llvm-project/clang/lib/Sema/SemaDeclObjC.cpp

2065 lines
84 KiB
C++

//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Objective C declarations.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ExternalSemaSource.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Sema/DeclSpec.h"
#include "llvm/ADT/DenseSet.h"
using namespace clang;
static void DiagnoseObjCImplementedDeprecations(Sema &S,
NamedDecl *ND,
SourceLocation ImplLoc,
int select) {
unsigned DIAG = diag::warn_depercated_def;
if (S.Diags.getDiagnosticLevel(DIAG, ImplLoc)== Diagnostic::Ignored)
return;
if (ND && ND->getAttr<DeprecatedAttr>()) {
S.Diag(ImplLoc, DIAG) << select;
if (select == 0)
S.Diag(ND->getLocation(), diag::note_method_declared_at);
else
S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
}
}
/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
/// and user declared, in the method definition's AST.
void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
assert(getCurMethodDecl() == 0 && "Method parsing confused");
ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
// If we don't have a valid method decl, simply return.
if (!MDecl)
return;
// Allow the rest of sema to find private method decl implementations.
if (MDecl->isInstanceMethod())
AddInstanceMethodToGlobalPool(MDecl, true);
else
AddFactoryMethodToGlobalPool(MDecl, true);
// Allow all of Sema to see that we are entering a method definition.
PushDeclContext(FnBodyScope, MDecl);
PushFunctionScope();
// Create Decl objects for each parameter, entrring them in the scope for
// binding to their use.
// Insert the invisible arguments, self and _cmd!
MDecl->createImplicitParams(Context, MDecl->getClassInterface());
PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
// Introduce all of the other parameters into this scope.
for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
E = MDecl->param_end(); PI != E; ++PI) {
ParmVarDecl *Param = (*PI);
if (!Param->isInvalidDecl() &&
RequireCompleteType(Param->getLocation(), Param->getType(),
diag::err_typecheck_decl_incomplete_type))
Param->setInvalidDecl();
if ((*PI)->getIdentifier())
PushOnScopeChains(*PI, FnBodyScope);
}
// Warn on implementating deprecated methods under
// -Wdeprecated-implementations flag.
if (ObjCInterfaceDecl *IC = MDecl->getClassInterface())
if (ObjCMethodDecl *IMD =
IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
DiagnoseObjCImplementedDeprecations(*this,
dyn_cast<NamedDecl>(IMD),
MDecl->getLocation(), 0);
}
Decl *Sema::
ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperName, SourceLocation SuperLoc,
Decl * const *ProtoRefs, unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc, AttributeList *AttrList) {
assert(ClassName && "Missing class identifier");
// Check for another declaration kind with the same name.
NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
LookupOrdinaryName, ForRedeclaration);
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
}
ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
if (IDecl) {
// Class already seen. Is it a forward declaration?
if (!IDecl->isForwardDecl()) {
IDecl->setInvalidDecl();
Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
Diag(IDecl->getLocation(), diag::note_previous_definition);
// Return the previous class interface.
// FIXME: don't leak the objects passed in!
return IDecl;
} else {
IDecl->setLocation(AtInterfaceLoc);
IDecl->setForwardDecl(false);
IDecl->setClassLoc(ClassLoc);
// If the forward decl was in a PCH, we need to write it again in a
// dependent AST file.
IDecl->setChangedSinceDeserialization(true);
// Since this ObjCInterfaceDecl was created by a forward declaration,
// we now add it to the DeclContext since it wasn't added before
// (see ActOnForwardClassDeclaration).
IDecl->setLexicalDeclContext(CurContext);
CurContext->addDecl(IDecl);
if (AttrList)
ProcessDeclAttributeList(TUScope, IDecl, AttrList);
}
} else {
IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
ClassName, ClassLoc);
if (AttrList)
ProcessDeclAttributeList(TUScope, IDecl, AttrList);
PushOnScopeChains(IDecl, TUScope);
}
if (SuperName) {
// Check if a different kind of symbol declared in this scope.
PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
LookupOrdinaryName);
if (!PrevDecl) {
// Try to correct for a typo in the superclass name.
LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName);
if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
(PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
Diag(SuperLoc, diag::err_undef_superclass_suggest)
<< SuperName << ClassName << PrevDecl->getDeclName();
Diag(PrevDecl->getLocation(), diag::note_previous_decl)
<< PrevDecl->getDeclName();
}
}
if (PrevDecl == IDecl) {
Diag(SuperLoc, diag::err_recursive_superclass)
<< SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
IDecl->setLocEnd(ClassLoc);
} else {
ObjCInterfaceDecl *SuperClassDecl =
dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
// Diagnose classes that inherit from deprecated classes.
if (SuperClassDecl)
(void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
if (PrevDecl && SuperClassDecl == 0) {
// The previous declaration was not a class decl. Check if we have a
// typedef. If we do, get the underlying class type.
if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
QualType T = TDecl->getUnderlyingType();
if (T->isObjCObjectType()) {
if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
}
}
// This handles the following case:
//
// typedef int SuperClass;
// @interface MyClass : SuperClass {} @end
//
if (!SuperClassDecl) {
Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
}
}
if (!dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
if (!SuperClassDecl)
Diag(SuperLoc, diag::err_undef_superclass)
<< SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
else if (SuperClassDecl->isForwardDecl())
Diag(SuperLoc, diag::err_undef_superclass)
<< SuperClassDecl->getDeclName() << ClassName
<< SourceRange(AtInterfaceLoc, ClassLoc);
}
IDecl->setSuperClass(SuperClassDecl);
IDecl->setSuperClassLoc(SuperLoc);
IDecl->setLocEnd(SuperLoc);
}
} else { // we have a root class.
IDecl->setLocEnd(ClassLoc);
}
// Check then save referenced protocols.
if (NumProtoRefs) {
IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
ProtoLocs, Context);
IDecl->setLocEnd(EndProtoLoc);
}
CheckObjCDeclScope(IDecl);
return IDecl;
}
/// ActOnCompatiblityAlias - this action is called after complete parsing of
/// @compatibility_alias declaration. It sets up the alias relationships.
Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
IdentifierInfo *AliasName,
SourceLocation AliasLocation,
IdentifierInfo *ClassName,
SourceLocation ClassLocation) {
// Look for previous declaration of alias name
NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
LookupOrdinaryName, ForRedeclaration);
if (ADecl) {
if (isa<ObjCCompatibleAliasDecl>(ADecl))
Diag(AliasLocation, diag::warn_previous_alias_decl);
else
Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
Diag(ADecl->getLocation(), diag::note_previous_declaration);
return 0;
}
// Check for class declaration
NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
LookupOrdinaryName, ForRedeclaration);
if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) {
QualType T = TDecl->getUnderlyingType();
if (T->isObjCObjectType()) {
if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
ClassName = IDecl->getIdentifier();
CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
LookupOrdinaryName, ForRedeclaration);
}
}
}
ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
if (CDecl == 0) {
Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
if (CDeclU)
Diag(CDeclU->getLocation(), diag::note_previous_declaration);
return 0;
}
// Everything checked out, instantiate a new alias declaration AST.
