llvm-project/compiler-rt/lib/msan/msan_allocator.cpp

371 lines
12 KiB
C++

//===-- msan_allocator.cpp -------------------------- ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemorySanitizer.
//
// MemorySanitizer allocator.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_allocator_report.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "msan.h"
#include "msan_allocator.h"
#include "msan_origin.h"
#include "msan_thread.h"
#include "msan_poisoning.h"
namespace __msan {
struct Metadata {
uptr requested_size;
};
struct MsanMapUnmapCallback {
void OnMap(uptr p, uptr size) const {}
void OnUnmap(uptr p, uptr size) const {
__msan_unpoison((void *)p, size);
// We are about to unmap a chunk of user memory.
// Mark the corresponding shadow memory as not needed.
uptr shadow_p = MEM_TO_SHADOW(p);
ReleaseMemoryPagesToOS(shadow_p, shadow_p + size);
if (__msan_get_track_origins()) {
uptr origin_p = MEM_TO_ORIGIN(p);
ReleaseMemoryPagesToOS(origin_p, origin_p + size);
}
}
};
#if defined(__mips64)
static const uptr kMaxAllowedMallocSize = 2UL << 30;
struct AP32 {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
static const uptr kMetadataSize = sizeof(Metadata);
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = 20;
using AddressSpaceView = LocalAddressSpaceView;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
#elif defined(__x86_64__)
#if SANITIZER_NETBSD || \
(SANITIZER_LINUX && !defined(MSAN_LINUX_X86_64_OLD_MAPPING))
static const uptr kAllocatorSpace = 0x700000000000ULL;
#else
static const uptr kAllocatorSpace = 0x600000000000ULL;
#endif
static const uptr kMaxAllowedMallocSize = 8UL << 30;
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
static const uptr kSpaceBeg = kAllocatorSpace;
static const uptr kSpaceSize = 0x40000000000; // 4T.
static const uptr kMetadataSize = sizeof(Metadata);
typedef DefaultSizeClassMap SizeClassMap;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
using AddressSpaceView = LocalAddressSpaceView;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#elif defined(__powerpc64__)
static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
static const uptr kSpaceBeg = 0x300000000000;
static const uptr kSpaceSize = 0x020000000000; // 2T.
static const uptr kMetadataSize = sizeof(Metadata);
typedef DefaultSizeClassMap SizeClassMap;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
using AddressSpaceView = LocalAddressSpaceView;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#elif defined(__s390x__)
static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
static const uptr kSpaceBeg = 0x440000000000;
static const uptr kSpaceSize = 0x020000000000; // 2T.
static const uptr kMetadataSize = sizeof(Metadata);
typedef DefaultSizeClassMap SizeClassMap;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
using AddressSpaceView = LocalAddressSpaceView;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#elif defined(__aarch64__)
static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
struct AP32 {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
static const uptr kMetadataSize = sizeof(Metadata);
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = 20;
using AddressSpaceView = LocalAddressSpaceView;
typedef MsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
#endif
typedef CombinedAllocator<PrimaryAllocator> Allocator;
typedef Allocator::AllocatorCache AllocatorCache;
static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static StaticSpinMutex fallback_mutex;
static uptr max_malloc_size;
void MsanAllocatorInit() {
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
if (common_flags()->max_allocation_size_mb)
max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
kMaxAllowedMallocSize);
else
max_malloc_size = kMaxAllowedMallocSize;
}
AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
}
void MsanThreadLocalMallocStorage::CommitBack() {
allocator.SwallowCache(GetAllocatorCache(this));
}
static void *MsanAllocate(StackTrace *stack, uptr size, uptr alignment,
bool zeroise) {
if (size > max_malloc_size) {
if (AllocatorMayReturnNull()) {
Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size);
return nullptr;
}
ReportAllocationSizeTooBig(size, max_malloc_size, stack);
}
MsanThread *t = GetCurrentThread();
void *allocated;
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocated = allocator.Allocate(cache, size, alignment);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, size, alignment);
}
if (UNLIKELY(!allocated)) {
SetAllocatorOutOfMemory();
if (AllocatorMayReturnNull())
return nullptr;
ReportOutOfMemory(size, stack);
}
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
meta->requested_size = size;
if (zeroise) {
__msan_clear_and_unpoison(allocated, size);
} else if (flags()->poison_in_malloc) {
__msan_poison(allocated, size);
if (__msan_get_track_origins()) {
stack->tag = StackTrace::TAG_ALLOC;
Origin o = Origin::CreateHeapOrigin(stack);
__msan_set_origin(allocated, size, o.raw_id());
}
}
MSAN_MALLOC_HOOK(allocated, size);
return allocated;
}
void MsanDeallocate(StackTrace *stack, void *p) {
CHECK(p);
MSAN_FREE_HOOK(p);
Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
uptr size = meta->requested_size;
meta->requested_size = 0;
// This memory will not be reused by anyone else, so we are free to keep it
// poisoned.
