$dst.h = #HI($global)",
[]>;
let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
"$dst.l = #LO($imm_value)",
[]>;
let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
"$dst.h = #HI($imm_value)",
[]>;
let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
"$dst.l = #LO($jt)",
[]>;
let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
"$dst.h = #HI($jt)",
[]>;
let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
"$dst.l = #LO($label)",
[]>;
let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in
def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
"$dst.h = #HI($label)",
[]>;
// This pattern is incorrect. When we add small data, we should change
// this pattern to use memw(#foo).
// This is for sdata.
let isMoveImm = 1 in
def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global),
"$dst = CONST32(#$global)",
[(set (i32 IntRegs:$dst),
(load (HexagonCONST32 tglobaltlsaddr:$global)))]>;
// This is for non-sdata.
let isReMaterializable = 1, isMoveImm = 1 in
def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global),
"$dst = CONST32(#$global)",
[(set (i32 IntRegs:$dst),
(HexagonCONST32 tglobaladdr:$global))]>;
let isReMaterializable = 1, isMoveImm = 1 in
def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt),
"$dst = CONST32(#$jt)",
[(set (i32 IntRegs:$dst),
(HexagonCONST32 tjumptable:$jt))]>;
let isReMaterializable = 1, isMoveImm = 1 in
def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global),
"$dst = CONST32(#$global)",
[(set (i32 IntRegs:$dst),
(HexagonCONST32_GP tglobaladdr:$global))]>;
let isReMaterializable = 1, isMoveImm = 1 in
def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global),
"$dst = CONST32(#$global)",
[(set (i32 IntRegs:$dst), imm:$global) ]>;
// Map BlockAddress lowering to CONST32_Int_Real
def : Pat<(HexagonCONST32_GP tblockaddress:$addr),
(CONST32_Int_Real tblockaddress:$addr)>;
let isReMaterializable = 1, isMoveImm = 1 in
def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label),
"$dst = CONST32($label)",
[(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>;
let isReMaterializable = 1, isMoveImm = 1 in
def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global),
"$dst = CONST64(#$global)",
[(set (i64 DoubleRegs:$dst), imm:$global) ]>;
def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins),
"$dst = xor($dst, $dst)",
[(set (i1 PredRegs:$dst), 0)]>;
def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = mpy($src1, $src2)",
[(set (i32 IntRegs:$dst),
(trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))),
(i64 (sext (i32 IntRegs:$src2))))),
(i32 32)))))]>;
// Pseudo instructions.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def call : SDNode<"HexagonISD::CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
// For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain,
// Optional Flag and Variable Arguments.
// Its 1 Operand has pointer type.
def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
let Defs = [R29, R30], Uses = [R31, R30, R29] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
"Should never be emitted",
[(callseq_start timm:$amt)]>;
}
let Defs = [R29, R30, R31], Uses = [R29] in {
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"Should never be emitted",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
// Call subroutine.
let isCall = 1, neverHasSideEffects = 1,
Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
def CALL : JInst<(outs), (ins calltarget:$dst),
"call $dst", []>;
}
// Call subroutine from register.
let isCall = 1, neverHasSideEffects = 1,
Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
def CALLR : JRInst<(outs), (ins IntRegs:$dst),
"callr $dst",
[]>;
}
// Indirect tail-call.
let isCodeGenOnly = 1, isCall = 1, isReturn = 1 in
def TCRETURNR : T_JMPr;
// Direct tail-calls.
let isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
isTerminator = 1, isCodeGenOnly = 1 in {
def TCRETURNtg : T_JMP<(ins calltarget:$dst)>;
def TCRETURNtext : T_JMP<(ins calltarget:$dst)>;
}
// Map call instruction.
def : Pat<(call (i32 IntRegs:$dst)),
(CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>;
def : Pat<(call tglobaladdr:$dst),
(CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>;
def : Pat<(call texternalsym:$dst),
(CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>;
//Tail calls.
def : Pat<(HexagonTCRet tglobaladdr:$dst),
(TCRETURNtg tglobaladdr:$dst)>;
def : Pat<(HexagonTCRet texternalsym:$dst),
(TCRETURNtext texternalsym:$dst)>;
def : Pat<(HexagonTCRet (i32 IntRegs:$dst)),
(TCRETURNR (i32 IntRegs:$dst))>;
// Atomic load and store support
// 8 bit atomic load
def : Pat<(atomic_load_8 ADDRriS11_0:$src1),
(i32 (LDriub ADDRriS11_0:$src1))>;
def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)),
(i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>;
// 16 bit atomic load
def : Pat<(atomic_load_16 ADDRriS11_1:$src1),
(i32 (LDriuh ADDRriS11_1:$src1))>;
def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)),
(i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>;
def : Pat<(atomic_load_32 ADDRriS11_2:$src1),
(i32 (LDriw ADDRriS11_2:$src1))>;
def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)),
(i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>;
// 64 bit atomic load
def : Pat<(atomic_load_64 ADDRriS11_3:$src1),
(i64 (LDrid ADDRriS11_3:$src1))>;
def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)),
(i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>;
def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)),
(STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>;
def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset),
(i32 IntRegs:$src1)),
(STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)),
(STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>;
def : Pat<(atomic_store_16 (i32 IntRegs:$src1),
(add (i32 IntRegs:$src2), s11_1ImmPred:$offset)),
(STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)),
(STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>;
def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset),
(i32 IntRegs:$src1)),
(STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset,
(i32 IntRegs:$src1))>;
def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)),
(STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>;
def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset),
(i64 DoubleRegs:$src1)),
(STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset,
(i64 DoubleRegs:$src1))>;
// Map from r0 = and(r1, 65535) to r0 = zxth(r1)
def : Pat <(and (i32 IntRegs:$src1), 65535),
(ZXTH (i32 IntRegs:$src1))>;
// Map from r0 = and(r1, 255) to r0 = zxtb(r1).
def : Pat <(and (i32 IntRegs:$src1), 255),
(ZXTB (i32 IntRegs:$src1))>;
// Map Add(p1, true) to p1 = not(p1).
// Add(p1, false) should never be produced,
// if it does, it got to be mapped to NOOP.
def : Pat <(add (i1 PredRegs:$src1), -1),
(NOT_p (i1 PredRegs:$src1))>;
// Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) =>
// p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1).
// cmp.lt(r0, r1) -> cmp.gt(r1, r0)
def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
(i32 IntRegs:$src3),
(i32 IntRegs:$src4)),
(i32 (TFR_condset_rr (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)),
(i32 IntRegs:$src4), (i32 IntRegs:$src3)))>,
Requires<[HasV2TOnly]>;
// Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i).
def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3),
(i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3,
s8ImmPred:$src2))>;
// Map from p0 = pnot(p0); r0 = select(p0, #i, r1)
// => r0 = TFR_condset_ri(p0, r1, #i)
def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2,
(i32 IntRegs:$src3)),
(i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3),
s12ImmPred:$src2))>;
// Map from p0 = pnot(p0); r0 = mux(p0, r1, #i)
// => r0 = TFR_condset_ir(p0, #i, r1)
def : Pat <(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s12ImmPred:$src3),
(i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3,
(i32 IntRegs:$src2)))>;
// Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump.
def : Pat <(brcond (not (i1 PredRegs:$src1)), bb:$offset),
(JMP_f (i1 PredRegs:$src1), bb:$offset)>;
// Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2).
def : Pat <(and (i1 PredRegs:$src1), (not (i1 PredRegs:$src2))),
(i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
let AddedComplexity = 100 in
def : Pat <(i64 (zextloadi1 (HexagonCONST32 tglobaladdr:$global))),
(i64 (COMBINE_rr (TFRI 0),
(LDriub_indexed (CONST32_set tglobaladdr:$global), 0)))>,
Requires<[NoV4T]>;
// Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned.
let AddedComplexity = 10 in
def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)),
(i32 (AND_rr (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>;
// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo).
def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)),
(i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>;
// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)).
def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)),
(i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
subreg_loreg))))))>;
// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)).
def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)),
(i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
subreg_loreg))))))>;
// We want to prevent emitting pnot's as much as possible.
// Map brcond with an unsupported setcc to a JMP_f.
def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
bb:$offset),
(JMP_f (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
bb:$offset)>;
def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)),
bb:$offset),
(JMP_f (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>;
def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset),
(JMP_f (i1 PredRegs:$src1), bb:$offset)>;
def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset),
(JMP_t (i1 PredRegs:$src1), bb:$offset)>;
// cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1)
def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)),
bb:$offset),
(JMP_f (CMPGTri (i32 IntRegs:$src1),
(DEC_CONST_SIGNED s8ImmPred:$src2)), bb:$offset)>;
// cmp.lt(r0, r1) -> cmp.gt(r1, r0)
def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
bb:$offset),
(JMP_t (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>;
def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
bb:$offset),
(JMP_f (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)),
bb:$offset)>;
def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
bb:$offset),
(JMP_f (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
bb:$offset)>;
def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
bb:$offset),
(JMP_f (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
bb:$offset)>;
// Map from a 64-bit select to an emulated 64-bit mux.
// Hexagon does not support 64-bit MUXes; so emulate with combines.
def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2),
(i64 DoubleRegs:$src3)),
(i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
subreg_hireg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
subreg_hireg)))),
(i32 (MUX_rr (i1 PredRegs:$src1),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
subreg_loreg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
subreg_loreg))))))>;
// Map from a 1-bit select to logical ops.
// From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3).
def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2),
(i1 PredRegs:$src3)),
(OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)),
(AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>;
// Map Pd = load(addr) -> Rs = load(addr); Pd = Rs.
def : Pat<(i1 (load ADDRriS11_2:$addr)),
(i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>;
// Map for truncating from 64 immediates to 32 bit immediates.
def : Pat<(i32 (trunc (i64 DoubleRegs:$src))),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>;
// Map for truncating from i64 immediates to i1 bit immediates.
def : Pat<(i1 (trunc (i64 DoubleRegs:$src))),
(i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg))))>;
// Map memb(Rs) = Rdd -> memb(Rs) = Rt.
def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
(STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map memh(Rs) = Rdd -> memh(Rs) = Rt.
def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
(STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map memw(Rs) = Rdd -> memw(Rs) = Rt
def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
(STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map memw(Rs) = Rdd -> memw(Rs) = Rt.
def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
(STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
subreg_loreg)))>;
// Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0.
def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
(STrib ADDRriS11_2:$addr, (TFRI 1))>;
// Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0.
def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
(STrib ADDRriS11_2:$addr, (TFRI 1))>;
// Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt.
def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr),
(STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>;
// Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs).
// Hexagon_TODO: We can probably use combine but that will cost 2 instructions.
// Better way to do this?
def : Pat<(i64 (anyext (i32 IntRegs:$src1))),
(i64 (SXTW (i32 IntRegs:$src1)))>;
// Map cmple -> cmpgt.
// rs <= rt -> !(rs > rt).
def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)),
(i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ExtPred:$src2)))>;
// rs <= rt -> !(rs > rt).
def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
(i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
// Rss <= Rtt -> !(Rss > Rtt).
def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
(i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
// Map cmpne -> cmpeq.
// Hexagon_TODO: We should improve on this.
// rs != rt -> !(rs == rt).
def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)),
(i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ExtPred:$src2))))>;
// Map cmpne(Rs) -> !cmpeqe(Rs).
// rs != rt -> !(rs == rt).
def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
(i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>;
// Convert setne back to xor for hexagon since we compute w/ pred registers.
def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))),
(i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
// Map cmpne(Rss) -> !cmpew(Rss).
// rs != rt -> !(rs == rt).
def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
(i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1),
(i64 DoubleRegs:$src2)))))>;
// Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt).
// rs >= rt -> !(rt > rs).
def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
(i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>;
// cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1)
def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)),
(i1 (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2)))>;
// Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss).
// rss >= rtt -> !(rtt > rss).
def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
(i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2),
(i64 DoubleRegs:$src1)))))>;
// Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm).
// !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1).
// rs < rt -> !(rs >= rt).
def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)),
(i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2))))>;
// Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs).
// rs < rt -> rt > rs.
// We can let assembler map it, or we can do in the compiler itself.
def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
(i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
// Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss).
// rss < rtt -> (rtt > rss).
def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
(i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
// Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs)
// rs < rt -> rt > rs.
// We can let assembler map it, or we can do in the compiler itself.
def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
(i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
// Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss).
// rs < rt -> rt > rs.
def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
(i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
// Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs)
def : Pat <(i1 (setuge (i32 IntRegs:$src1), 0)),
(i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src1)))>;
// Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1)
def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)),
(i1 (CMPGTUri (i32 IntRegs:$src1), (DEC_CONST_UNSIGNED u8ExtPred:$src2)))>;
// Generate cmpgtu(Rs, #u9)
def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)),
(i1 (CMPGTUri (i32 IntRegs:$src1), u9ExtPred:$src2))>;
// Map from Rs >= Rt -> !(Rt > Rs).
// rs >= rt -> !(rt > rs).
def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
(i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>;
// Map from Rs >= Rt -> !(Rt > Rs).
// rs >= rt -> !(rt > rs).
def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
(i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>;
// Map from cmpleu(Rs, Rt) -> !cmpgtu(Rs, Rt).
// Map from (Rs <= Rt) -> !(Rs > Rt).
def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
(i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
// Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1).
