llvm-project/clang/lib/Frontend/PCHWriter.cpp

2906 lines
104 KiB
C++

//===--- PCHWriter.cpp - Precompiled Headers Writer -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PCHWriter class, which writes a precompiled header.
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/PCHWriter.h"
#include "../Sema/Sema.h" // FIXME: move header into include/clang/Sema
#include "../Sema/IdentifierResolver.h" // FIXME: move header
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclContextInternals.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Frontend/PCHReader.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/OnDiskHashTable.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManagerInternals.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/System/Path.h"
#include <cstdio>
using namespace clang;
template <typename T, typename Allocator>
T *data(std::vector<T, Allocator> &v) {
return v.empty() ? 0 : &v.front();
}
template <typename T, typename Allocator>
const T *data(const std::vector<T, Allocator> &v) {
return v.empty() ? 0 : &v.front();
}
//===----------------------------------------------------------------------===//
// Type serialization
//===----------------------------------------------------------------------===//
namespace {
class PCHTypeWriter {
PCHWriter &Writer;
PCHWriter::RecordData &Record;
public:
/// \brief Type code that corresponds to the record generated.
pch::TypeCode Code;
PCHTypeWriter(PCHWriter &Writer, PCHWriter::RecordData &Record)
: Writer(Writer), Record(Record), Code(pch::TYPE_EXT_QUAL) { }
void VisitArrayType(const ArrayType *T);
void VisitFunctionType(const FunctionType *T);
void VisitTagType(const TagType *T);
#define TYPE(Class, Base) void Visit##Class##Type(const Class##Type *T);
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
};
}
void PCHTypeWriter::VisitBuiltinType(const BuiltinType *T) {
assert(false && "Built-in types are never serialized");
}
void PCHTypeWriter::VisitComplexType(const ComplexType *T) {
Writer.AddTypeRef(T->getElementType(), Record);
Code = pch::TYPE_COMPLEX;
}
void PCHTypeWriter::VisitPointerType(const PointerType *T) {
Writer.AddTypeRef(T->getPointeeType(), Record);
Code = pch::TYPE_POINTER;
}
void PCHTypeWriter::VisitBlockPointerType(const BlockPointerType *T) {
Writer.AddTypeRef(T->getPointeeType(), Record);
Code = pch::TYPE_BLOCK_POINTER;
}
void PCHTypeWriter::VisitLValueReferenceType(const LValueReferenceType *T) {
Writer.AddTypeRef(T->getPointeeType(), Record);
Code = pch::TYPE_LVALUE_REFERENCE;
}
void PCHTypeWriter::VisitRValueReferenceType(const RValueReferenceType *T) {
Writer.AddTypeRef(T->getPointeeType(), Record);
Code = pch::TYPE_RVALUE_REFERENCE;
}
void PCHTypeWriter::VisitMemberPointerType(const MemberPointerType *T) {
Writer.AddTypeRef(T->getPointeeType(), Record);
Writer.AddTypeRef(QualType(T->getClass(), 0), Record);
Code = pch::TYPE_MEMBER_POINTER;
}
void PCHTypeWriter::VisitArrayType(const ArrayType *T) {
Writer.AddTypeRef(T->getElementType(), Record);
Record.push_back(T->getSizeModifier()); // FIXME: stable values
Record.push_back(T->getIndexTypeCVRQualifiers()); // FIXME: stable values
}
void PCHTypeWriter::VisitConstantArrayType(const ConstantArrayType *T) {
VisitArrayType(T);
Writer.AddAPInt(T->getSize(), Record);
Code = pch::TYPE_CONSTANT_ARRAY;
}
void PCHTypeWriter::VisitIncompleteArrayType(const IncompleteArrayType *T) {
VisitArrayType(T);
Code = pch::TYPE_INCOMPLETE_ARRAY;
}
void PCHTypeWriter::VisitVariableArrayType(const VariableArrayType *T) {
VisitArrayType(T);
Writer.AddSourceLocation(T->getLBracketLoc(), Record);
Writer.AddSourceLocation(T->getRBracketLoc(), Record);
Writer.AddStmt(T->getSizeExpr());
Code = pch::TYPE_VARIABLE_ARRAY;
}
void PCHTypeWriter::VisitVectorType(const VectorType *T) {
Writer.AddTypeRef(T->getElementType(), Record);
Record.push_back(T->getNumElements());
Record.push_back(T->getAltiVecSpecific());
Code = pch::TYPE_VECTOR;
}
void PCHTypeWriter::VisitExtVectorType(const ExtVectorType *T) {
VisitVectorType(T);
Code = pch::TYPE_EXT_VECTOR;
}
void PCHTypeWriter::VisitFunctionType(const FunctionType *T) {
Writer.AddTypeRef(T->getResultType(), Record);
FunctionType::ExtInfo C = T->getExtInfo();
Record.push_back(C.getNoReturn());
Record.push_back(C.getRegParm());
// FIXME: need to stabilize encoding of calling convention...