if (flags()->poison_in_free) {
__msan_poison(p, size);
if (__msan_get_track_origins()) {
stack->tag = StackTrace::TAG_DEALLOC;
Origin o = Origin::CreateHeapOrigin(stack);
__msan_set_origin(p, size, o.raw_id());
}
}
MsanThread *t = GetCurrentThread();
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocator.Deallocate(cache, p);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocator.Deallocate(cache, p);
}
}
void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size,
uptr alignment) {
Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
uptr old_size = meta->requested_size;
uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
if (new_size <= actually_allocated_size) {
// We are not reallocating here.
meta->requested_size = new_size;
if (new_size > old_size) {
if (flags()->poison_in_malloc) {
stack->tag = StackTrace::TAG_ALLOC;
PoisonMemory((char *)old_p + old_size, new_size - old_size, stack);
}
}
return old_p;
}
uptr memcpy_size = Min(new_size, old_size);
void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/);
if (new_p) {
CopyMemory(new_p, old_p, memcpy_size, stack);
MsanDeallocate(stack, old_p);
}
return new_p;
}
void *MsanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
if (AllocatorMayReturnNull())
return nullptr;
ReportCallocOverflow(nmemb, size, stack);
}
return MsanAllocate(stack, nmemb * size, sizeof(u64), true);
}
static uptr AllocationSize(const void *p) {
if (!p) return 0;
const void *beg = allocator.GetBlockBegin(p);
if (beg != p) return 0;
Metadata *b = (Metadata *)allocator.GetMetaData(p);
return b->requested_size;
}
void *msan_malloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
}
void *msan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
return SetErrnoOnNull(MsanCalloc(stack, nmemb, size));
}
void *msan_realloc(void *ptr, uptr size, StackTrace *stack) {
if (!ptr)
return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
if (size == 0) {
MsanDeallocate(stack, ptr);
return nullptr;
}
return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64)));
}
void *msan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportReallocArrayOverflow(nmemb, size, stack);
}
return msan_realloc(ptr, nmemb * size, stack);
}
void *msan_valloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false));
}
void *msan_pvalloc(uptr size, StackTrace *stack) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportPvallocOverflow(size, stack);
}
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false));
}
void *msan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAlignedAllocAlignment(size, alignment, stack);
}
return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
}
void *msan_memalign(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAllocationAlignment(alignment, stack);
}
return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
}
int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
if (AllocatorMayReturnNull())
return errno_EINVAL;
ReportInvalidPosixMemalignAlignment(alignment, stack);
}
void *ptr = MsanAllocate(stack, size, alignment, false);
if (UNLIKELY(!ptr))
// OOM error is already taken care of by MsanAllocate.
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
} // namespace __msan
using namespace __msan;
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() { return 1; }
uptr __sanitizer_get_unmapped_bytes() { return 1; }
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }