llvm-project/llvm/lib/Target/R600/EvergreenInstructions.td

610 lines
19 KiB
TableGen

//===-- EvergreenInstructions.td - EG Instruction defs ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// TableGen definitions for instructions which are:
// - Available to Evergreen and newer VLIW4/VLIW5 GPUs
// - Available only on Evergreen family GPUs.
//
//===----------------------------------------------------------------------===//
def isEG : Predicate<
"Subtarget.getGeneration() >= AMDGPUSubtarget::EVERGREEN && "
"Subtarget.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS && "
"!Subtarget.hasCaymanISA()"
>;
def isEGorCayman : Predicate<
"Subtarget.getGeneration() == AMDGPUSubtarget::EVERGREEN ||"
"Subtarget.getGeneration() ==AMDGPUSubtarget::NORTHERN_ISLANDS"
>;
//===----------------------------------------------------------------------===//
// Evergreen / Cayman store instructions
//===----------------------------------------------------------------------===//
let Predicates = [isEGorCayman] in {
class CF_MEM_RAT_CACHELESS <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
string name, list<dag> pattern>
: EG_CF_RAT <0x57, rat_inst, rat_id, mask, (outs), ins,
"MEM_RAT_CACHELESS "#name, pattern>;
class CF_MEM_RAT <bits<6> rat_inst, bits<4> rat_id, dag ins, string name,
list<dag> pattern>
: EG_CF_RAT <0x56, rat_inst, rat_id, 0xf /* mask */, (outs), ins,
"MEM_RAT "#name, pattern>;
def RAT_MSKOR : CF_MEM_RAT <0x11, 0,
(ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
"MSKOR $rw_gpr.XW, $index_gpr",
[(mskor_global v4i32:$rw_gpr, i32:$index_gpr)]
> {
let eop = 0;
}
} // End let Predicates = [isEGorCayman]
//===----------------------------------------------------------------------===//
// Evergreen Only instructions
//===----------------------------------------------------------------------===//
let Predicates = [isEG] in {
def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
def MULHI_INT_eg : MULHI_INT_Common<0x90>;
def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
def SIN_eg : SIN_Common<0x8D>;
def COS_eg : COS_Common<0x8E>;
def : POW_Common <LOG_IEEE_eg, EXP_IEEE_eg, MUL>;
def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_eg $src))>;
defm : Expand24IBitOps<MULLO_INT_eg, ADD_INT>;
//===----------------------------------------------------------------------===//
// Memory read/write instructions
//===----------------------------------------------------------------------===//
let usesCustomInserter = 1 in {
// 32-bit store
def RAT_WRITE_CACHELESS_32_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x1,
(ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
"STORE_RAW $rw_gpr, $index_gpr, $eop",
[(global_store i32:$rw_gpr, i32:$index_gpr)]
>;
// 64-bit store
def RAT_WRITE_CACHELESS_64_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x3,
(ins R600_Reg64:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
"STORE_RAW $rw_gpr.XY, $index_gpr, $eop",
[(global_store v2i32:$rw_gpr, i32:$index_gpr)]
>;
//128-bit store
def RAT_WRITE_CACHELESS_128_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0xf,
(ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
"STORE_RAW $rw_gpr.XYZW, $index_gpr, $eop",
[(global_store v4i32:$rw_gpr, i32:$index_gpr)]
>;
} // End usesCustomInserter = 1
class VTX_READ_eg <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
: VTX_WORD0_eg, VTX_READ<name, buffer_id, outs, pattern> {
// Static fields
let VC_INST = 0;
let FETCH_TYPE = 2;
let FETCH_WHOLE_QUAD = 0;
let BUFFER_ID = buffer_id;
let SRC_REL = 0;
// XXX: We can infer this field based on the SRC_GPR. This would allow us
// to store vertex addresses in any channel, not just X.