ObjCCompatibleAliasDecl *AliasDecl =
ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
if (!CheckObjCDeclScope(AliasDecl))
PushOnScopeChains(AliasDecl, TUScope);
return AliasDecl;
}
void Sema::CheckForwardProtocolDeclarationForCircularDependency(
IdentifierInfo *PName,
SourceLocation &Ploc, SourceLocation PrevLoc,
const ObjCList<ObjCProtocolDecl> &PList) {
for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
E = PList.end(); I != E; ++I) {
if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
Ploc)) {
if (PDecl->getIdentifier() == PName) {
Diag(Ploc, diag::err_protocol_has_circular_dependency);
Diag(PrevLoc, diag::note_previous_definition);
}
CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
PDecl->getLocation(), PDecl->getReferencedProtocols());
}
}
}
Decl *
Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
IdentifierInfo *ProtocolName,
SourceLocation ProtocolLoc,
Decl * const *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc,
AttributeList *AttrList) {
// FIXME: Deal with AttrList.
assert(ProtocolName && "Missing protocol identifier");
ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
if (PDecl) {
// Protocol already seen. Better be a forward protocol declaration
if (!PDecl->isForwardDecl()) {
Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
Diag(PDecl->getLocation(), diag::note_previous_definition);
// Just return the protocol we already had.
// FIXME: don't leak the objects passed in!
return PDecl;
}
ObjCList<ObjCProtocolDecl> PList;
PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
CheckForwardProtocolDeclarationForCircularDependency(
ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
// Make sure the cached decl gets a valid start location.
PDecl->setLocation(AtProtoInterfaceLoc);
PDecl->setForwardDecl(false);
CurContext->addDecl(PDecl);
// Repeat in dependent AST files.
PDecl->setChangedSinceDeserialization(true);
} else {
PDecl = ObjCProtocolDecl::Create(Context, CurContext,
AtProtoInterfaceLoc,ProtocolName);
PushOnScopeChains(PDecl, TUScope);
PDecl->setForwardDecl(false);
}
if (AttrList)
ProcessDeclAttributeList(TUScope, PDecl, AttrList);
if (NumProtoRefs) {
/// Check then save referenced protocols.
PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
ProtoLocs, Context);
PDecl->setLocEnd(EndProtoLoc);
}
CheckObjCDeclScope(PDecl);
return PDecl;
}
/// FindProtocolDeclaration - This routine looks up protocols and
/// issues an error if they are not declared. It returns list of
/// protocol declarations in its 'Protocols' argument.
void
Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
const IdentifierLocPair *ProtocolId,
unsigned NumProtocols,
llvm::SmallVectorImpl<Decl *> &Protocols) {
for (unsigned i = 0; i != NumProtocols; ++i) {
ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
ProtocolId[i].second);
if (!PDecl) {
LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second,
LookupObjCProtocolName);
if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
(PDecl = R.getAsSingle<ObjCProtocolDecl>())) {
Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
<< ProtocolId[i].first << R.getLookupName();
Diag(PDecl->getLocation(), diag::note_previous_decl)
<< PDecl->getDeclName();
}
}
if (!PDecl) {
Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
<< ProtocolId[i].first;
continue;
}
(void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
// If this is a forward declaration and we are supposed to warn in this
// case, do it.
if (WarnOnDeclarations && PDecl->isForwardDecl())
Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
<< ProtocolId[i].first;
Protocols.push_back(PDecl);
}
}
/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
/// a class method in its extension.
///
void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
ObjCInterfaceDecl *ID) {
if (!ID)
return; // Possibly due to previous error
llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
e = ID->meth_end(); i != e; ++i) {
ObjCMethodDecl *MD = *i;
MethodMap[MD->getSelector()] = MD;
}
if (MethodMap.empty())
return;
for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
e = CAT->meth_end(); i != e; ++i) {
ObjCMethodDecl *Method = *i;
const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
<< Method->getDeclName();
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
}
}
}
/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
Decl *
Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
const IdentifierLocPair *IdentList,
unsigned NumElts,
AttributeList *attrList) {
llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
llvm::SmallVector<SourceLocation, 8> ProtoLocs;
for (unsigned i = 0; i != NumElts; ++i) {
IdentifierInfo *Ident = IdentList[i].first;
ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
bool isNew = false;
if (PDecl == 0) { // Not already seen?
PDecl = ObjCProtocolDecl::Create(Context, CurContext,
IdentList[i].second, Ident);
PushOnScopeChains(PDecl, TUScope, false);
isNew = true;
}
if (attrList) {
ProcessDeclAttributeList(TUScope, PDecl, attrList);
if (!isNew)
PDecl->setChangedSinceDeserialization(true);
}
Protocols.push_back(PDecl);
ProtoLocs.push_back(IdentList[i].second);
}
ObjCForwardProtocolDecl *PDecl =
ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
Protocols.data(), Protocols.size(),
ProtoLocs.data());
CurContext->addDecl(PDecl);
CheckObjCDeclScope(PDecl);
return PDecl;
}
Decl *Sema::
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *CategoryName,
SourceLocation CategoryLoc,
Decl * const *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc) {
ObjCCategoryDecl *CDecl;
ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
/// Check that class of this category is already completely declared.
if (!IDecl || IDecl->isForwardDecl()) {
// Create an invalid ObjCCategoryDecl to serve as context for
// the enclosing method declarations. We mark the decl invalid
// to make it clear that this isn't a valid AST.
CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
ClassLoc, CategoryLoc, CategoryName);
CDecl->setInvalidDecl();
Diag(ClassLoc, diag::err_undef_interface) << ClassName;
return CDecl;
}
if (!CategoryName && IDecl->getImplementation()) {
Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
Diag(IDecl->getImplementation()->getLocation(),
diag::note_implementation_declared);
}
CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
ClassLoc, CategoryLoc, CategoryName);
// FIXME: PushOnScopeChains?
CurContext->addDecl(CDecl);
CDecl->setClassInterface(IDecl);
// Insert class extension to the list of class's categories.
if (!CategoryName)
CDecl->insertNextClassCategory();
// If the interface is deprecated, warn about it.
(void)DiagnoseUseOfDecl(IDecl, ClassLoc);
if (CategoryName) {
/// Check for duplicate interface declaration for this category
ObjCCategoryDecl *CDeclChain;
for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
CDeclChain = CDeclChain->getNextClassCategory()) {
if (CDeclChain->getIdentifier() == CategoryName) {
// Class extensions can be declared multiple times.
Diag(CategoryLoc, diag::warn_dup_category_def)
<< ClassName << CategoryName;
Diag(CDeclChain->getLocation(), diag::note_previous_definition);
break;
}
}
if (!CDeclChain)
CDecl->insertNextClassCategory();
}
if (NumProtoRefs) {
CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
ProtoLocs, Context);
// Protocols in the class extension belong to the class.
if (CDecl->IsClassExtension())
IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
NumProtoRefs, Context);
}
CheckObjCDeclScope(CDecl);
return CDecl;
}
/// ActOnStartCategoryImplementation - Perform semantic checks on the
/// category implementation declaration and build an ObjCCategoryImplDecl
/// object.
Decl *Sema::ActOnStartCategoryImplementation(
SourceLocation AtCatImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *CatName, SourceLocation CatLoc) {
ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
ObjCCategoryDecl *CatIDecl = 0;
if (IDecl) {
CatIDecl = IDecl->FindCategoryDeclaration(CatName);
if (!CatIDecl) {
// Category @implementation with no corresponding @interface.
// Create and install one.
CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
SourceLocation(), SourceLocation(),
CatName);
CatIDecl->setClassInterface(IDecl);
CatIDecl->insertNextClassCategory();
}
}
ObjCCategoryImplDecl *CDecl =
ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
IDecl);
/// Check that class of this category is already completely declared.
if (!IDecl || IDecl->isForwardDecl())
Diag(ClassLoc, diag::err_undef_interface) << ClassName;
// FIXME: PushOnScopeChains?
