forked from OSchip/llvm-project
776 lines
29 KiB
C++
776 lines
29 KiB
C++
//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SelectionDAG::LegalizeVectors method.
|
|
//
|
|
// The vector legalizer looks for vector operations which might need to be
|
|
// scalarized and legalizes them. This is a separate step from Legalize because
|
|
// scalarizing can introduce illegal types. For example, suppose we have an
|
|
// ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
|
|
// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
|
|
// operation, which introduces nodes with the illegal type i64 which must be
|
|
// expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
|
|
// the operation must be unrolled, which introduces nodes with the illegal
|
|
// type i8 which must be promoted.
|
|
//
|
|
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
|
|
// or operations that happen to take a vector which are custom-lowered;
|
|
// the legalization for such operations never produces nodes
|
|
// with illegal types, so it's okay to put off legalizing them until
|
|
// SelectionDAG::Legalize runs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class VectorLegalizer {
|
|
SelectionDAG& DAG;
|
|
const TargetLowering &TLI;
|
|
bool Changed; // Keep track of whether anything changed
|
|
|
|
/// LegalizedNodes - For nodes that are of legal width, and that have more
|
|
/// than one use, this map indicates what regularized operand to use. This
|
|
/// allows us to avoid legalizing the same thing more than once.
|
|
SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
|
|
|
|
// Adds a node to the translation cache
|
|
void AddLegalizedOperand(SDValue From, SDValue To) {
|
|
LegalizedNodes.insert(std::make_pair(From, To));
|
|
// If someone requests legalization of the new node, return itself.
|
|
if (From != To)
|
|
LegalizedNodes.insert(std::make_pair(To, To));
|
|
}
|
|
|
|
// Legalizes the given node
|
|
SDValue LegalizeOp(SDValue Op);
|
|
// Assuming the node is legal, "legalize" the results
|
|
SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
|
|
// Implements unrolling a VSETCC.
|
|
SDValue UnrollVSETCC(SDValue Op);
|
|
// Implements expansion for FNEG; falls back to UnrollVectorOp if FSUB
|
|
// isn't legal.
|
|
// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
|
|
// SINT_TO_FLOAT and SHR on vectors isn't legal.
|
|
SDValue ExpandUINT_TO_FLOAT(SDValue Op);
|
|
// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
|
|
SDValue ExpandSEXTINREG(SDValue Op);
|
|
// Implement vselect in terms of XOR, AND, OR when blend is not supported
|
|
// by the target.
|
|
SDValue ExpandVSELECT(SDValue Op);
|
|
SDValue ExpandSELECT(SDValue Op);
|
|
SDValue ExpandLoad(SDValue Op);
|
|
SDValue ExpandStore(SDValue Op);
|
|
SDValue ExpandFNEG(SDValue Op);
|
|
// Implements vector promotion; this is essentially just bitcasting the
|
|
// operands to a different type and bitcasting the result back to the
|
|
// original type.
|
|
SDValue PromoteVectorOp(SDValue Op);
|
|
// Implements [SU]INT_TO_FP vector promotion; this is a [zs]ext of the input
|
|
// operand to the next size up.
|
|
SDValue PromoteVectorOpINT_TO_FP(SDValue Op);
|
|
|
|
public:
|
|
bool Run();
|
|
VectorLegalizer(SelectionDAG& dag) :
|
|
DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
|
|
};
|
|
|
|
bool VectorLegalizer::Run() {
|
|
// Before we start legalizing vector nodes, check if there are any vectors.
|
|
bool HasVectors = false;
|
|
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
|
|
E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) {
|
|
// Check if the values of the nodes contain vectors. We don't need to check
|
|
// the operands because we are going to check their values at some point.
|
|
for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
|
|
J != E; ++J)
|
|
HasVectors |= J->isVector();
|
|
|
|
// If we found a vector node we can start the legalization.
|
|
if (HasVectors)
|
|
break;
|
|
}
|
|
|
|
// If this basic block has no vectors then no need to legalize vectors.
|
|
if (!HasVectors)
|
|
return false;
|
|
|
|
// The legalize process is inherently a bottom-up recursive process (users
|
|
// legalize their uses before themselves). Given infinite stack space, we
|
|
// could just start legalizing on the root and traverse the whole graph. In
|
|
// practice however, this causes us to run out of stack space on large basic
|
|
// blocks. To avoid this problem, compute an ordering of the nodes where each
|
|
// node is only legalized after all of its operands are legalized.
