llvm-project/lldb/source/Plugins/ABI/Mips/ABISysV_mips.cpp

1067 lines
28 KiB
C++

//===-- ABISysV_mips.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABISysV_mips.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE(ABISysV_mips)
enum dwarf_regnums {
dwarf_r0 = 0,
dwarf_r1,
dwarf_r2,
dwarf_r3,
dwarf_r4,
dwarf_r5,
dwarf_r6,
dwarf_r7,
dwarf_r8,
dwarf_r9,
dwarf_r10,
dwarf_r11,
dwarf_r12,
dwarf_r13,
dwarf_r14,
dwarf_r15,
dwarf_r16,
dwarf_r17,
dwarf_r18,
dwarf_r19,
dwarf_r20,
dwarf_r21,
dwarf_r22,
dwarf_r23,
dwarf_r24,
dwarf_r25,
dwarf_r26,
dwarf_r27,
dwarf_r28,
dwarf_r29,
dwarf_r30,
dwarf_r31,
dwarf_sr,
dwarf_lo,
dwarf_hi,
dwarf_bad,
dwarf_cause,
dwarf_pc
};
static const RegisterInfo g_register_infos[] = {
// NAME ALT SZ OFF ENCODING FORMAT EH_FRAME
// DWARF GENERIC PROCESS PLUGINS
// LLDB NATIVE VALUE REGS INVALIDATE REGS
// ======== ====== == === ============= =========== ============
// ============== ============ =================
// =================== ========== =================
{"r0",
"zero",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r1",
"AT",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r1, dwarf_r1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r2",
"v0",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r3",
"v1",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r3, dwarf_r3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r4",
"arg1",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG1, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r5",
"arg2",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG2, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r6",
"arg3",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG3, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r7",
"arg4",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG4, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r8",
"arg5",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r8, dwarf_r8, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r9",
"arg6",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r9, dwarf_r9, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r10",
"arg7",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r10, dwarf_r10, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r11",
"arg8",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r12",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r13",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r14",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r15",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r16",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r17",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r18",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r19",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r20",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r21",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r22",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r23",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r24",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r25",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r26",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r27",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r28",
"gp",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r29",
"sp",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r29, dwarf_r29, LLDB_REGNUM_GENERIC_SP, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r30",
"fp",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r30, dwarf_r30, LLDB_REGNUM_GENERIC_FP, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"r31",
"ra",
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_r31, dwarf_r31, LLDB_REGNUM_GENERIC_RA, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"sr",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_sr, dwarf_sr, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"lo",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_lo, dwarf_lo, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"hi",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_hi, dwarf_hi, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"bad",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_bad, dwarf_bad, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"cause",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_cause, dwarf_cause, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
{"pc",
nullptr,
4,
0,
eEncodingUint,
eFormatHex,
{dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_REGNUM,
LLDB_INVALID_REGNUM},
nullptr,
nullptr,
nullptr,
0},
};
static const uint32_t k_num_register_infos =