CurContext->addDecl(CDecl);
/// Check that CatName, category name, is not used in another implementation.
if (CatIDecl) {
if (CatIDecl->getImplementation()) {
Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
<< CatName;
Diag(CatIDecl->getImplementation()->getLocation(),
diag::note_previous_definition);
} else {
CatIDecl->setImplementation(CDecl);
// Warn on implementating category of deprecated class under
// -Wdeprecated-implementations flag.
DiagnoseObjCImplementedDeprecations(*this,
dyn_cast<NamedDecl>(IDecl),
CDecl->getLocation(), 2);
}
}
CheckObjCDeclScope(CDecl);
return CDecl;
}
Decl *Sema::ActOnStartClassImplementation(
SourceLocation AtClassImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperClassname,
SourceLocation SuperClassLoc) {
ObjCInterfaceDecl* IDecl = 0;
// Check for another declaration kind with the same name.
NamedDecl *PrevDecl
= LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
ForRedeclaration);
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
} else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
// If this is a forward declaration of an interface, warn.
if (IDecl->isForwardDecl()) {
Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
IDecl = 0;
}
} else {
// We did not find anything with the name ClassName; try to correct for
// typos in the class name.
LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName);
if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
(IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
// Suggest the (potentially) correct interface name. However, put the
// fix-it hint itself in a separate note, since changing the name in
// the warning would make the fix-it change semantics.However, don't
// provide a code-modification hint or use the typo name for recovery,
// because this is just a warning. The program may actually be correct.
Diag(ClassLoc, diag::warn_undef_interface_suggest)
<< ClassName << R.getLookupName();
Diag(IDecl->getLocation(), diag::note_previous_decl)
<< R.getLookupName()
<< FixItHint::CreateReplacement(ClassLoc,
R.getLookupName().getAsString());
IDecl = 0;
} else {
Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
}
}
// Check that super class name is valid class name
ObjCInterfaceDecl* SDecl = 0;
if (SuperClassname) {
// Check if a different kind of symbol declared in this scope.
PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
LookupOrdinaryName);
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
Diag(SuperClassLoc, diag::err_redefinition_different_kind)
<< SuperClassname;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
} else {
SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
if (!SDecl)
Diag(SuperClassLoc, diag::err_undef_superclass)
<< SuperClassname << ClassName;
else if (IDecl && IDecl->getSuperClass() != SDecl) {
// This implementation and its interface do not have the same
// super class.
Diag(SuperClassLoc, diag::err_conflicting_super_class)
<< SDecl->getDeclName();
Diag(SDecl->getLocation(), diag::note_previous_definition);
}
}
}
if (!IDecl) {
// Legacy case of @implementation with no corresponding @interface.
// Build, chain & install the interface decl into the identifier.
// FIXME: Do we support attributes on the @implementation? If so we should
// copy them over.
IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
ClassName, ClassLoc, false, true);
IDecl->setSuperClass(SDecl);
IDecl->setLocEnd(ClassLoc);
PushOnScopeChains(IDecl, TUScope);
} else {
// Mark the interface as being completed, even if it was just as
// @class ....;
// declaration; the user cannot reopen it.
IDecl->setForwardDecl(false);
}
ObjCImplementationDecl* IMPDecl =
ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
IDecl, SDecl);
if (CheckObjCDeclScope(IMPDecl))
return IMPDecl;
// Check that there is no duplicate implementation of this class.
if (IDecl->getImplementation()) {
// FIXME: Don't leak everything!
Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
Diag(IDecl->getImplementation()->getLocation(),
diag::note_previous_definition);
} else { // add it to the list.
IDecl->setImplementation(IMPDecl);
PushOnScopeChains(IMPDecl, TUScope);
// Warn on implementating deprecated class under
// -Wdeprecated-implementations flag.
DiagnoseObjCImplementedDeprecations(*this,
dyn_cast<NamedDecl>(IDecl),
IMPDecl->getLocation(), 1);
}
return IMPDecl;
}
void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
ObjCIvarDecl **ivars, unsigned numIvars,
SourceLocation RBrace) {
assert(ImpDecl && "missing implementation decl");
ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
if (!IDecl)
return;
/// Check case of non-existing @interface decl.
/// (legacy objective-c @implementation decl without an @interface decl).
/// Add implementations's ivar to the synthesize class's ivar list.
if (IDecl->isImplicitInterfaceDecl()) {
IDecl->setLocEnd(RBrace);
// Add ivar's to class's DeclContext.
for (unsigned i = 0, e = numIvars; i != e; ++i) {
ivars[i]->setLexicalDeclContext(ImpDecl);
IDecl->makeDeclVisibleInContext(ivars[i], false);
ImpDecl->addDecl(ivars[i]);
}
return;
}
// If implementation has empty ivar list, just return.
if (numIvars == 0)
return;
assert(ivars && "missing @implementation ivars");
if (LangOpts.ObjCNonFragileABI2) {
if (ImpDecl->getSuperClass())
Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
for (unsigned i = 0; i < numIvars; i++) {
ObjCIvarDecl* ImplIvar = ivars[i];
if (const ObjCIvarDecl *ClsIvar =
IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
continue;
}
// Instance ivar to Implementation's DeclContext.
ImplIvar->setLexicalDeclContext(ImpDecl);
IDecl->makeDeclVisibleInContext(ImplIvar, false);
ImpDecl->addDecl(ImplIvar);
}
return;
}
// Check interface's Ivar list against those in the implementation.
// names and types must match.
//
unsigned j = 0;
ObjCInterfaceDecl::ivar_iterator
IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
for (; numIvars > 0 && IVI != IVE; ++IVI) {
ObjCIvarDecl* ImplIvar = ivars[j++];
ObjCIvarDecl* ClsIvar = *IVI;
assert (ImplIvar && "missing implementation ivar");
assert (ClsIvar && "missing class ivar");
// First, make sure the types match.
if (Context.getCanonicalType(ImplIvar->getType()) !=
Context.getCanonicalType(ClsIvar->getType())) {
Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
<< ImplIvar->getIdentifier()
<< ImplIvar->getType() << ClsIvar->getType();
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
} else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
Expr *ImplBitWidth = ImplIvar->getBitWidth();
Expr *ClsBitWidth = ClsIvar->getBitWidth();
if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
<< ImplIvar->getIdentifier();
Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
}
}
// Make sure the names are identical.
if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
<< ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
}
--numIvars;
}
if (numIvars > 0)
Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
else if (IVI != IVE)
Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
}
void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
bool &IncompleteImpl, unsigned DiagID) {
if (!IncompleteImpl) {
Diag(ImpLoc, diag::warn_incomplete_impl);
IncompleteImpl = true;
}
if (DiagID == diag::warn_unimplemented_protocol_method)
Diag(ImpLoc, DiagID) << method->getDeclName();
else
Diag(method->getLocation(), DiagID) << method->getDeclName();
}
/// Determines if type B can be substituted for type A. Returns true if we can
/// guarantee that anything that the user will do to an object of type A can
/// also be done to an object of type B. This is trivially true if the two
/// types are the same, or if B is a subclass of A. It becomes more complex
/// in cases where protocols are involved.
///
/// Object types in Objective-C describe the minimum requirements for an
/// object, rather than providing a complete description of a type. For
/// example, if A is a subclass of B, then B* may refer to an instance of A.