let SRC_SEL_X = 0;
let Inst{31-0} = Word0;
}
class VTX_READ_8_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <"VTX_READ_8 $dst_gpr, $src_gpr", buffer_id,
(outs R600_TReg32_X:$dst_gpr), pattern> {
let MEGA_FETCH_COUNT = 1;
let DST_SEL_X = 0;
let DST_SEL_Y = 7; // Masked
let DST_SEL_Z = 7; // Masked
let DST_SEL_W = 7; // Masked
let DATA_FORMAT = 1; // FMT_8
}
class VTX_READ_16_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <"VTX_READ_16 $dst_gpr, $src_gpr", buffer_id,
(outs R600_TReg32_X:$dst_gpr), pattern> {
let MEGA_FETCH_COUNT = 2;
let DST_SEL_X = 0;
let DST_SEL_Y = 7; // Masked
let DST_SEL_Z = 7; // Masked
let DST_SEL_W = 7; // Masked
let DATA_FORMAT = 5; // FMT_16
}
class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <"VTX_READ_32 $dst_gpr, $src_gpr", buffer_id,
(outs R600_TReg32_X:$dst_gpr), pattern> {
let MEGA_FETCH_COUNT = 4;
let DST_SEL_X = 0;
let DST_SEL_Y = 7; // Masked
let DST_SEL_Z = 7; // Masked
let DST_SEL_W = 7; // Masked
let DATA_FORMAT = 0xD; // COLOR_32
// This is not really necessary, but there were some GPU hangs that appeared
// to be caused by ALU instructions in the next instruction group that wrote
// to the $src_gpr registers of the VTX_READ.
// e.g.
// %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
// %T2_X<def> = MOV %ZERO
//Adding this constraint prevents this from happening.
let Constraints = "$src_gpr.ptr = $dst_gpr";
}
class VTX_READ_64_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <"VTX_READ_64 $dst_gpr.XY, $src_gpr", buffer_id,
(outs R600_Reg64:$dst_gpr), pattern> {
let MEGA_FETCH_COUNT = 8;
let DST_SEL_X = 0;
let DST_SEL_Y = 1;
let DST_SEL_Z = 7;
let DST_SEL_W = 7;
let DATA_FORMAT = 0x1D; // COLOR_32_32
}
class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr", buffer_id,
(outs R600_Reg128:$dst_gpr), pattern> {
let MEGA_FETCH_COUNT = 16;
let DST_SEL_X = 0;
let DST_SEL_Y = 1;
let DST_SEL_Z = 2;
let DST_SEL_W = 3;
let DATA_FORMAT = 0x22; // COLOR_32_32_32_32
// XXX: Need to force VTX_READ_128 instructions to write to the same register
// that holds its buffer address to avoid potential hangs. We can't use
// the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
// registers are different sizes.
}
//===----------------------------------------------------------------------===//
// VTX Read from parameter memory space
//===----------------------------------------------------------------------===//
def VTX_READ_PARAM_8_eg : VTX_READ_8_eg <0,
[(set i32:$dst_gpr, (load_param_exti8 ADDRVTX_READ:$src_gpr))]
>;
def VTX_READ_PARAM_16_eg : VTX_READ_16_eg <0,
[(set i32:$dst_gpr, (load_param_exti16 ADDRVTX_READ:$src_gpr))]
>;
def VTX_READ_PARAM_32_eg : VTX_READ_32_eg <0,
[(set i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
>;
def VTX_READ_PARAM_64_eg : VTX_READ_64_eg <0,
[(set v2i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
>;
def VTX_READ_PARAM_128_eg : VTX_READ_128_eg <0,
[(set v4i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
>;
//===----------------------------------------------------------------------===//
// VTX Read from global memory space
//===----------------------------------------------------------------------===//
// 8-bit reads
def VTX_READ_GLOBAL_8_eg : VTX_READ_8_eg <1,
[(set i32:$dst_gpr, (az_extloadi8_global ADDRVTX_READ:$src_gpr))]
>;
def VTX_READ_GLOBAL_16_eg : VTX_READ_16_eg <1,
[(set i32:$dst_gpr, (az_extloadi16_global ADDRVTX_READ:$src_gpr))]
>;
// 32-bit reads
def VTX_READ_GLOBAL_32_eg : VTX_READ_32_eg <1,
[(set i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
>;
// 64-bit reads
def VTX_READ_GLOBAL_64_eg : VTX_READ_64_eg <1,
[(set v2i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
>;
// 128-bit reads
def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1,
[(set v4i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
>;
} // End Predicates = [isEG]
//===----------------------------------------------------------------------===//
// Evergreen / Cayman Instructions
//===----------------------------------------------------------------------===//
let Predicates = [isEGorCayman] in {
// BFE_UINT - bit_extract, an optimization for mask and shift
// Src0 = Input
// Src1 = Offset
// Src2 = Width
//
// bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
//
// Example Usage:
// (Offset, Width)
//
// (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0
// (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8
// (16, 8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16
// (24, 8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24
def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
[(set i32:$dst, (AMDGPUbfe_u32 i32:$src0, i32:$src1, i32:$src2))],
VecALU
>;
def BFE_INT_eg : R600_3OP <0x5, "BFE_INT",
[(set i32:$dst, (AMDGPUbfe_i32 i32:$src0, i32:$src1, i32:$src2))],
VecALU
>;
// XXX: This pattern is broken, disabling for now. See comment in
// AMDGPUInstructions.td for more info.