llvm::array_lengthof(g_register_infos);
const lldb_private::RegisterInfo *
ABISysV_mips::GetRegisterInfoArray(uint32_t &count) {
count = k_num_register_infos;
return g_register_infos;
}
size_t ABISysV_mips::GetRedZoneSize() const { return 0; }
// Static Functions
ABISP
ABISysV_mips::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch();
if ((arch_type == llvm::Triple::mips) ||
(arch_type == llvm::Triple::mipsel)) {
return ABISP(
new ABISysV_mips(std::move(process_sp), MakeMCRegisterInfo(arch)));
}
return ABISP();
}
bool ABISysV_mips::PrepareTrivialCall(Thread &thread, addr_t sp,
addr_t func_addr, addr_t return_addr,
llvm::ArrayRef<addr_t> args) const {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
if (log) {
StreamString s;
s.Printf("ABISysV_mips::PrepareTrivialCall (tid = 0x%" PRIx64
", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
", return_addr = 0x%" PRIx64,
thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
(uint64_t)return_addr);
for (size_t i = 0; i < args.size(); ++i)
s.Printf(", arg%zd = 0x%" PRIx64, i + 1, args[i]);
s.PutCString(")");
log->PutString(s.GetString());
}
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
const RegisterInfo *reg_info = nullptr;
RegisterValue reg_value;
// Argument registers
const char *reg_names[] = {"r4", "r5", "r6", "r7"};
llvm::ArrayRef<addr_t>::iterator ai = args.begin(), ae = args.end();
// Write arguments to registers
for (size_t i = 0; i < llvm::array_lengthof(reg_names); ++i) {
if (ai == ae)
break;
reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_ARG1 + i);
LLDB_LOGF(log, "About to write arg%zd (0x%" PRIx64 ") into %s", i + 1,
args[i], reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
return false;
++ai;
}
// If we have more than 4 arguments --Spill onto the stack
if (ai != ae) {
// No of arguments to go on stack
size_t num_stack_regs = args.size();
// Allocate needed space for args on the stack
sp -= (num_stack_regs * 4);
// Keep the stack 8 byte aligned
sp &= ~(8ull - 1ull);
// just using arg1 to get the right size
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo(
eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1);
addr_t arg_pos = sp + 16;
size_t i = 4;
for (; ai != ae; ++ai) {
reg_value.SetUInt32(*ai);
LLDB_LOGF(log, "About to write arg%zd (0x%" PRIx64 ") at 0x%" PRIx64 "",
i + 1, args[i], arg_pos);
if (reg_ctx
->WriteRegisterValueToMemory(reg_info, arg_pos,
reg_info->byte_size, reg_value)
.Fail())
return false;
arg_pos += reg_info->byte_size;
i++;
}
}
Status error;
const RegisterInfo *pc_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const RegisterInfo *sp_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
const RegisterInfo *ra_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA);
const RegisterInfo *r25_info = reg_ctx->GetRegisterInfoByName("r25", 0);
const RegisterInfo *r0_info = reg_ctx->GetRegisterInfoByName("zero", 0);
LLDB_LOGF(log, "Writing R0: 0x%" PRIx64, (uint64_t)0);
/* Write r0 with 0, in case we are stopped in syscall,
* such setting prevents automatic decrement of the PC.
* This clears the bug 23659 for MIPS.
*/
if (!reg_ctx->WriteRegisterFromUnsigned(r0_info, (uint64_t)0))
return false;
LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
// Set "sp" to the requested value
if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
return false;
LLDB_LOGF(log, "Writing RA: 0x%" PRIx64, (uint64_t)return_addr);
// Set "ra" to the return address
if (!reg_ctx->WriteRegisterFromUnsigned(ra_reg_info, return_addr))
return false;
LLDB_LOGF(log, "Writing PC: 0x%" PRIx64, (uint64_t)func_addr);
// Set pc to the address of the called function.
if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
return false;
LLDB_LOGF(log, "Writing r25: 0x%" PRIx64, (uint64_t)func_addr);
// All callers of position independent functions must place the address of
// the called function in t9 (r25)
if (!reg_ctx->WriteRegisterFromUnsigned(r25_info, func_addr))
return false;
return true;
}
bool ABISysV_mips::GetArgumentValues(Thread &thread, ValueList &values) const {
return false;
}
Status ABISysV_mips::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
lldb::ValueObjectSP &new_value_sp) {
Status error;
if (!new_value_sp) {
error.SetErrorString("Empty value object for return value.");
return error;
}
CompilerType compiler_type = new_value_sp->GetCompilerType();
if (!compiler_type) {
error.SetErrorString("Null clang type for return value.");
return error;
}
Thread *thread = frame_sp->GetThread().get();
bool is_signed;
uint32_t count;
bool is_complex;
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
bool set_it_simple = false;
