llvm-project/llvm/lib/Analysis/ModelUnderTrainingRunner.cpp

68 lines
2.4 KiB
C++

//===- ModelUnderTrainingRunner.cpp - 'development' mode runner -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of a MLModelRunner for 'development' mode, i.e. evaluation
// happens off a model that's provided from the command line and is interpreted.
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TF_API)
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
using namespace llvm;
ModelUnderTrainingRunner::ModelUnderTrainingRunner(
LLVMContext &Ctx, const std::string &ModelPath,
const std::vector<TensorSpec> &InputSpecs,
const std::vector<LoggedFeatureSpec> &OutputSpecs)
: MLModelRunner(Ctx, MLModelRunner::Kind::Development),
OutputSpecs(OutputSpecs) {
Evaluator = std::make_unique<TFModelEvaluator>(
ModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I].Spec; },
OutputSpecs.size());
if (!Evaluator || !Evaluator->isValid()) {
Ctx.emitError("Failed to create saved model evaluator");
Evaluator.reset();
return;
}
}
void *ModelUnderTrainingRunner::evaluateUntyped() {
LastEvaluationResult = Evaluator->evaluate();
if (!LastEvaluationResult.hasValue()) {
Ctx.emitError("Error evaluating model.");
return nullptr;
}
return LastEvaluationResult->getUntypedTensorValue(0);
}
void *ModelUnderTrainingRunner::getTensorUntyped(size_t Index) {
return Evaluator->getUntypedInput(Index);
}
std::unique_ptr<ModelUnderTrainingRunner>
ModelUnderTrainingRunner::createAndEnsureValid(
LLVMContext &Ctx, const std::string &ModelPath, StringRef DecisionName,
const std::vector<TensorSpec> &InputSpecs,
StringRef OutputSpecsPathOverride) {
std::unique_ptr<ModelUnderTrainingRunner> MUTR;
if (auto MaybeOutputSpecs = loadOutputSpecs(Ctx, DecisionName, ModelPath,
OutputSpecsPathOverride))
MUTR.reset(new ModelUnderTrainingRunner(Ctx, ModelPath, InputSpecs,
*MaybeOutputSpecs));
if (MUTR && MUTR->isValid())
return MUTR;
Ctx.emitError("Could not load the policy model from the provided path");
return nullptr;
}
#endif // defined(LLVM_HAVE_TF_API)