// Map from (Rs <= Rt) -> !(Rs > Rt).
def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
(i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
// Sign extends.
// i1 -> i32
def : Pat <(i32 (sext (i1 PredRegs:$src1))),
(i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>;
// i1 -> i64
def : Pat <(i64 (sext (i1 PredRegs:$src1))),
(i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>;
// Convert sign-extended load back to load and sign extend.
// i8 -> i64
def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)),
(i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
// Convert any-extended load back to load and sign extend.
// i8 -> i64
def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)),
(i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
// Convert sign-extended load back to load and sign extend.
// i16 -> i64
def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)),
(i64 (SXTW (LDrih ADDRriS11_1:$src1)))>;
// Convert sign-extended load back to load and sign extend.
// i32 -> i64
def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)),
(i64 (SXTW (LDriw ADDRriS11_2:$src1)))>;
// Zero extends.
// i1 -> i32
def : Pat <(i32 (zext (i1 PredRegs:$src1))),
(i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
// i1 -> i64
def : Pat <(i64 (zext (i1 PredRegs:$src1))),
(i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>,
Requires<[NoV4T]>;
// i32 -> i64
def : Pat <(i64 (zext (i32 IntRegs:$src1))),
(i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>,
Requires<[NoV4T]>;
// i8 -> i64
def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
(i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>,
Requires<[NoV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
s11_0ExtPred:$offset))),
(i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1,
s11_0ExtPred:$offset)))>,
Requires<[NoV4T]>;
// i1 -> i64
def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
(i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>,
Requires<[NoV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
s11_0ExtPred:$offset))),
(i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1,
s11_0ExtPred:$offset)))>,
Requires<[NoV4T]>;
// i16 -> i64
def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
(i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>,
Requires<[NoV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
s11_1ExtPred:$offset))),
(i64 (COMBINE_rr (TFRI 0), (LDriuh_indexed IntRegs:$src1,
s11_1ExtPred:$offset)))>,
Requires<[NoV4T]>;
// i32 -> i64
def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
(i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>,
Requires<[NoV4T]>;
let AddedComplexity = 100 in
def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
(i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1,
s11_2ExtPred:$offset)))>,
Requires<[NoV4T]>;
let AddedComplexity = 10 in
def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)),
(i32 (LDriw ADDRriS11_0:$src1))>;
// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
def : Pat <(i32 (zext (i1 PredRegs:$src1))),
(i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
def : Pat <(i32 (anyext (i1 PredRegs:$src1))),
(i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0))
def : Pat <(i64 (anyext (i1 PredRegs:$src1))),
(i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>;
let AddedComplexity = 100 in
def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zextloadi32 (i32 (add IntRegs:$src2,
s11_2ExtPred:$offset2)))))),
(i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
(LDriw_indexed IntRegs:$src2,
s11_2ExtPred:$offset2)))>;
def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
(i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
(LDriw ADDRriS11_2:$srcLow)))>;
def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zext (i32 IntRegs:$srcLow))))),
(i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
IntRegs:$srcLow))>;
let AddedComplexity = 100 in
def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zextloadi32 (i32 (add IntRegs:$src2,
s11_2ExtPred:$offset2)))))),
(i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
(LDriw_indexed IntRegs:$src2,
s11_2ExtPred:$offset2)))>;
def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zextloadi32 ADDRriS11_2:$srcLow)))),
(i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
(LDriw ADDRriS11_2:$srcLow)))>;
def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh),
(i32 32))),
(i64 (zext (i32 IntRegs:$srcLow))))),
(i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg),
IntRegs:$srcLow))>;
// Any extended 64-bit load.
// anyext i32 -> i64
def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
(i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>,
Requires<[NoV4T]>;
// When there is an offset we should prefer the pattern below over the pattern above.
// The complexity of the above is 13 (gleaned from HexagonGenDAGIsel.inc)
// So this complexity below is comfortably higher to allow for choosing the below.