Record.push_back(C.getCC());
}
void PCHTypeWriter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
VisitFunctionType(T);
Code = pch::TYPE_FUNCTION_NO_PROTO;
}
void PCHTypeWriter::VisitFunctionProtoType(const FunctionProtoType *T) {
VisitFunctionType(T);
Record.push_back(T->getNumArgs());
for (unsigned I = 0, N = T->getNumArgs(); I != N; ++I)
Writer.AddTypeRef(T->getArgType(I), Record);
Record.push_back(T->isVariadic());
Record.push_back(T->getTypeQuals());
Record.push_back(T->hasExceptionSpec());
Record.push_back(T->hasAnyExceptionSpec());
Record.push_back(T->getNumExceptions());
for (unsigned I = 0, N = T->getNumExceptions(); I != N; ++I)
Writer.AddTypeRef(T->getExceptionType(I), Record);
Code = pch::TYPE_FUNCTION_PROTO;
}
void PCHTypeWriter::VisitUnresolvedUsingType(const UnresolvedUsingType *T) {
Writer.AddDeclRef(T->getDecl(), Record);
Code = pch::TYPE_UNRESOLVED_USING;
}
void PCHTypeWriter::VisitTypedefType(const TypedefType *T) {
Writer.AddDeclRef(T->getDecl(), Record);
assert(!T->isCanonicalUnqualified() && "Invalid typedef ?");
Writer.AddTypeRef(T->getCanonicalTypeInternal(), Record);
Code = pch::TYPE_TYPEDEF;
}
void PCHTypeWriter::VisitTypeOfExprType(const TypeOfExprType *T) {
Writer.AddStmt(T->getUnderlyingExpr());
Code = pch::TYPE_TYPEOF_EXPR;
}
void PCHTypeWriter::VisitTypeOfType(const TypeOfType *T) {
Writer.AddTypeRef(T->getUnderlyingType(), Record);
Code = pch::TYPE_TYPEOF;
}
void PCHTypeWriter::VisitDecltypeType(const DecltypeType *T) {
Writer.AddStmt(T->getUnderlyingExpr());
Code = pch::TYPE_DECLTYPE;
}
void PCHTypeWriter::VisitTagType(const TagType *T) {
Record.push_back(T->isDependentType());
Writer.AddDeclRef(T->getDecl(), Record);
assert(!T->isBeingDefined() &&
"Cannot serialize in the middle of a type definition");
}
void PCHTypeWriter::VisitRecordType(const RecordType *T) {
VisitTagType(T);
Code = pch::TYPE_RECORD;
}
void PCHTypeWriter::VisitEnumType(const EnumType *T) {
VisitTagType(T);
Code = pch::TYPE_ENUM;
}
void
PCHTypeWriter::VisitSubstTemplateTypeParmType(
const SubstTemplateTypeParmType *T) {
Writer.AddTypeRef(QualType(T->getReplacedParameter(), 0), Record);
Writer.AddTypeRef(T->getReplacementType(), Record);
Code = pch::TYPE_SUBST_TEMPLATE_TYPE_PARM;
}
void
PCHTypeWriter::VisitTemplateSpecializationType(
const TemplateSpecializationType *T) {
Record.push_back(T->isDependentType());
Writer.AddTemplateName(T->getTemplateName(), Record);
Record.push_back(T->getNumArgs());
for (TemplateSpecializationType::iterator ArgI = T->begin(), ArgE = T->end();
ArgI != ArgE; ++ArgI)
Writer.AddTemplateArgument(*ArgI, Record);
Writer.AddTypeRef(T->isCanonicalUnqualified() ? QualType()
: T->getCanonicalTypeInternal(),
Record);
Code = pch::TYPE_TEMPLATE_SPECIALIZATION;
}
void
PCHTypeWriter::VisitDependentSizedArrayType(const DependentSizedArrayType *T) {
VisitArrayType(T);
Writer.AddStmt(T->getSizeExpr());
Writer.AddSourceRange(T->getBracketsRange(), Record);
Code = pch::TYPE_DEPENDENT_SIZED_ARRAY;
}
void
PCHTypeWriter::VisitDependentSizedExtVectorType(
const DependentSizedExtVectorType *T) {
// FIXME: Serialize this type (C++ only)
assert(false && "Cannot serialize dependent sized extended vector types");