|
|
DAG.AssignTopologicalOrder();
|
|
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
|
|
E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
|
|
LegalizeOp(SDValue(I, 0));
|
|
|
|
// Finally, it's possible the root changed. Get the new root.
|
|
SDValue OldRoot = DAG.getRoot();
|
|
assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
|
|
DAG.setRoot(LegalizedNodes[OldRoot]);
|
|
|
|
LegalizedNodes.clear();
|
|
|
|
// Remove dead nodes now.
|
|
DAG.RemoveDeadNodes();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
|
|
// Generic legalization: just pass the operand through.
|
|
for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
|
|
AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
|
|
return Result.getValue(Op.getResNo());
|
|
}
|
|
|
|
SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
|
|
// Note that LegalizeOp may be reentered even from single-use nodes, which
|
|
// means that we always must cache transformed nodes.
|
|
DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
|
|
if (I != LegalizedNodes.end()) return I->second;
|
|
|
|
SDNode* Node = Op.getNode();
|
|
|
|
// Legalize the operands
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(LegalizeOp(Node->getOperand(i)));
|
|
|
|
SDValue Result =
|
|
SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops.data(), Ops.size()), 0);
|
|
|
|
if (Op.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
|
|
if (TLI.isLoadExtLegal(LD->getExtensionType(), LD->getMemoryVT()))
|
|
return TranslateLegalizeResults(Op, Result);
|
|
Changed = true;
|
|
return LegalizeOp(ExpandLoad(Op));
|
|
}
|
|
} else if (Op.getOpcode() == ISD::STORE) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
|
|
EVT StVT = ST->getMemoryVT();
|
|
MVT ValVT = ST->getValue().getSimpleValueType();
|
|
if (StVT.isVector() && ST->isTruncatingStore())
|
|
switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
|
|
default: llvm_unreachable("This action is not supported yet!");
|
|
case TargetLowering::Legal:
|
|
return TranslateLegalizeResults(Op, Result);
|
|
case TargetLowering::Custom:
|
|
Changed = true;
|
|
return LegalizeOp(TLI.LowerOperation(Result, DAG));
|
|
case TargetLowering::Expand:
|
|
Changed = true;
|
|
return LegalizeOp(ExpandStore(Op));
|
|
}
|
|
}
|
|
|
|
bool HasVectorValue = false;
|
|
for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
|
|
J != E;
|
|
++J)
|
|
HasVectorValue |= J->isVector();
|
|
if (!HasVectorValue)
|
|
return TranslateLegalizeResults(Op, Result);
|
|
|
|
EVT QueryType;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
return TranslateLegalizeResults(Op, Result);
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FREM:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR:
|
|
case ISD::CTLZ:
|
|
case ISD::CTTZ:
|
|
case ISD::CTLZ_ZERO_UNDEF:
|
|
case ISD::CTTZ_ZERO_UNDEF:
|
|
case ISD::CTPOP:
|
|
case ISD::SELECT:
|
|
case ISD::VSELECT:
|
|
case ISD::SELECT_CC:
|
|
case ISD::SETCC:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::TRUNCATE:
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FNEG:
|
|
case ISD::FABS:
|
|
case ISD::FSQRT:
|
|
case ISD::FSIN:
|
|
case ISD::FCOS:
|
|
case ISD::FPOWI:
|
|
case ISD::FPOW:
|
|
case ISD::FLOG:
|
|
case ISD::FLOG2:
|
|
case ISD::FLOG10:
|
|
case ISD::FEXP:
|
|
case ISD::FEXP2:
|
|
case ISD::FCEIL:
|
|
case ISD::FTRUNC:
|
|
case ISD::FRINT:
|
|
case ISD::FNEARBYINT:
|
|
case ISD::FFLOOR:
|
|
case ISD::FP_ROUND:
|
|
case ISD::FP_EXTEND:
|
|
case ISD::FMA:
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
QueryType = Node->getValueType(0);
|
|
break;
|
|
case ISD::FP_ROUND_INREG:
|
|
QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
|
|
break;
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
QueryType = Node->getOperand(0).getValueType();
|
|
break;
|
|
}
|
|
|
|
switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
|
|
case TargetLowering::Promote:
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
// "Promote" the operation by bitcasting
|
|
Result = PromoteVectorOp(Op);
|
|
Changed = true;
|
|
break;
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
// "Promote" the operation by extending the operand.
|
|
Result = PromoteVectorOpINT_TO_FP(Op);
|
|
Changed = true;
|
|
break;
|
|
}
|
|
break;
|
|
case TargetLowering::Legal: break;
|
|
case TargetLowering::Custom: {
|
|
SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
|
|
if (Tmp1.getNode()) {
|
|
Result = Tmp1;
|
|
break;
|
|
}
|
|
// FALL THROUGH
|
|
}
|
|
case TargetLowering::Expand:
|
|
if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG)
|
|
Result = ExpandSEXTINREG(Op);
|
|
else if (Node->getOpcode() == ISD::VSELECT)
|
|
Result = ExpandVSELECT(Op);
|
|
else if (Node->getOpcode() == ISD::SELECT)
|
|
Result = ExpandSELECT(Op);
|
|
else if (Node->getOpcode() == ISD::UINT_TO_FP)
|
|
Result = ExpandUINT_TO_FLOAT(Op);
|
|
else if (Node->getOpcode() == ISD::FNEG)
|
|
Result = ExpandFNEG(Op);
|
|
else if (Node->getOpcode() == ISD::SETCC)
|
|
Result = UnrollVSETCC(Op);
|
|
else
|
|
Result = DAG.UnrollVectorOp(Op.getNode());
|
|
break;
|
|
}
|
|
|
|
// Make sure that the generated code is itself legal.
|
|
if (Result != Op) {
|
|
Result = LegalizeOp(Result);
|
|
Changed = true;
|
|
}
|
|
|
|
// Note that LegalizeOp may be reentered even from single-use nodes, which
|
|
// means that we always must cache transformed nodes.
|
|
AddLegalizedOperand(Op, Result);
|
|
return Result;
|
|
}
|
|
|
|
SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) {
|
|
// Vector "promotion" is basically just bitcasting and doing the operation
|
|
// in a different type. For example, x86 promotes ISD::AND on v2i32 to
|
|
// v1i64.
|
|
MVT VT = Op.getSimpleValueType();
|
|
assert(Op.getNode()->getNumValues() == 1 &&
|
|
"Can't promote a vector with multiple results!");
|
|
MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
|
|
|
|
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
|
|
if (Op.getOperand(j).getValueType().isVector())
|
|
Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
|
|
else
|
|
Operands[j] = Op.getOperand(j);
|
|
}
|
|
|
|
Op = DAG.getNode(Op.getOpcode(), dl, NVT, &Operands[0], Operands.size());
|
|
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Op);
|
|
}
|
|
|
|
SDValue VectorLegalizer::PromoteVectorOpINT_TO_FP(SDValue Op) {
|
|
// INT_TO_FP operations may require the input operand be promoted even
|
|
// when the type is otherwise legal.
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
assert(Op.getNode()->getNumValues() == 1 &&
|
|
"Can't promote a vector with multiple results!");
|
|
|
|
// Normal getTypeToPromoteTo() doesn't work here, as that will promote
|
|
// by widening the vector w/ the same element width and twice the number
|
|
// of elements. We want the other way around, the same number of elements,
|
|
// each twice the width.
|
|
//
|
|
// Increase the bitwidth of the element to the next pow-of-two
|
|
// (which is greater than 8 bits).
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
EltVT = EVT::getIntegerVT(*DAG.getContext(), 2 * EltVT.getSizeInBits());
|
|
assert(EltVT.isSimple() && "Promoting to a non-simple vector type!");
|
|
|
|
// Build a new vector type and check if it is legal.
|
|
MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
|
|
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
|
|
|
|
unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
|
|
ISD::SIGN_EXTEND;
|
|
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
|
|
if (Op.getOperand(j).getValueType().isVector())
|
|
Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
|
|
else
|
|
Operands[j] = Op.getOperand(j);
|
|
}
|
|
|
|
return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), &Operands[0],
|
|
Operands.size());
|
|
}
|
|
|
|
|
|
SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
|
|
SDValue Chain = LD->getChain();
|
|
SDValue BasePTR = LD->getBasePtr();
|
|
EVT SrcVT = LD->getMemoryVT();
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
|
|
SmallVector<SDValue, 8> Vals;
|
|
SmallVector<SDValue, 8> LoadChains;
|
|
unsigned NumElem = SrcVT.getVectorNumElements();
|
|
|
|
EVT SrcEltVT = SrcVT.getScalarType();
|
|
EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
|
|
|
|
if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
|
|
// When elements in a vector is not byte-addressable, we cannot directly
|
|
// load each element by advancing pointer, which could only address bytes.