if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
compiler_type.IsPointerType()) {
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
lldb::offset_t offset = 0;
if (num_bytes <= 8) {
const RegisterInfo *r2_info = reg_ctx->GetRegisterInfoByName("r2", 0);
if (num_bytes <= 4) {
uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
if (reg_ctx->WriteRegisterFromUnsigned(r2_info, raw_value))
set_it_simple = true;
} else {
uint32_t raw_value = data.GetMaxU32(&offset, 4);
if (reg_ctx->WriteRegisterFromUnsigned(r2_info, raw_value)) {
const RegisterInfo *r3_info = reg_ctx->GetRegisterInfoByName("r3", 0);
uint32_t raw_value = data.GetMaxU32(&offset, num_bytes - offset);
if (reg_ctx->WriteRegisterFromUnsigned(r3_info, raw_value))
set_it_simple = true;
}
}
} else {
error.SetErrorString("We don't support returning longer than 64 bit "
"integer values at present.");
}
} else if (compiler_type.IsFloatingPointType(count, is_complex)) {
if (is_complex)
error.SetErrorString(
"We don't support returning complex values at present");
else
error.SetErrorString(
"We don't support returning float values at present");
}
if (!set_it_simple)
error.SetErrorString(
"We only support setting simple integer return types at present.");
return error;
}
ValueObjectSP ABISysV_mips::GetReturnValueObjectSimple(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
return return_valobj_sp;
}
ValueObjectSP ABISysV_mips::GetReturnValueObjectImpl(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
Value value;
if (!return_compiler_type)
return return_valobj_sp;
ExecutionContext exe_ctx(thread.shared_from_this());
if (exe_ctx.GetTargetPtr() == nullptr || exe_ctx.GetProcessPtr() == nullptr)
return return_valobj_sp;
Target *target = exe_ctx.GetTargetPtr();
const ArchSpec target_arch = target->GetArchitecture();
ByteOrder target_byte_order = target_arch.GetByteOrder();
value.SetCompilerType(return_compiler_type);
uint32_t fp_flag =
target_arch.GetFlags() & lldb_private::ArchSpec::eMIPS_ABI_FP_mask;
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
bool is_signed = false;
bool is_complex = false;
uint32_t count = 0;
// In MIPS register "r2" (v0) holds the integer function return values
const RegisterInfo *r2_reg_info = reg_ctx->GetRegisterInfoByName("r2", 0);
llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
if (!bit_width)
return return_valobj_sp;
if (return_compiler_type.IsIntegerOrEnumerationType(is_signed)) {
switch (*bit_width) {
default:
return return_valobj_sp;
case 64: {
const RegisterInfo *r3_reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
uint64_t raw_value;
raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX;
raw_value |= ((uint64_t)(reg_ctx->ReadRegisterAsUnsigned(r3_reg_info, 0) &
UINT32_MAX))
<< 32;
if (is_signed)
value.GetScalar() = (int64_t)raw_value;
else
value.GetScalar() = (uint64_t)raw_value;
} break;
case 32:
if (is_signed)
value.GetScalar() = (int32_t)(
reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(
reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX);
break;
case 16:
if (is_signed)
value.GetScalar() = (int16_t)(
reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(
reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT16_MAX);
break;
case 8:
if (is_signed)
value.GetScalar() = (int8_t)(
reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(
reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT8_MAX);
break;
}
} else if (return_compiler_type.IsPointerType()) {
uint32_t ptr =
thread.GetRegisterContext()->ReadRegisterAsUnsigned(r2_reg_info, 0) &
UINT32_MAX;
value.GetScalar() = ptr;
} else if (return_compiler_type.IsAggregateType()) {
// Structure/Vector is always passed in memory and pointer to that memory
// is passed in r2.
uint64_t mem_address = reg_ctx->ReadRegisterAsUnsigned(
reg_ctx->GetRegisterInfoByName("r2", 0), 0);
// We have got the address. Create a memory object out of it
return_valobj_sp = ValueObjectMemory::Create(
&thread, "", Address(mem_address, nullptr), return_compiler_type);
return return_valobj_sp;
} else if (return_compiler_type.IsFloatingPointType(count, is_complex)) {
if (IsSoftFloat(fp_flag)) {
uint64_t raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0);
if (count != 1 && is_complex)
return return_valobj_sp;
switch (*bit_width) {
default:
return return_valobj_sp;
case 32:
static_assert(sizeof(float) == sizeof(uint32_t), "");
value.GetScalar() = *((float *)(&raw_value));
break;
case 64:
static_assert(sizeof(double) == sizeof(uint64_t), "");
const RegisterInfo *r3_reg_info =
reg_ctx->GetRegisterInfoByName("r3", 0);
if (target_byte_order == eByteOrderLittle)
raw_value =