}
void
PCHTypeWriter::VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
Record.push_back(T->getDepth());
Record.push_back(T->getIndex());
Record.push_back(T->isParameterPack());
Writer.AddIdentifierRef(T->getName(), Record);
Code = pch::TYPE_TEMPLATE_TYPE_PARM;
}
void
PCHTypeWriter::VisitDependentNameType(const DependentNameType *T) {
Record.push_back(T->getKeyword());
Writer.AddNestedNameSpecifier(T->getQualifier(), Record);
Writer.AddIdentifierRef(T->getIdentifier(), Record);
Writer.AddTypeRef(T->isCanonicalUnqualified() ? QualType()
: T->getCanonicalTypeInternal(),
Record);
Code = pch::TYPE_DEPENDENT_NAME;
}
void
PCHTypeWriter::VisitDependentTemplateSpecializationType(
const DependentTemplateSpecializationType *T) {
Record.push_back(T->getKeyword());
Writer.AddNestedNameSpecifier(T->getQualifier(), Record);
Writer.AddIdentifierRef(T->getIdentifier(), Record);
Record.push_back(T->getNumArgs());
for (DependentTemplateSpecializationType::iterator
I = T->begin(), E = T->end(); I != E; ++I)
Writer.AddTemplateArgument(*I, Record);
Code = pch::TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION;
}
void PCHTypeWriter::VisitElaboratedType(const ElaboratedType *T) {
Record.push_back(T->getKeyword());
Writer.AddNestedNameSpecifier(T->getQualifier(), Record);
Writer.AddTypeRef(T->getNamedType(), Record);
Code = pch::TYPE_ELABORATED;
}
void PCHTypeWriter::VisitInjectedClassNameType(const InjectedClassNameType *T) {
Writer.AddDeclRef(T->getDecl(), Record);
Writer.AddTypeRef(T->getInjectedSpecializationType(), Record);
Code = pch::TYPE_INJECTED_CLASS_NAME;
}
void PCHTypeWriter::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
Writer.AddDeclRef(T->getDecl(), Record);
Code = pch::TYPE_OBJC_INTERFACE;
}
void PCHTypeWriter::VisitObjCObjectType(const ObjCObjectType *T) {
Writer.AddTypeRef(T->getBaseType(), Record);
Record.push_back(T->getNumProtocols());
for (ObjCObjectType::qual_iterator I = T->qual_begin(),
E = T->qual_end(); I != E; ++I)
Writer.AddDeclRef(*I, Record);
Code = pch::TYPE_OBJC_OBJECT;
}
void
PCHTypeWriter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
Writer.AddTypeRef(T->getPointeeType(), Record);
Code = pch::TYPE_OBJC_OBJECT_POINTER;
}
namespace {
class TypeLocWriter : public TypeLocVisitor<TypeLocWriter> {
PCHWriter &Writer;
PCHWriter::RecordData &Record;
public:
TypeLocWriter(PCHWriter &Writer, PCHWriter::RecordData &Record)
: Writer(Writer), Record(Record) { }
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
#include "clang/AST/TypeLocNodes.def"
void VisitArrayTypeLoc(ArrayTypeLoc TyLoc);
void VisitFunctionTypeLoc(FunctionTypeLoc TyLoc);
};
}
void TypeLocWriter::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
// nothing to do
}
void TypeLocWriter::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
Writer.AddSourceLocation(TL.getBuiltinLoc(), Record);
if (TL.needsExtraLocalData()) {
Record.push_back(TL.getWrittenTypeSpec());
Record.push_back(TL.getWrittenSignSpec());
Record.push_back(TL.getWrittenWidthSpec());
Record.push_back(TL.hasModeAttr());
}
}
void TypeLocWriter::VisitComplexTypeLoc(ComplexTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitPointerTypeLoc(PointerTypeLoc TL) {