/// The principle of substitutability means that we may use an instance of A
/// anywhere that we may use an instance of B - it will implement all of the
/// ivars of B and all of the methods of B.
///
/// This substitutability is important when type checking methods, because
/// the implementation may have stricter type definitions than the interface.
/// The interface specifies minimum requirements, but the implementation may
/// have more accurate ones. For example, a method may privately accept
/// instances of B, but only publish that it accepts instances of A. Any
/// object passed to it will be type checked against B, and so will implicitly
/// by a valid A*. Similarly, a method may return a subclass of the class that
/// it is declared as returning.
///
/// This is most important when considering subclassing. A method in a
/// subclass must accept any object as an argument that its superclass's
/// implementation accepts. It may, however, accept a more general type
/// without breaking substitutability (i.e. you can still use the subclass
/// anywhere that you can use the superclass, but not vice versa). The
/// converse requirement applies to return types: the return type for a
/// subclass method must be a valid object of the kind that the superclass
/// advertises, but it may be specified more accurately. This avoids the need
/// for explicit down-casting by callers.
///
/// Note: This is a stricter requirement than for assignment.
static bool isObjCTypeSubstitutable(ASTContext &Context,
const ObjCObjectPointerType *A,
const ObjCObjectPointerType *B,
bool rejectId) {
// Reject a protocol-unqualified id.
if (rejectId && B->isObjCIdType()) return false;
// If B is a qualified id, then A must also be a qualified id and it must
// implement all of the protocols in B. It may not be a qualified class.
// For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
// stricter definition so it is not substitutable for id<A>.
if (B->isObjCQualifiedIdType()) {
return A->isObjCQualifiedIdType() &&
Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
QualType(B,0),
false);
}
/*
// id is a special type that bypasses type checking completely. We want a
// warning when it is used in one place but not another.
if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
// If B is a qualified id, then A must also be a qualified id (which it isn't
// if we've got this far)
if (B->isObjCQualifiedIdType()) return false;
*/
// Now we know that A and B are (potentially-qualified) class types. The
// normal rules for assignment apply.
return Context.canAssignObjCInterfaces(A, B);
}
static SourceRange getTypeRange(TypeSourceInfo *TSI) {
return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
}
static void CheckMethodOverrideReturn(Sema &S,
ObjCMethodDecl *MethodImpl,
ObjCMethodDecl *MethodIface) {
if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
MethodIface->getResultType()))
return;
unsigned DiagID = diag::warn_conflicting_ret_types;
// Mismatches between ObjC pointers go into a different warning
// category, and sometimes they're even completely whitelisted.
if (const ObjCObjectPointerType *ImplPtrTy =
MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
if (const ObjCObjectPointerType *IfacePtrTy =
MethodIface->getResultType()->getAs<ObjCObjectPointerType>()) {
// Allow non-matching return types as long as they don't violate
// the principle of substitutability. Specifically, we permit
// return types that are subclasses of the declared return type,
// or that are more-qualified versions of the declared type.
if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
return;
DiagID = diag::warn_non_covariant_ret_types;
}
}
S.Diag(MethodImpl->getLocation(), DiagID)
<< MethodImpl->getDeclName()
<< MethodIface->getResultType()
<< MethodImpl->getResultType()
<< getTypeRange(MethodImpl->getResultTypeSourceInfo());
S.Diag(MethodIface->getLocation(), diag::note_previous_definition)
<< getTypeRange(MethodIface->getResultTypeSourceInfo());
}
static void CheckMethodOverrideParam(Sema &S,
ObjCMethodDecl *MethodImpl,
ObjCMethodDecl *MethodIface,
ParmVarDecl *ImplVar,
ParmVarDecl *IfaceVar) {
QualType ImplTy = ImplVar->getType();
QualType IfaceTy = IfaceVar->getType();
if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
return;
unsigned DiagID = diag::warn_conflicting_param_types;
// Mismatches between ObjC pointers go into a different warning
// category, and sometimes they're even completely whitelisted.
if (const ObjCObjectPointerType *ImplPtrTy =
ImplTy->getAs<ObjCObjectPointerType>()) {
if (const ObjCObjectPointerType *IfacePtrTy =
IfaceTy->getAs<ObjCObjectPointerType>()) {
// Allow non-matching argument types as long as they don't
// violate the principle of substitutability. Specifically, the
// implementation must accept any objects that the superclass
// accepts, however it may also accept others.
if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
return;
DiagID = diag::warn_non_contravariant_param_types;
}
}
S.Diag(ImplVar->getLocation(), DiagID)
<< getTypeRange(ImplVar->getTypeSourceInfo())
<< MethodImpl->getDeclName() << IfaceTy << ImplTy;
S.Diag(IfaceVar->getLocation(), diag::note_previous_definition)
<< getTypeRange(IfaceVar->getTypeSourceInfo());
}
void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
ObjCMethodDecl *IntfMethodDecl) {
CheckMethodOverrideReturn(*this, ImpMethodDecl, IntfMethodDecl);
for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
IF = IntfMethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
IM != EM; ++IM, ++IF)
CheckMethodOverrideParam(*this, ImpMethodDecl, IntfMethodDecl, *IM, *IF);
if (ImpMethodDecl->isVariadic() != IntfMethodDecl->isVariadic()) {
Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
Diag(IntfMethodDecl->getLocation(), diag::note_previous_declaration);
}
}
/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
/// improve the efficiency of selector lookups and type checking by associating
/// with each protocol / interface / category the flattened instance tables. If
/// we used an immutable set to keep the table then it wouldn't add significant
/// memory cost and it would be handy for lookups.
/// CheckProtocolMethodDefs - This routine checks unimplemented methods
/// Declared in protocol, and those referenced by it.
void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
ObjCProtocolDecl *PDecl,
bool& IncompleteImpl,
const llvm::DenseSet<Selector> &InsMap,
const llvm::DenseSet<Selector> &ClsMap,
ObjCContainerDecl *CDecl) {
ObjCInterfaceDecl *IDecl;
if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
IDecl = C->getClassInterface();
else
IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
ObjCInterfaceDecl *Super = IDecl->getSuperClass();
ObjCInterfaceDecl *NSIDecl = 0;
if (getLangOptions().NeXTRuntime) {
// check to see if class implements forwardInvocation method and objects
// of this class are derived from 'NSProxy' so that to forward requests
// from one object to another.
// Under such conditions, which means that every method possible is
// implemented in the class, we should not issue "Method definition not
// found" warnings.
// FIXME: Use a general GetUnarySelector method for this.
IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
Selector fISelector = Context.Selectors.getSelector(1, &II);
if (InsMap.count(fISelector))
// Is IDecl derived from 'NSProxy'? If so, no instance methods
// need be implemented in the implementation.
NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
}
// If a method lookup fails locally we still need to look and see if
// the method was implemented by a base class or an inherited
// protocol. This lookup is slow, but occurs rarely in correct code
// and otherwise would terminate in a warning.
// check unimplemented instance methods.
if (!NSIDecl)
for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
E = PDecl->instmeth_end(); I != E; ++I) {
ObjCMethodDecl *method = *I;
if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
!method->isSynthesized() && !InsMap.count(method->getSelector()) &&
(!Super ||
!Super->lookupInstanceMethod(method->getSelector()))) {
// Ugly, but necessary. Method declared in protcol might have
// have been synthesized due to a property declared in the class which
// uses the protocol.