((reg_ctx->ReadRegisterAsUnsigned(r3_reg_info, 0)) << 32) |
raw_value;
else
raw_value = (raw_value << 32) |
reg_ctx->ReadRegisterAsUnsigned(r3_reg_info, 0);
value.GetScalar() = *((double *)(&raw_value));
break;
}
}
else {
const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0);
RegisterValue f0_value;
DataExtractor f0_data;
reg_ctx->ReadRegister(f0_info, f0_value);
f0_value.GetData(f0_data);
lldb::offset_t offset = 0;
if (count == 1 && !is_complex) {
switch (*bit_width) {
default:
return return_valobj_sp;
case 64: {
static_assert(sizeof(double) == sizeof(uint64_t), "");
const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
RegisterValue f1_value;
DataExtractor f1_data;
reg_ctx->ReadRegister(f1_info, f1_value);
DataExtractor *copy_from_extractor = nullptr;
DataBufferSP data_sp(new DataBufferHeap(8, 0));
DataExtractor return_ext(
data_sp, target_byte_order,
target->GetArchitecture().GetAddressByteSize());
if (target_byte_order == eByteOrderLittle) {
copy_from_extractor = &f0_data;
copy_from_extractor->CopyByteOrderedData(
offset, 4, data_sp->GetBytes(), 4, target_byte_order);
f1_value.GetData(f1_data);
copy_from_extractor = &f1_data;
copy_from_extractor->CopyByteOrderedData(
offset, 4, data_sp->GetBytes() + 4, 4, target_byte_order);
} else {
copy_from_extractor = &f0_data;
copy_from_extractor->CopyByteOrderedData(
offset, 4, data_sp->GetBytes() + 4, 4, target_byte_order);
f1_value.GetData(f1_data);
copy_from_extractor = &f1_data;
copy_from_extractor->CopyByteOrderedData(
offset, 4, data_sp->GetBytes(), 4, target_byte_order);
}
value.GetScalar() = (double)return_ext.GetDouble(&offset);
break;
}
case 32: {
static_assert(sizeof(float) == sizeof(uint32_t), "");
value.GetScalar() = (float)f0_data.GetFloat(&offset);
break;
}
}
} else {
// not handled yet
return return_valobj_sp;
}
}
} else {
// not handled yet
return return_valobj_sp;
}
// If we get here, we have a valid Value, so make our ValueObject out of it:
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
return return_valobj_sp;
}
bool ABISysV_mips::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
UnwindPlan::RowSP row(new UnwindPlan::Row);
// Our Call Frame Address is the stack pointer value
row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r29, 0);
// The previous PC is in the RA
row->SetRegisterLocationToRegister(dwarf_pc, dwarf_r31, true);
unwind_plan.AppendRow(row);
// All other registers are the same.
unwind_plan.SetSourceName("mips at-func-entry default");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetReturnAddressRegister(dwarf_r31);
return true;
}
bool ABISysV_mips::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
UnwindPlan::RowSP row(new UnwindPlan::Row);
row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r29, 0);
row->SetRegisterLocationToRegister(dwarf_pc, dwarf_r31, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("mips default unwind plan");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
return true;
}
bool ABISysV_mips::RegisterIsVolatile(const RegisterInfo *reg_info) {
return !RegisterIsCalleeSaved(reg_info);
}
bool ABISysV_mips::IsSoftFloat(uint32_t fp_flags) const {
return (fp_flags == lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT);
}
bool ABISysV_mips::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
if (reg_info) {
// Preserved registers are :
// r16-r23, r28, r29, r30, r31
const char *name = reg_info->name;
if (name[0] == 'r') {
switch (name[1]) {
case '1':
if (name[2] == '6' || name[2] == '7' || name[2] == '8' ||
name[2] == '9') // r16-r19
return name[3] == '\0';
break;
case '2':
if (name[2] == '0' || name[2] == '1' || name[2] == '2' ||
name[2] == '3' // r20-r23
|| name[2] == '8' || name[2] == '9') // r28 and r29
return name[3] == '\0';
break;
case '3':
if (name[2] == '0' || name[2] == '1') // r30 and r31
return name[3] == '\0';
break;
}
if (name[0] == 'g' && name[1] == 'p' && name[2] == '\0') // gp (r28)
return true;
if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp (r29)
return true;
if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp (r30)
return true;
if (name[0] == 'r' && name[1] == 'a' && name[2] == '\0') // ra (r31)
return true;
}
}
return false;
}
void ABISysV_mips::Initialize() {
PluginManager::RegisterPlugin(
GetPluginNameStatic(), "System V ABI for mips targets", CreateInstance);
}
void ABISysV_mips::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString ABISysV_mips::GetPluginNameStatic() {
static ConstString g_name("sysv-mips");
return g_name;
}
// PluginInterface protocol
lldb_private::ConstString ABISysV_mips::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t ABISysV_mips::GetPluginVersion() { return 1; }