// def : BFEPattern <BFE_UINT_eg>;
def BFI_INT_eg : R600_3OP <0x06, "BFI_INT",
[(set i32:$dst, (AMDGPUbfi i32:$src0, i32:$src1, i32:$src2))],
VecALU
>;
def : Pat<(i32 (sext_inreg i32:$src, i1)),
(BFE_INT_eg i32:$src, (i32 ZERO), (i32 ONE_INT))>;
def : Pat<(i32 (sext_inreg i32:$src, i8)),
(BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 8))>;
def : Pat<(i32 (sext_inreg i32:$src, i16)),
(BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 16))>;
defm : BFIPatterns <BFI_INT_eg, MOV_IMM_I32>;
def BFM_INT_eg : R600_2OP <0xA0, "BFM_INT",
[(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))],
VecALU
>;
def MULADD_UINT24_eg : R600_3OP <0x10, "MULADD_UINT24",
[(set i32:$dst, (AMDGPUmad_u24 i32:$src0, i32:$src1, i32:$src2))], VecALU
>;
def : UMad24Pat<MULADD_UINT24_eg>;
def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>;
def : ROTRPattern <BIT_ALIGN_INT_eg>;
def MULADD_eg : MULADD_Common<0x14>;
def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
def ASHR_eg : ASHR_Common<0x15>;
def LSHR_eg : LSHR_Common<0x16>;
def LSHL_eg : LSHL_Common<0x17>;
def CNDE_eg : CNDE_Common<0x19>;
def CNDGT_eg : CNDGT_Common<0x1A>;
def CNDGE_eg : CNDGE_Common<0x1B>;
def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
def MUL_UINT24_eg : R600_2OP <0xB5, "MUL_UINT24",
[(set i32:$dst, (AMDGPUmul_u24 i32:$src0, i32:$src1))], VecALU
>;
def DOT4_eg : DOT4_Common<0xBE>;
defm CUBE_eg : CUBE_Common<0xC0>;
def BCNT_INT : R600_1OP_Helper <0xAA, "BCNT_INT", ctpop, VecALU>;
def FFBH_UINT : R600_1OP_Helper <0xAB, "FFBH_UINT", ctlz_zero_undef, VecALU>;
def FFBL_INT : R600_1OP_Helper <0xAC, "FFBL_INT", cttz_zero_undef, VecALU>;
let hasSideEffects = 1 in {
def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", [], VecALU>;
}
def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
let Pattern = [];
let Itinerary = AnyALU;
}
def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
let Pattern = [];
}
def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
def GROUP_BARRIER : InstR600 <
(outs), (ins), " GROUP_BARRIER", [(int_AMDGPU_barrier_local), (int_AMDGPU_barrier_global)], AnyALU>,
R600ALU_Word0,
R600ALU_Word1_OP2 <0x54> {
let dst = 0;
let dst_rel = 0;
let src0 = 0;
let src0_rel = 0;
let src0_neg = 0;
let src0_abs = 0;
let src1 = 0;
let src1_rel = 0;
let src1_neg = 0;
let src1_abs = 0;
let write = 0;
let omod = 0;
let clamp = 0;
let last = 1;
let bank_swizzle = 0;
let pred_sel = 0;
let update_exec_mask = 0;
let update_pred = 0;
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
let ALUInst = 1;
}
def : Pat <
(int_AMDGPU_barrier_global),
(GROUP_BARRIER)
>;
//===----------------------------------------------------------------------===//
// LDS Instructions
//===----------------------------------------------------------------------===//
class R600_LDS <bits<6> op, dag outs, dag ins, string asm,
list<dag> pattern = []> :
InstR600 <outs, ins, asm, pattern, XALU>,
R600_ALU_LDS_Word0,
R600LDS_Word1 {
bits<6> offset = 0;
let lds_op = op;
let Word1{27} = offset{0};
let Word1{12} = offset{1};
let Word1{28} = offset{2};
let Word1{31} = offset{3};
let Word0{12} = offset{4};
let Word0{25} = offset{5};