ObjCMethodDecl *MethodInClass =
IDecl->lookupInstanceMethod(method->getSelector());
if (!MethodInClass || !MethodInClass->isSynthesized()) {
unsigned DIAG = diag::warn_unimplemented_protocol_method;
if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
!= Diagnostic::Ignored) {
WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
Diag(method->getLocation(), diag::note_method_declared_at);
Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
<< PDecl->getDeclName();
}
}
}
}
// check unimplemented class methods
for (ObjCProtocolDecl::classmeth_iterator
I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
I != E; ++I) {
ObjCMethodDecl *method = *I;
if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
!ClsMap.count(method->getSelector()) &&
(!Super || !Super->lookupClassMethod(method->getSelector()))) {
unsigned DIAG = diag::warn_unimplemented_protocol_method;
if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) {
WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
Diag(method->getLocation(), diag::note_method_declared_at);
Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
PDecl->getDeclName();
}
}
}
// Check on this protocols's referenced protocols, recursively.
for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
E = PDecl->protocol_end(); PI != E; ++PI)
CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
}
/// MatchAllMethodDeclarations - Check methods declaraed in interface or
/// or protocol against those declared in their implementations.
///
void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
const llvm::DenseSet<Selector> &ClsMap,
llvm::DenseSet<Selector> &InsMapSeen,
llvm::DenseSet<Selector> &ClsMapSeen,
ObjCImplDecl* IMPDecl,
ObjCContainerDecl* CDecl,
bool &IncompleteImpl,
bool ImmediateClass) {
// Check and see if instance methods in class interface have been
// implemented in the implementation class. If so, their types match.
for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
E = CDecl->instmeth_end(); I != E; ++I) {
if (InsMapSeen.count((*I)->getSelector()))
continue;
InsMapSeen.insert((*I)->getSelector());
if (!(*I)->isSynthesized() &&
!InsMap.count((*I)->getSelector())) {
if (ImmediateClass)
WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
diag::note_undef_method_impl);
continue;
} else {
ObjCMethodDecl *ImpMethodDecl =
IMPDecl->getInstanceMethod((*I)->getSelector());
ObjCMethodDecl *IntfMethodDecl =
CDecl->getInstanceMethod((*I)->getSelector());
assert(IntfMethodDecl &&
"IntfMethodDecl is null in ImplMethodsVsClassMethods");
// ImpMethodDecl may be null as in a @dynamic property.
if (ImpMethodDecl)
WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
}
}
// Check and see if class methods in class interface have been
// implemented in the implementation class. If so, their types match.
for (ObjCInterfaceDecl::classmeth_iterator
I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
if (ClsMapSeen.count((*I)->getSelector()))
continue;
ClsMapSeen.insert((*I)->getSelector());
if (!ClsMap.count((*I)->getSelector())) {
if (ImmediateClass)
WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
diag::note_undef_method_impl);
} else {
ObjCMethodDecl *ImpMethodDecl =
IMPDecl->getClassMethod((*I)->getSelector());
ObjCMethodDecl *IntfMethodDecl =
CDecl->getClassMethod((*I)->getSelector());
WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
}
}
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
// Also methods in class extensions need be looked at next.
for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
IMPDecl,
const_cast<ObjCCategoryDecl *>(ClsExtDecl),
IncompleteImpl, false);
// Check for any implementation of a methods declared in protocol.
for (ObjCInterfaceDecl::all_protocol_iterator
PI = I->all_referenced_protocol_begin(),
E = I->all_referenced_protocol_end(); PI != E; ++PI)
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
IMPDecl,
(*PI), IncompleteImpl, false);
if (I->getSuperClass())
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
IMPDecl,
I->getSuperClass(), IncompleteImpl, false);
}
}
void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
ObjCContainerDecl* CDecl,
bool IncompleteImpl) {
llvm::DenseSet<Selector> InsMap;
// Check and see if instance methods in class interface have been
// implemented in the implementation class.
for (ObjCImplementationDecl::instmeth_iterator
I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
InsMap.insert((*I)->getSelector());
// Check and see if properties declared in the interface have either 1)
// an implementation or 2) there is a @synthesize/@dynamic implementation
// of the property in the @implementation.
if (isa<ObjCInterfaceDecl>(CDecl) &&
!(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
llvm::DenseSet<Selector> ClsMap;
for (ObjCImplementationDecl::classmeth_iterator
I = IMPDecl->classmeth_begin(),
E = IMPDecl->classmeth_end(); I != E; ++I)
ClsMap.insert((*I)->getSelector());
// Check for type conflict of methods declared in a class/protocol and
// its implementation; if any.
llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
IMPDecl, CDecl,
IncompleteImpl, true);
// Check the protocol list for unimplemented methods in the @implementation
// class.
// Check and see if class methods in class interface have been
// implemented in the implementation class.
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
for (ObjCInterfaceDecl::all_protocol_iterator
PI = I->all_referenced_protocol_begin(),
E = I->all_referenced_protocol_end(); PI != E; ++PI)
CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
InsMap, ClsMap, I);
// Check class extensions (unnamed categories)
for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
Categories; Categories = Categories->getNextClassExtension())
ImplMethodsVsClassMethods(S, IMPDecl,
const_cast<ObjCCategoryDecl*>(Categories),
IncompleteImpl);
} else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
// For extended class, unimplemented methods in its protocols will
// be reported in the primary class.
if (!C->IsClassExtension()) {
for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
E = C->protocol_end(); PI != E; ++PI)
CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
InsMap, ClsMap, CDecl);
// Report unimplemented properties in the category as well.
// When reporting on missing setter/getters, do not report when
// setter/getter is implemented in category's primary class
// implementation.
if (ObjCInterfaceDecl *ID = C->getClassInterface())
if (ObjCImplDecl *IMP = ID->getImplementation()) {
for (ObjCImplementationDecl::instmeth_iterator
I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
InsMap.insert((*I)->getSelector());
}
DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
}
} else
assert(false && "invalid ObjCContainerDecl type.");
}
/// ActOnForwardClassDeclaration -
Decl *
Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
IdentifierInfo **IdentList,
SourceLocation *IdentLocs,
unsigned NumElts) {
llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
for (unsigned i = 0; i != NumElts; ++i) {
// Check for another declaration kind with the same name.
NamedDecl *PrevDecl
= LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
LookupOrdinaryName, ForRedeclaration);
if (PrevDecl && PrevDecl->isTemplateParameter()) {
// Maybe we will complain about the shadowed template parameter.
DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
// Just pretend that we didn't see the previous declaration.
PrevDecl = 0;
}
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
// GCC apparently allows the following idiom:
//
// typedef NSObject < XCElementTogglerP > XCElementToggler;
// @class XCElementToggler;
//
// FIXME: Make an extension?
TypedefDecl *TDD = dyn_cast<TypedefDecl>(PrevDecl);
if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
} else {
// a forward class declaration matching a typedef name of a class refers
// to the underlying class.
if (const ObjCObjectType *OI =
TDD->getUnderlyingType()->getAs<ObjCObjectType>())
PrevDecl = OI->getInterface();
}
}
ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
if (!IDecl) { // Not already seen? Make a forward decl.
IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
IdentList[i], IdentLocs[i], true);
// Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
// the current DeclContext. This prevents clients that walk DeclContext
// from seeing the imaginary ObjCInterfaceDecl until it is actually
// declared later (if at all). We also take care to explicitly make
// sure this declaration is visible for name lookup.
PushOnScopeChains(IDecl, TUScope, false);
CurContext->makeDeclVisibleInContext(IDecl, true);
}
Interfaces.push_back(IDecl);
}
assert(Interfaces.size() == NumElts);
ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
Interfaces.data(), IdentLocs,
Interfaces.size());
CurContext->addDecl(CDecl);
CheckObjCDeclScope(CDecl);
return CDecl;
}
/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
/// returns true, or false, accordingly.
/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
const ObjCMethodDecl *PrevMethod,
bool matchBasedOnSizeAndAlignment,
bool matchBasedOnStrictEqulity) {
QualType T1 = Context.getCanonicalType(Method->getResultType());
QualType T2 = Context.getCanonicalType(PrevMethod->getResultType());
if (T1 != T2) {
// The result types are different.
if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
return false;
// Incomplete types don't have a size and alignment.
if (T1->isIncompleteType() || T2->isIncompleteType())
return false;
// Check is based on size and alignment.
if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
return false;
}
ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
E = Method->param_end();
ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin();
for (; ParamI != E; ++ParamI, ++PrevI) {
assert(PrevI != PrevMethod->param_end() && "Param mismatch");
T1 = Context.getCanonicalType((*ParamI)->getType());
T2 = Context.getCanonicalType((*PrevI)->getType());
if (T1 != T2) {
// The result types are different.
if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
return false;
// Incomplete types don't have a size and alignment.
if (T1->isIncompleteType() || T2->isIncompleteType())
return false;
// Check is based on size and alignment.
if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
return false;
}
}
return true;
}
/// \brief Read the contents of the method pool for a given selector from
/// external storage.
///
/// This routine should only be called once, when the method pool has no entry
/// for this selector.
Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
assert(ExternalSource && "We need an external AST source");
assert(MethodPool.find(Sel) == MethodPool.end() &&
"Selector data already loaded into the method pool");
// Read the method list from the external source.
GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
return MethodPool.insert(std::make_pair(Sel, Methods)).first;
}
void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
bool instance) {
GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
if (Pos == MethodPool.end()) {
if (ExternalSource)
Pos = ReadMethodPool(Method->getSelector());
else
Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
GlobalMethods())).first;
}
Method->setDefined(impl);
ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
if (Entry.Method == 0) {
// Haven't seen a method with this selector name yet - add it.
Entry.Method = Method;
Entry.Next = 0;
return;
}
// We've seen a method with this name, see if we have already seen this type
// signature.
for (ObjCMethodList *List = &Entry; List; List = List->Next)
if (MatchTwoMethodDeclarations(Method, List->Method)) {
ObjCMethodDecl *PrevObjCMethod = List->Method;
PrevObjCMethod->setDefined(impl);
// If a method is deprecated, push it in the global pool.
// This is used for better diagnostics.
if (Method->getAttr<DeprecatedAttr>()) {
if (!PrevObjCMethod->getAttr<DeprecatedAttr>())
List->Method = Method;
}
// If new method is unavailable, push it into global pool
// unless previous one is deprecated.
if (Method->getAttr<UnavailableAttr>()) {
if (!PrevObjCMethod->getAttr<UnavailableAttr>() &&
!PrevObjCMethod->getAttr<DeprecatedAttr>())
List->Method = Method;
}
return;
}
// We have a new signature for an existing method - add it.
// This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
}
ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
bool receiverIdOrClass,
bool warn, bool instance) {
GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
if (Pos == MethodPool.end()) {
if (ExternalSource)
Pos = ReadMethodPool(Sel);
else
return 0;
}
ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
bool strictSelectorMatch = receiverIdOrClass && warn &&
(Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
R.getBegin()) !=
Diagnostic::Ignored);
if (warn && MethList.Method && MethList.Next) {
bool issueWarning = false;
if (strictSelectorMatch)
for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
// This checks if the methods differ in type mismatch.
if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, false, true))
issueWarning = true;
}
if (!issueWarning)
for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
// This checks if the methods differ by size & alignment.
if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true))
issueWarning = true;
}
if (issueWarning) {
if (strictSelectorMatch)
Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
else
Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
Diag(MethList.Method->getLocStart(), diag::note_using)
<< MethList.Method->getSourceRange();
for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
Diag(Next->Method->getLocStart(), diag::note_also_found)
<< Next->Method->getSourceRange();
}
}
return MethList.Method;
}
ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
if (Pos == MethodPool.end())
return 0;
GlobalMethods &Methods = Pos->second;
if (Methods.first.Method && Methods.first.Method->isDefined())
return Methods.first.Method;
if (Methods.second.Method && Methods.second.Method->isDefined())
return Methods.second.Method;
return 0;
}
/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
/// identical selector names in current and its super classes and issues
/// a warning if any of their argument types are incompatible.
void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
ObjCMethodDecl *Method,
bool IsInstance) {
ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
if (ID == 0) return;
while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
ObjCMethodDecl *SuperMethodDecl =
SD->lookupMethod(Method->getSelector(), IsInstance);
if (SuperMethodDecl == 0) {
ID = SD;
continue;
}
ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
E = Method->param_end();
ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
for (; ParamI != E; ++ParamI, ++PrevI) {
// Number of parameters are the same and is guaranteed by selector match.
assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
QualType T1 = Context.getCanonicalType((*ParamI)->getType());
QualType T2 = Context.getCanonicalType((*PrevI)->getType());
// If type of arguement of method in this class does not match its
// respective argument type in the super class method, issue warning;
if (!Context.typesAreCompatible(T1, T2)) {
Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
<< T1 << T2;
Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
return;
}
}
ID = SD;
}
}
/// DiagnoseDuplicateIvars -
/// Check for duplicate ivars in the entire class at the start of
/// @implementation. This becomes necesssary because class extension can
/// add ivars to a class in random order which will not be known until
/// class's @implementation is seen.
void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
ObjCInterfaceDecl *SID) {
for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
ObjCIvarDecl* Ivar = (*IVI);
if (Ivar->isInvalidDecl())
continue;
if (IdentifierInfo *II = Ivar->getIdentifier()) {
ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
if (prevIvar) {
Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
Diag(prevIvar->getLocation(), diag::note_previous_declaration);
Ivar->setInvalidDecl();
}
}
}
}
// Note: For class/category implemenations, allMethods/allProperties is
// always null.
void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
Decl *ClassDecl,
Decl **allMethods, unsigned allNum,
Decl **allProperties, unsigned pNum,
DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
// FIXME: If we don't have a ClassDecl, we have an error. We should consider
// always passing in a decl. If the decl has an error, isInvalidDecl()
// should be true.
if (!ClassDecl)
return;
bool isInterfaceDeclKind =
isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
|| isa<ObjCProtocolDecl>(ClassDecl);
bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
// FIXME: This is wrong. We shouldn't be pretending that there is
// an '@end' in the declaration.
SourceLocation L = ClassDecl->getLocation();
AtEnd.setBegin(L);
AtEnd.setEnd(L);
Diag(L, diag::warn_missing_atend);
}
// FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
for (unsigned i = 0; i < allNum; i++ ) {
ObjCMethodDecl *Method =
cast_or_null<ObjCMethodDecl>(allMethods[i]);
if (!Method) continue; // Already issued a diagnostic.
if (Method->isInstanceMethod()) {
/// Check for instance method of the same name with incompatible types
const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
: false;
if ((isInterfaceDeclKind && PrevMethod && !match)
|| (checkIdenticalMethods && match)) {
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
<< Method->getDeclName();
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
Method->setInvalidDecl();
} else {
InsMap[Method->getSelector()] = Method;
/// The following allows us to typecheck messages to "id".
AddInstanceMethodToGlobalPool(Method);
// verify that the instance method conforms to the same definition of
// parent methods if it shadows one.
CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
}
} else {
/// Check for class method of the same name with incompatible types
const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
: false;
if ((isInterfaceDeclKind && PrevMethod && !match)
|| (checkIdenticalMethods && match)) {
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
<< Method->getDeclName();
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
Method->setInvalidDecl();
} else {
ClsMap[Method->getSelector()] = Method;
/// The following allows us to typecheck messages to "Class".
AddFactoryMethodToGlobalPool(Method);
// verify that the class method conforms to the same definition of
// parent methods if it shadows one.
CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
}
}
}
if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
// Compares properties declared in this class to those of its
// super class.
ComparePropertiesInBaseAndSuper(I);
CompareProperties(I, I);
} else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
// Categories are used to extend the class by declaring new methods.
// By the same token, they are also used to add new properties. No
// need to compare the added property to those in the class.
// Compare protocol properties with those in category
CompareProperties(C, C);
if (C->IsClassExtension()) {
ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
DiagnoseClassExtensionDupMethods(C, CCPrimary);
}
}
if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
if (CDecl->getIdentifier())
// ProcessPropertyDecl is responsible for diagnosing conflicts with any
// user-defined setter/getter. It also synthesizes setter/getter methods
// and adds them to the DeclContext and global method pools.
for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
E = CDecl->prop_end();
I != E; ++I)
ProcessPropertyDecl(*I, CDecl);
CDecl->setAtEndRange(AtEnd);
}
if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
IC->setAtEndRange(AtEnd);
if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
// Any property declared in a class extension might have user
// declared setter or getter in current class extension or one
// of the other class extensions. Mark them as synthesized as
// property will be synthesized when property with same name is
// seen in the @implementation.
for (const ObjCCategoryDecl *ClsExtDecl =
IDecl->getFirstClassExtension();
ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
E = ClsExtDecl->prop_end(); I != E; ++I) {
ObjCPropertyDecl *Property = (*I);
// Skip over properties declared @dynamic
if (const ObjCPropertyImplDecl *PIDecl
= IC->FindPropertyImplDecl(Property->getIdentifier()))
if (PIDecl->getPropertyImplementation()
== ObjCPropertyImplDecl::Dynamic)
continue;
for (const ObjCCategoryDecl *CExtDecl =
IDecl->getFirstClassExtension();
CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
if (ObjCMethodDecl *GetterMethod =
CExtDecl->getInstanceMethod(Property->getGetterName()))
GetterMethod->setSynthesized(true);
if (!Property->isReadOnly())
if (ObjCMethodDecl *SetterMethod =
CExtDecl->getInstanceMethod(Property->getSetterName()))
SetterMethod->setSynthesized(true);
}
}
}
if (LangOpts.ObjCDefaultSynthProperties &&
LangOpts.ObjCNonFragileABI2)
DefaultSynthesizeProperties(S, IC, IDecl);
ImplMethodsVsClassMethods(S, IC, IDecl);
AtomicPropertySetterGetterRules(IC, IDecl);
if (LangOpts.ObjCNonFragileABI2)
while (IDecl->getSuperClass()) {
DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
IDecl = IDecl->getSuperClass();
}
}
SetIvarInitializers(IC);
} else if (ObjCCategoryImplDecl* CatImplClass =
dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
CatImplClass->setAtEndRange(AtEnd);
// Find category interface decl and then check that all methods declared
// in this interface are implemented in the category @implementation.
if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
Categories; Categories = Categories->getNextClassCategory()) {
if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
ImplMethodsVsClassMethods(S, CatImplClass, Categories);
break;
}
}
}
}
if (isInterfaceDeclKind) {
// Reject invalid vardecls.
for (unsigned i = 0; i != tuvNum; i++) {
DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
if (!VDecl->hasExternalStorage())
Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
}
}
}
}
/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
/// objective-c's type qualifier from the parser version of the same info.
static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
Decl::ObjCDeclQualifier ret = Decl::OBJC_TQ_None;
if (PQTVal & ObjCDeclSpec::DQ_In)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_In);
if (PQTVal & ObjCDeclSpec::DQ_Inout)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Inout);
if (PQTVal & ObjCDeclSpec::DQ_Out)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Out);
if (PQTVal & ObjCDeclSpec::DQ_Bycopy)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Bycopy);
if (PQTVal & ObjCDeclSpec::DQ_Byref)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Byref);
if (PQTVal & ObjCDeclSpec::DQ_Oneway)
ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Oneway);
return ret;
}
static inline
bool containsInvalidMethodImplAttribute(const AttrVec &A) {
// The 'ibaction' attribute is allowed on method definitions because of
// how the IBAction macro is used on both method declarations and definitions.
// If the method definitions contains any other attributes, return true.
for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
if ((*i)->getKind() != attr::IBAction)
return true;
return false;
}
Decl *Sema::ActOnMethodDeclaration(
Scope *S,
SourceLocation MethodLoc, SourceLocation EndLoc,
tok::TokenKind MethodType, Decl *ClassDecl,
ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
Selector Sel,
// optional arguments. The number of types/arguments is obtained
// from the Sel.getNumArgs().
ObjCArgInfo *ArgInfo,
DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
bool isVariadic) {
// Make sure we can establish a context for the method.
if (!ClassDecl) {
Diag(MethodLoc, diag::error_missing_method_context);
getCurFunction()->LabelMap.clear();
return 0;
}
QualType resultDeclType;
TypeSourceInfo *ResultTInfo = 0;
if (ReturnType) {
resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
// Methods cannot return interface types. All ObjC objects are
// passed by reference.
if (resultDeclType->isObjCObjectType()) {
Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
<< 0 << resultDeclType;
return 0;
}
} else // get the type for "id".
resultDeclType = Context.getObjCIdType();
ObjCMethodDecl* ObjCMethod =
ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
ResultTInfo,
cast<DeclContext>(ClassDecl),
MethodType == tok::minus, isVariadic,
false, false,
MethodDeclKind == tok::objc_optional ?
ObjCMethodDecl::Optional :
ObjCMethodDecl::Required);
llvm::SmallVector<ParmVarDecl*, 16> Params;
for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
QualType ArgType;
TypeSourceInfo *DI;
if (ArgInfo[i].Type == 0) {
ArgType = Context.getObjCIdType();
DI = 0;
} else {
ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
// Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
ArgType = adjustParameterType(ArgType);
}
LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
LookupOrdinaryName, ForRedeclaration);
LookupName(R, S);
if (R.isSingleResult()) {
NamedDecl *PrevDecl = R.getFoundDecl();
if (S->isDeclScope(PrevDecl)) {
// FIXME. This should be an error; but will break projects.
Diag(ArgInfo[i].NameLoc, diag::warn_method_param_redefinition)
<< ArgInfo[i].Name;
Diag(PrevDecl->getLocation(),
diag::note_previous_declaration);
}
}
ParmVarDecl* Param
= ParmVarDecl::Create(Context, ObjCMethod, ArgInfo[i].NameLoc,
ArgInfo[i].Name, ArgType, DI,
SC_None, SC_None, 0);
if (ArgType->isObjCObjectType()) {
Diag(ArgInfo[i].NameLoc,
diag::err_object_cannot_be_passed_returned_by_value)
<< 1 << ArgType;
Param->setInvalidDecl();
}
Param->setObjCDeclQualifier(
CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
// Apply the attributes to the parameter.
ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
S->AddDecl(Param);
IdResolver.AddDecl(Param);
Params.push_back(Param);
}
for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
QualType ArgType = Param->getType();
if (ArgType.isNull())
ArgType = Context.getObjCIdType();
else
// Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
ArgType = adjustParameterType(ArgType);
if (ArgType->isObjCObjectType()) {
Diag(Param->getLocation(),
diag::err_object_cannot_be_passed_returned_by_value)
<< 1 << ArgType;
Param->setInvalidDecl();
}
Param->setDeclContext(ObjCMethod);
Params.push_back(Param);
}
ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
Sel.getNumArgs());
ObjCMethod->setObjCDeclQualifier(
CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
const ObjCMethodDecl *PrevMethod = 0;
if (AttrList)
ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
const ObjCMethodDecl *InterfaceMD = 0;
// Add the method now.
if (ObjCImplementationDecl *ImpDecl =
dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
if (MethodType == tok::minus) {
PrevMethod = ImpDecl->getInstanceMethod(Sel);
ImpDecl->addInstanceMethod(ObjCMethod);
} else {
PrevMethod = ImpDecl->getClassMethod(Sel);
ImpDecl->addClassMethod(ObjCMethod);
}
InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
MethodType == tok::minus);
if (ObjCMethod->hasAttrs() &&
containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
Diag(EndLoc, diag::warn_attribute_method_def);
} else if (ObjCCategoryImplDecl *CatImpDecl =
dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
if (MethodType == tok::minus) {
PrevMethod = CatImpDecl->getInstanceMethod(Sel);
CatImpDecl->addInstanceMethod(ObjCMethod);
} else {
PrevMethod = CatImpDecl->getClassMethod(Sel);
CatImpDecl->addClassMethod(ObjCMethod);
}
if (ObjCMethod->hasAttrs() &&
containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
Diag(EndLoc, diag::warn_attribute_method_def);
} else {
cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
}
if (PrevMethod) {
// You can never have two method definitions with the same name.
Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
<< ObjCMethod->getDeclName();
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
}
// If the interface declared this method, and it was deprecated there,
// mark it deprecated here.
if (InterfaceMD)
if (Attr *DA = InterfaceMD->getAttr<DeprecatedAttr>()) {
StringLiteral *SE = StringLiteral::CreateEmpty(Context, 1);
ObjCMethod->addAttr(::new (Context)
DeprecatedAttr(DA->getLocation(),
Context,
SE->getString()));
}
return ObjCMethod;
}
bool Sema::CheckObjCDeclScope(Decl *D) {
if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
return false;
Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
D->setInvalidDecl();
return true;
}
/// Called whenever @defs(ClassName) is encountered in the source. Inserts the
/// instance variables of ClassName into Decls.
void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
IdentifierInfo *ClassName,
llvm::SmallVectorImpl<Decl*> &Decls) {
// Check that ClassName is a valid class
ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
if (!Class) {
Diag(DeclStart, diag::err_undef_interface) << ClassName;
return;
}
if (LangOpts.ObjCNonFragileABI) {
Diag(DeclStart, diag::err_atdef_nonfragile_interface);
return;
}
// Collect the instance variables
llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
Context.DeepCollectObjCIvars(Class, true, Ivars);
// For each ivar, create a fresh ObjCAtDefsFieldDecl.
for (unsigned i = 0; i < Ivars.size(); i++) {
FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, ID->getLocation(),
ID->getIdentifier(), ID->getType(),
ID->getBitWidth());
Decls.push_back(FD);
}
// Introduce all of these fields into the appropriate scope.
for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin();
D != Decls.end(); ++D) {
FieldDecl *FD = cast<FieldDecl>(*D);
if (getLangOptions().CPlusPlus)
PushOnScopeChains(cast<FieldDecl>(FD), S);
else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
Record->addDecl(FD);
}
}
/// \brief Build a type-check a new Objective-C exception variable declaration.
VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo,
QualType T,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool Invalid) {
// ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
// duration shall not be qualified by an address-space qualifier."
// Since all parameters have automatic store duration, they can not have
// an address space.
if (T.getAddressSpace() != 0) {
Diag(NameLoc, diag::err_arg_with_address_space);
Invalid = true;
}
// An @catch parameter must be an unqualified object pointer type;
// FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
if (Invalid) {
// Don't do any further checking.
} else if (T->isDependentType()) {
// Okay: we don't know what this type will instantiate to.
} else if (!T->isObjCObjectPointerType()) {
Invalid = true;
Diag(NameLoc ,diag::err_catch_param_not_objc_type);
} else if (T->isObjCQualifiedIdType()) {
Invalid = true;
Diag(NameLoc, diag::err_illegal_qualifiers_on_catch_parm);
}
VarDecl *New = VarDecl::Create(Context, CurContext, NameLoc, Name, T, TInfo,
SC_None, SC_None);
New->setExceptionVariable(true);
if (Invalid)
New->setInvalidDecl();
return New;
}
Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
const DeclSpec &DS = D.getDeclSpec();
// We allow the "register" storage class on exception variables because
// GCC did, but we drop it completely. Any other storage class is an error.
if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
<< FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
} else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
<< DS.getStorageClassSpec();
}
if (D.getDeclSpec().isThreadSpecified())
Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
D.getMutableDeclSpec().ClearStorageClassSpecs();
DiagnoseFunctionSpecifiers(D);
// Check that there are no default arguments inside the type of this
// exception object (C++ only).
if (getLangOptions().CPlusPlus)
CheckExtraCXXDefaultArguments(D);
TagDecl *OwnedDecl = 0;
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
QualType ExceptionType = TInfo->getType();
if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
// Objective-C++: Types shall not be defined in exception types.
Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
<< Context.getTypeDeclType(OwnedDecl);
}
VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, D.getIdentifier(),
D.getIdentifierLoc(),
D.isInvalidType());
// Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
if (D.getCXXScopeSpec().isSet()) {
Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
<< D.getCXXScopeSpec().getRange();
New->setInvalidDecl();
}
// Add the parameter declaration into this scope.
S->AddDecl(New);
if (D.getIdentifier())
IdResolver.AddDecl(New);
ProcessDeclAttributes(S, New, D);
if (New->hasAttr<BlocksAttr>())
Diag(New->getLocation(), diag::err_block_on_nonlocal);
return New;
}
/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
/// initialization.
void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
Iv= Iv->getNextIvar()) {
QualType QT = Context.getBaseElementType(Iv->getType());
if (QT->isRecordType())
Ivars.push_back(Iv);
}
}
void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
CXXCtorInitializer ** initializers,
unsigned numInitializers) {
if (numInitializers > 0) {
NumIvarInitializers = numInitializers;
CXXCtorInitializer **ivarInitializers =
new (C) CXXCtorInitializer*[NumIvarInitializers];
memcpy(ivarInitializers, initializers,
numInitializers * sizeof(CXXCtorInitializer*));
IvarInitializers = ivarInitializers;
}
}
void Sema::DiagnoseUseOfUnimplementedSelectors() {
// Warning will be issued only when selector table is
// generated (which means there is at lease one implementation
// in the TU). This is to match gcc's behavior.
if (ReferencedSelectors.empty() ||
!Context.AnyObjCImplementation())
return;
for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
ReferencedSelectors.begin(),
E = ReferencedSelectors.end(); S != E; ++S) {
Selector Sel = (*S).first;
if (!LookupImplementedMethodInGlobalPool(Sel))
Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
}
return;
}