|
|
// Instead, we load all significant words, mask bits off, and concatenate
|
|
// them to form each element. Finally, they are extended to destination
|
|
// scalar type to build the destination vector.
|
|
EVT WideVT = TLI.getPointerTy();
|
|
|
|
assert(WideVT.isRound() &&
|
|
"Could not handle the sophisticated case when the widest integer is"
|
|
" not power of 2.");
|
|
assert(WideVT.bitsGE(SrcEltVT) &&
|
|
"Type is not legalized?");
|
|
|
|
unsigned WideBytes = WideVT.getStoreSize();
|
|
unsigned Offset = 0;
|
|
unsigned RemainingBytes = SrcVT.getStoreSize();
|
|
SmallVector<SDValue, 8> LoadVals;
|
|
|
|
while (RemainingBytes > 0) {
|
|
SDValue ScalarLoad;
|
|
unsigned LoadBytes = WideBytes;
|
|
|
|
if (RemainingBytes >= LoadBytes) {
|
|
ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
|
|
LD->getPointerInfo().getWithOffset(Offset),
|
|
LD->isVolatile(), LD->isNonTemporal(),
|
|
LD->isInvariant(), LD->getAlignment());
|
|
} else {
|
|
EVT LoadVT = WideVT;
|
|
while (RemainingBytes < LoadBytes) {
|
|
LoadBytes >>= 1; // Reduce the load size by half.
|
|
LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
|
|
}
|
|
ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
|
|
LD->getPointerInfo().getWithOffset(Offset),
|
|
LoadVT, LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->getAlignment());
|
|
}
|
|
|
|
RemainingBytes -= LoadBytes;
|
|
Offset += LoadBytes;
|
|
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
|
|
DAG.getIntPtrConstant(LoadBytes));
|
|
|
|
LoadVals.push_back(ScalarLoad.getValue(0));
|
|
LoadChains.push_back(ScalarLoad.getValue(1));
|
|
}
|
|
|
|
// Extract bits, pack and extend/trunc them into destination type.
|
|
unsigned SrcEltBits = SrcEltVT.getSizeInBits();
|
|
SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT);
|
|
|
|
unsigned BitOffset = 0;
|
|
unsigned WideIdx = 0;
|
|
unsigned WideBits = WideVT.getSizeInBits();
|
|
|
|
for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
|
|
SDValue Lo, Hi, ShAmt;
|
|
|
|
if (BitOffset < WideBits) {
|
|
ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT));
|
|
Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
|
|
Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
|
|
}
|
|
|
|
BitOffset += SrcEltBits;
|
|
if (BitOffset >= WideBits) {
|
|
WideIdx++;
|
|
Offset -= WideBits;
|
|
if (Offset > 0) {
|
|
ShAmt = DAG.getConstant(SrcEltBits - Offset,
|
|
TLI.getShiftAmountTy(WideVT));
|
|
Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
|
|
Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
|
|
}
|
|
}
|
|
|
|
if (Hi.getNode())
|
|
Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
|
|
|
|
switch (ExtType) {
|
|
default: llvm_unreachable("Unknown extended-load op!");
|
|
case ISD::EXTLOAD:
|
|
Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
|
|
break;
|
|
case ISD::ZEXTLOAD:
|
|
Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
|
|
break;
|
|
case ISD::SEXTLOAD:
|
|
ShAmt = DAG.getConstant(WideBits - SrcEltBits,
|
|
TLI.getShiftAmountTy(WideVT));
|
|
Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
|
|
Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
|
|
Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
|
|
break;
|
|
}
|
|
Vals.push_back(Lo);
|
|
}
|
|
} else {
|
|
unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
|
|
|
|
for (unsigned Idx=0; Idx<NumElem; Idx++) {
|
|
SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
|
|
Op.getNode()->getValueType(0).getScalarType(),
|
|
Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
|
|
SrcVT.getScalarType(),
|
|
LD->isVolatile(), LD->isNonTemporal(),
|
|
LD->getAlignment());
|
|
|
|
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
|
|
DAG.getIntPtrConstant(Stride));
|
|
|
|
Vals.push_back(ScalarLoad.getValue(0));
|
|
LoadChains.push_back(ScalarLoad.getValue(1));
|
|
}
|
|
}
|
|
|
|
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&LoadChains[0], LoadChains.size());
|
|
SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
|
|
Op.getNode()->getValueType(0), &Vals[0], Vals.size());
|
|
|
|
AddLegalizedOperand(Op.getValue(0), Value);
|
|
AddLegalizedOperand(Op.getValue(1), NewChain);
|
|
|
|
return (Op.getResNo() ? NewChain : Value);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandStore(SDValue Op) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
|
|
SDValue Chain = ST->getChain();
|
|
SDValue BasePTR = ST->getBasePtr();
|
|
SDValue Value = ST->getValue();
|
|
EVT StVT = ST->getMemoryVT();
|
|
|
|
unsigned Alignment = ST->getAlignment();
|
|
bool isVolatile = ST->isVolatile();
|
|
bool isNonTemporal = ST->isNonTemporal();
|
|
|
|
unsigned NumElem = StVT.getVectorNumElements();
|
|
// The type of the data we want to save
|
|
EVT RegVT = Value.getValueType();
|
|
EVT RegSclVT = RegVT.getScalarType();
|
|
// The type of data as saved in memory.
|
|
EVT MemSclVT = StVT.getScalarType();
|
|
|
|
// Cast floats into integers
|
|
unsigned ScalarSize = MemSclVT.getSizeInBits();
|
|
|
|
// Round odd types to the next pow of two.
|
|
if (!isPowerOf2_32(ScalarSize))
|
|
ScalarSize = NextPowerOf2(ScalarSize);
|
|
|
|
// Store Stride in bytes
|
|
unsigned Stride = ScalarSize/8;
|
|
// Extract each of the elements from the original vector
|
|
// and save them into memory individually.
|
|
SmallVector<SDValue, 8> Stores;
|
|
for (unsigned Idx = 0; Idx < NumElem; Idx++) {
|
|
SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
|
|
RegSclVT, Value, DAG.getIntPtrConstant(Idx));
|
|
|
|
// This scalar TruncStore may be illegal, but we legalize it later.
|
|
SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
|
|
ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
|
|
isVolatile, isNonTemporal, Alignment);
|
|
|
|
BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
|
|
DAG.getIntPtrConstant(Stride));
|
|
|
|
Stores.push_back(Store);
|
|
}
|
|
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&Stores[0], Stores.size());
|
|
AddLegalizedOperand(Op, TF);
|
|
return TF;
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
|
|
// Lower a select instruction where the condition is a scalar and the
|
|
// operands are vectors. Lower this select to VSELECT and implement it
|
|
// using XOR AND OR. The selector bit is broadcasted.
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
|
|
SDValue Mask = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue Op2 = Op.getOperand(2);
|
|
|
|
assert(VT.isVector() && !Mask.getValueType().isVector()
|
|
&& Op1.getValueType() == Op2.getValueType() && "Invalid type");
|
|
|
|
unsigned NumElem = VT.getVectorNumElements();
|
|
|
|
// If we can't even use the basic vector operations of
|
|
// AND,OR,XOR, we will have to scalarize the op.
|
|
// Notice that the operation may be 'promoted' which means that it is
|
|
// 'bitcasted' to another type which is handled.
|
|
// Also, we need to be able to construct a splat vector using BUILD_VECTOR.
|
|
if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
// Generate a mask operand.
|
|
EVT MaskTy = TLI.getSetCCResultType(VT);
|
|
assert(MaskTy.isVector() && "Invalid CC type");
|
|
assert(MaskTy.getSizeInBits() == Op1.getValueType().getSizeInBits()
|
|
&& "Invalid mask size");
|
|
|
|
// What is the size of each element in the vector mask.
|
|
EVT BitTy = MaskTy.getScalarType();
|
|
|
|
Mask = DAG.getNode(ISD::SELECT, DL, BitTy, Mask,
|
|
DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy),
|
|
DAG.getConstant(0, BitTy));
|
|
|
|
// Broadcast the mask so that the entire vector is all-one or all zero.