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
let ALUInst = 1;
let HasNativeOperands = 1;
let UseNamedOperandTable = 1;
}
class R600_LDS_1A <bits<6> lds_op, string name, list<dag> pattern> : R600_LDS <
lds_op,
(outs R600_Reg32:$dst),
(ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
LAST:$last, R600_Pred:$pred_sel,
BANK_SWIZZLE:$bank_swizzle),
" "#name#" $last OQAP, $src0$src0_rel $pred_sel",
pattern
> {
let src1 = 0;
let src1_rel = 0;
let src2 = 0;
let src2_rel = 0;
let usesCustomInserter = 1;
let LDS_1A = 1;
let DisableEncoding = "$dst";
}
class R600_LDS_1A1D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
string dst =""> :
R600_LDS <
lds_op, outs,
(ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
LAST:$last, R600_Pred:$pred_sel,
BANK_SWIZZLE:$bank_swizzle),
" "#name#" $last "#dst#"$src0$src0_rel, $src1$src1_rel, $pred_sel",
pattern
> {
field string BaseOp;
let src2 = 0;
let src2_rel = 0;
let LDS_1A1D = 1;
}
class R600_LDS_1A1D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
R600_LDS_1A1D <lds_op, (outs), name, pattern> {
let BaseOp = name;
}
class R600_LDS_1A1D_RET <bits<6> lds_op, string name, list<dag> pattern> :
R600_LDS_1A1D <lds_op, (outs R600_Reg32:$dst), name##"_RET", pattern, "OQAP, "> {
let BaseOp = name;
let usesCustomInserter = 1;
let DisableEncoding = "$dst";
}
class R600_LDS_1A2D <bits<6> lds_op, string name, list<dag> pattern> :
R600_LDS <
lds_op,
(outs),
(ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
R600_Reg32:$src2, REL:$src2_rel, SEL:$src2_sel,
LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle),
" "#name# "$last $src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel",
pattern> {
let LDS_1A2D = 1;
}
def LDS_ADD : R600_LDS_1A1D_NORET <0x0, "LDS_ADD", [] >;
def LDS_SUB : R600_LDS_1A1D_NORET <0x1, "LDS_SUB", [] >;
def LDS_WRITE : R600_LDS_1A1D_NORET <0xD, "LDS_WRITE",
[(local_store (i32 R600_Reg32:$src1), R600_Reg32:$src0)]
>;
def LDS_BYTE_WRITE : R600_LDS_1A1D_NORET<0x12, "LDS_BYTE_WRITE",
[(truncstorei8_local i32:$src1, i32:$src0)]
>;
def LDS_SHORT_WRITE : R600_LDS_1A1D_NORET<0x13, "LDS_SHORT_WRITE",
[(truncstorei16_local i32:$src1, i32:$src0)]
>;
def LDS_ADD_RET : R600_LDS_1A1D_RET <0x20, "LDS_ADD",
[(set i32:$dst, (atomic_load_add_local i32:$src0, i32:$src1))]
>;
def LDS_SUB_RET : R600_LDS_1A1D_RET <0x21, "LDS_SUB",
[(set i32:$dst, (atomic_load_sub_local i32:$src0, i32:$src1))]
>;
def LDS_READ_RET : R600_LDS_1A <0x32, "LDS_READ_RET",
[(set (i32 R600_Reg32:$dst), (local_load R600_Reg32:$src0))]
>;
def LDS_BYTE_READ_RET : R600_LDS_1A <0x36, "LDS_BYTE_READ_RET",
[(set i32:$dst, (sextloadi8_local i32:$src0))]
>;
def LDS_UBYTE_READ_RET : R600_LDS_1A <0x37, "LDS_UBYTE_READ_RET",
[(set i32:$dst, (az_extloadi8_local i32:$src0))]
>;
def LDS_SHORT_READ_RET : R600_LDS_1A <0x38, "LDS_SHORT_READ_RET",
[(set i32:$dst, (sextloadi16_local i32:$src0))]
>;
def LDS_USHORT_READ_RET : R600_LDS_1A <0x39, "LDS_USHORT_READ_RET",
[(set i32:$dst, (az_extloadi16_local i32:$src0))]
>;
// TRUNC is used for the FLT_TO_INT instructions to work around a
// perceived problem where the rounding modes are applied differently
// depending on the instruction and the slot they are in.