Writer.AddSourceLocation(TL.getStarLoc(), Record);
}
void TypeLocWriter::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
Writer.AddSourceLocation(TL.getCaretLoc(), Record);
}
void TypeLocWriter::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
Writer.AddSourceLocation(TL.getAmpLoc(), Record);
}
void TypeLocWriter::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
Writer.AddSourceLocation(TL.getAmpAmpLoc(), Record);
}
void TypeLocWriter::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
Writer.AddSourceLocation(TL.getStarLoc(), Record);
}
void TypeLocWriter::VisitArrayTypeLoc(ArrayTypeLoc TL) {
Writer.AddSourceLocation(TL.getLBracketLoc(), Record);
Writer.AddSourceLocation(TL.getRBracketLoc(), Record);
Record.push_back(TL.getSizeExpr() ? 1 : 0);
if (TL.getSizeExpr())
Writer.AddStmt(TL.getSizeExpr());
}
void TypeLocWriter::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitDependentSizedArrayTypeLoc(
DependentSizedArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocWriter::VisitDependentSizedExtVectorTypeLoc(
DependentSizedExtVectorTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitVectorTypeLoc(VectorTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
Writer.AddSourceLocation(TL.getLParenLoc(), Record);
Writer.AddSourceLocation(TL.getRParenLoc(), Record);
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
Writer.AddDeclRef(TL.getArg(i), Record);
}
void TypeLocWriter::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocWriter::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocWriter::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
Writer.AddSourceLocation(TL.getTypeofLoc(), Record);
Writer.AddSourceLocation(TL.getLParenLoc(), Record);
Writer.AddSourceLocation(TL.getRParenLoc(), Record);
}
void TypeLocWriter::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
Writer.AddSourceLocation(TL.getTypeofLoc(), Record);
Writer.AddSourceLocation(TL.getLParenLoc(), Record);
Writer.AddSourceLocation(TL.getRParenLoc(), Record);
Writer.AddTypeSourceInfo(TL.getUnderlyingTInfo(), Record);
}
void TypeLocWriter::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitRecordTypeLoc(RecordTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitEnumTypeLoc(EnumTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitSubstTemplateTypeParmTypeLoc(
SubstTemplateTypeParmTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitTemplateSpecializationTypeLoc(
TemplateSpecializationTypeLoc TL) {
Writer.AddSourceLocation(TL.getTemplateNameLoc(), Record);
Writer.AddSourceLocation(TL.getLAngleLoc(), Record);
Writer.AddSourceLocation(TL.getRAngleLoc(), Record);
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(i).getArgument().getKind(),
TL.getArgLoc(i).getLocInfo(), Record);
}
void TypeLocWriter::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
Writer.AddSourceLocation(TL.getKeywordLoc(), Record);
Writer.AddSourceRange(TL.getQualifierRange(), Record);
}
void TypeLocWriter::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
Writer.AddSourceLocation(TL.getKeywordLoc(), Record);
Writer.AddSourceRange(TL.getQualifierRange(), Record);