|
|
SmallVector<SDValue, 8> Ops(NumElem, Mask);
|
|
Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, &Ops[0], Ops.size());
|
|
|
|
// Bitcast the operands to be the same type as the mask.
|
|
// This is needed when we select between FP types because
|
|
// the mask is a vector of integers.
|
|
Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
|
|
Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
|
|
|
|
SDValue AllOnes = DAG.getConstant(
|
|
APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy);
|
|
SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
|
|
|
|
Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
|
|
Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
|
|
SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Make sure that the SRA and SHL instructions are available.
|
|
if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
|
|
|
|
unsigned BW = VT.getScalarType().getSizeInBits();
|
|
unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
|
|
SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT);
|
|
|
|
Op = Op.getOperand(0);
|
|
Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
|
|
return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
|
|
// Implement VSELECT in terms of XOR, AND, OR
|
|
// on platforms which do not support blend natively.
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
|
|
SDValue Mask = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue Op2 = Op.getOperand(2);
|
|
|
|
EVT VT = Mask.getValueType();
|
|
|
|
// If we can't even use the basic vector operations of
|
|
// AND,OR,XOR, we will have to scalarize the op.
|
|
// Notice that the operation may be 'promoted' which means that it is
|
|
// 'bitcasted' to another type which is handled.
|
|
// This operation also isn't safe with AND, OR, XOR when the boolean
|
|
// type is 0/1 as we need an all ones vector constant to mask with.
|
|
// FIXME: Sign extend 1 to all ones if thats legal on the target.
|
|
if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
|
|
TLI.getBooleanContents(true) !=
|
|
TargetLowering::ZeroOrNegativeOneBooleanContent)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
// If the mask and the type are different sizes, unroll the vector op. This
|
|
// can occur when getSetCCResultType returns something that is different in
|
|
// size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
|
|
if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
// Bitcast the operands to be the same type as the mask.
|
|
// This is needed when we select between FP types because
|
|
// the mask is a vector of integers.
|
|
Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
|
|
Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
|
|
|
|
SDValue AllOnes = DAG.getConstant(
|
|
APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT);
|
|
SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
|
|
|
|
Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
|
|
Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
|
|
SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
|
|
}
|
|
|
|
SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
|
|
// Make sure that the SINT_TO_FP and SRL instructions are available.
|
|
if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
|
|
TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
EVT SVT = VT.getScalarType();
|
|
assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
|
|
"Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
|
|
|
|
unsigned BW = SVT.getSizeInBits();
|
|
SDValue HalfWord = DAG.getConstant(BW/2, VT);
|
|
|
|
// Constants to clear the upper part of the word.
|
|
// Notice that we can also use SHL+SHR, but using a constant is slightly
|
|
// faster on x86.
|
|
uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
|
|
SDValue HalfWordMask = DAG.getConstant(HWMask, VT);
|
|
|
|
// Two to the power of half-word-size.
|
|
SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType());
|
|
|
|
// Clear upper part of LO, lower HI
|
|
SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
|
|
SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
|
|
|
|
// Convert hi and lo to floats
|
|
// Convert the hi part back to the upper values
|
|
SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
|
|
fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
|
|
SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
|
|
|
|
// Add the two halves
|
|
return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
|
|
}
|
|
|
|
|
|
SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
|
|
if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
|
|
SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType());
|
|
return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
|
|
Zero, Op.getOperand(0));
|
|
}
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
|
|
EVT VT = Op.getValueType();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
|
|
EVT TmpEltVT = LHS.getValueType().getVectorElementType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SmallVector<SDValue, 8> Ops(NumElems);
|
|
for (unsigned i = 0; i < NumElems; ++i) {
|
|
SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
|
|
DAG.getIntPtrConstant(i));
|
|
SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
|
|
DAG.getIntPtrConstant(i));
|
|
Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT),
|
|
LHSElem, RHSElem, CC);
|
|
Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i],
|
|
DAG.getConstant(APInt::getAllOnesValue
|
|
(EltVT.getSizeInBits()), EltVT),
|
|
DAG.getConstant(0, EltVT));
|
|
}
|
|
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems);
|
|
}
|
|
|
|
}
|
|
|
|
bool SelectionDAG::LegalizeVectors() {
|
|
return VectorLegalizer(*this).Run();
|
|
}
|