// See:
// https://bugs.freedesktop.org/show_bug.cgi?id=50232
// Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
//
// XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
// which do not need to be truncated since the fp values are 0.0f or 1.0f.
// We should look into handling these cases separately.
def : Pat<(fp_to_sint f32:$src0), (FLT_TO_INT_eg (TRUNC $src0))>;
def : Pat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>;
// SHA-256 Patterns
def : SHA256MaPattern <BFI_INT_eg, XOR_INT>;
def : FROUNDPat <CNDGE_eg>;
def EG_ExportSwz : ExportSwzInst {
let Word1{19-16} = 0; // BURST_COUNT
let Word1{20} = 0; // VALID_PIXEL_MODE
let Word1{21} = eop;
let Word1{29-22} = inst;
let Word1{30} = 0; // MARK
let Word1{31} = 1; // BARRIER
}
defm : ExportPattern<EG_ExportSwz, 83>;
def EG_ExportBuf : ExportBufInst {
let Word1{19-16} = 0; // BURST_COUNT
let Word1{20} = 0; // VALID_PIXEL_MODE
let Word1{21} = eop;
let Word1{29-22} = inst;
let Word1{30} = 0; // MARK
let Word1{31} = 1; // BARRIER
}
defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
def CF_TC_EG : CF_CLAUSE_EG<1, (ins i32imm:$ADDR, i32imm:$COUNT),
"TEX $COUNT @$ADDR"> {
let POP_COUNT = 0;
}
def CF_VC_EG : CF_CLAUSE_EG<2, (ins i32imm:$ADDR, i32imm:$COUNT),
"VTX $COUNT @$ADDR"> {
let POP_COUNT = 0;
}
def WHILE_LOOP_EG : CF_CLAUSE_EG<6, (ins i32imm:$ADDR),
"LOOP_START_DX10 @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def END_LOOP_EG : CF_CLAUSE_EG<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def LOOP_BREAK_EG : CF_CLAUSE_EG<9, (ins i32imm:$ADDR),
"LOOP_BREAK @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def CF_CONTINUE_EG : CF_CLAUSE_EG<8, (ins i32imm:$ADDR),
"CONTINUE @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def CF_JUMP_EG : CF_CLAUSE_EG<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
"JUMP @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_PUSH_EG : CF_CLAUSE_EG<11, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
"PUSH @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_ELSE_EG : CF_CLAUSE_EG<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
"ELSE @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_CALL_FS_EG : CF_CLAUSE_EG<19, (ins), "CALL_FS"> {
let ADDR = 0;
let COUNT = 0;
let POP_COUNT = 0;
}
def POP_EG : CF_CLAUSE_EG<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
"POP @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_END_EG : CF_CLAUSE_EG<0, (ins), "CF_END"> {
let COUNT = 0;
let POP_COUNT = 0;
let ADDR = 0;
let END_OF_PROGRAM = 1;
}
} // End Predicates = [isEGorCayman]