// If this is not done then we generate addresses such as
// ********************************************
// r1 = add (r0, #4)
// r1 = memw(r1 + #0)
// instead of
// r1 = memw(r0 + #4)
// ********************************************
let AddedComplexity = 100 in
def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
(i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1,
s11_2ExtPred:$offset)))>,
Requires<[NoV4T]>;
// anyext i16 -> i64.
def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
(i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>,
Requires<[NoV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
s11_1ExtPred:$offset))),
(i64 (COMBINE_rr (TFRI 0), (LDrih_indexed IntRegs:$src1,
s11_1ExtPred:$offset)))>,
Requires<[NoV4T]>;
// Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs).
def : Pat<(i64 (zext (i32 IntRegs:$src1))),
(i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>,
Requires<[NoV4T]>;
// Multiply 64-bit unsigned and use upper result.
def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
(i64
(MPYU64_acc
(i64
(COMBINE_rr
(TFRI 0),
(i32
(EXTRACT_SUBREG
(i64
(LSRd_ri
(i64
(MPYU64_acc
(i64
(MPYU64_acc
(i64
(COMBINE_rr (TFRI 0),
(i32
(EXTRACT_SUBREG
(i64
(LSRd_ri
(i64
(MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
subreg_loreg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
subreg_loreg)))), 32)),
subreg_loreg)))),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))),
32)), subreg_loreg)))),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>;
// Multiply 64-bit signed and use upper result.
def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
(i64
(MPY64_acc
(i64
(COMBINE_rr (TFRI 0),
(i32
(EXTRACT_SUBREG
(i64
(LSRd_ri
(i64
(MPY64_acc
(i64
(MPY64_acc
(i64
(COMBINE_rr (TFRI 0),
(i32
(EXTRACT_SUBREG
(i64
(LSRd_ri
(i64
(MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
subreg_loreg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
subreg_loreg)))), 32)),
subreg_loreg)))),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))),
32)), subreg_loreg)))),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
(i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>;
// Hexagon specific ISD nodes.
//def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>;
def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2,
[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC",
SDTHexagonADJDYNALLOC>;
// Needed to tag these instructions for stack layout.
let usesCustomInserter = 1 in
def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1,
s16Imm:$src2),
"$dst = add($src1, #$src2)",
[(set (i32 IntRegs:$dst),
(Hexagon_ADJDYNALLOC (i32 IntRegs:$src1),
s16ImmPred:$src2))]>;
def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>;
def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>;
def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1),
"$dst = $src1",
[(set (i32 IntRegs:$dst),
(Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>;
let AddedComplexity = 100 in
def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)),
(COPY (i32 IntRegs:$src1))>;
def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>;
def : Pat<(HexagonWrapperJT tjumptable:$dst),
(i32 (CONST32_set_jt tjumptable:$dst))>;
// XTYPE/SHIFT
// Multi-class for logical operators :
// Shift by immediate/register and accumulate/logical
multiclass xtype_imm<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
def _ri : SInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3),
!strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
[(set (i32 IntRegs:$dst),
(OpNode2 (i32 IntRegs:$src1),
(OpNode1 (i32 IntRegs:$src2),
u5ImmPred:$src3)))],
"$src1 = $dst">;
def d_ri : SInst_acc<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3),
!strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
[(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1),
(OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))],
"$src1 = $dst">;
}
// Multi-class for logical operators :
// Shift by register and accumulate/logical (32/64 bits)
multiclass xtype_reg<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
def _rr : SInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
!strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
[(set (i32 IntRegs:$dst),
(OpNode2 (i32 IntRegs:$src1),
(OpNode1 (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">;
def d_rr : SInst_acc<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
!strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
[(set (i64 DoubleRegs:$dst),
(OpNode2 (i64 DoubleRegs:$src1),
(OpNode1 (i64 DoubleRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">;
}
multiclass basic_xtype_imm<string OpcStr, SDNode OpNode> {
let AddedComplexity = 100 in
defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>;
defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>;
defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>;
defm _OR : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>;
}
multiclass basic_xtype_reg<string OpcStr, SDNode OpNode> {
let AddedComplexity = 100 in
defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>;
defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>;
defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>;
defm _OR : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>;
}
multiclass xtype_xor_imm<string OpcStr, SDNode OpNode> {
let AddedComplexity = 100 in
defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>;
}
defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>,
xtype_xor_imm<"asl", shl>;
defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>,
xtype_xor_imm<"lsr", srl>;
defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>;
defm LSL : basic_xtype_reg<"lsl", shl>;
// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)),
(i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>;
//===----------------------------------------------------------------------===//
// V3 Instructions +
//===----------------------------------------------------------------------===//
include "HexagonInstrInfoV3.td"
//===----------------------------------------------------------------------===//
// V3 Instructions -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// V4 Instructions +
//===----------------------------------------------------------------------===//
include "HexagonInstrInfoV4.td"
//===----------------------------------------------------------------------===//
// V4 Instructions -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// V5 Instructions +
//===----------------------------------------------------------------------===//
include "HexagonInstrInfoV5.td"
//===----------------------------------------------------------------------===//
// V5 Instructions -
//===----------------------------------------------------------------------===//