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
Writer.AddSourceLocation(TL.getKeywordLoc(), Record);
Writer.AddSourceRange(TL.getQualifierRange(), Record);
Writer.AddSourceLocation(TL.getNameLoc(), Record);
Writer.AddSourceLocation(TL.getLAngleLoc(), Record);
Writer.AddSourceLocation(TL.getRAngleLoc(), Record);
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
Writer.AddTemplateArgumentLocInfo(TL.getArgLoc(I).getArgument().getKind(),
TL.getArgLoc(I).getLocInfo(), Record);
}
void TypeLocWriter::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
Writer.AddSourceLocation(TL.getNameLoc(), Record);
}
void TypeLocWriter::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
Record.push_back(TL.hasBaseTypeAsWritten());
Writer.AddSourceLocation(TL.getLAngleLoc(), Record);
Writer.AddSourceLocation(TL.getRAngleLoc(), Record);
for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
Writer.AddSourceLocation(TL.getProtocolLoc(i), Record);
}
void TypeLocWriter::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
Writer.AddSourceLocation(TL.getStarLoc(), Record);
}
//===----------------------------------------------------------------------===//
// PCHWriter Implementation
//===----------------------------------------------------------------------===//
static void EmitBlockID(unsigned ID, const char *Name,
llvm::BitstreamWriter &Stream,
PCHWriter::RecordData &Record) {
Record.clear();
Record.push_back(ID);
Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, Record);
// Emit the block name if present.
if (Name == 0 || Name[0] == 0) return;
Record.clear();
while (*Name)
Record.push_back(*Name++);
Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, Record);
}
static void EmitRecordID(unsigned ID, const char *Name,
llvm::BitstreamWriter &Stream,
PCHWriter::RecordData &Record) {
Record.clear();
Record.push_back(ID);
while (*Name)
Record.push_back(*Name++);
Stream.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, Record);
}
static void AddStmtsExprs(llvm::BitstreamWriter &Stream,
PCHWriter::RecordData &Record) {
#define RECORD(X) EmitRecordID(pch::X, #X, Stream, Record)
RECORD(STMT_STOP);
RECORD(STMT_NULL_PTR);
RECORD(STMT_NULL);
RECORD(STMT_COMPOUND);
RECORD(STMT_CASE);
RECORD(STMT_DEFAULT);
RECORD(STMT_LABEL);
RECORD(STMT_IF);
RECORD(STMT_SWITCH);
RECORD(STMT_WHILE);
RECORD(STMT_DO);
RECORD(STMT_FOR);
RECORD(STMT_GOTO);
RECORD(STMT_INDIRECT_GOTO);
RECORD(STMT_CONTINUE);
RECORD(STMT_BREAK);
RECORD(STMT_RETURN);
RECORD(STMT_DECL);
RECORD(STMT_ASM);
RECORD(EXPR_PREDEFINED);
RECORD(EXPR_DECL_REF);
RECORD(EXPR_INTEGER_LITERAL);
RECORD(EXPR_FLOATING_LITERAL);
RECORD(EXPR_IMAGINARY_LITERAL);
RECORD(EXPR_STRING_LITERAL);
RECORD(EXPR_CHARACTER_LITERAL);
RECORD(EXPR_PAREN);
RECORD(EXPR_UNARY_OPERATOR);
RECORD(EXPR_SIZEOF_ALIGN_OF);
RECORD(EXPR_ARRAY_SUBSCRIPT);
RECORD(EXPR_CALL);
RECORD(EXPR_MEMBER);
RECORD(EXPR_BINARY_OPERATOR);
RECORD(EXPR_COMPOUND_ASSIGN_OPERATOR);
RECORD(EXPR_CONDITIONAL_OPERATOR);
RECORD(EXPR_IMPLICIT_CAST);
RECORD(EXPR_CSTYLE_CAST);
RECORD(EXPR_COMPOUND_LITERAL);
RECORD(EXPR_EXT_VECTOR_ELEMENT);
RECORD(EXPR_INIT_LIST);
RECORD(EXPR_DESIGNATED_INIT);
RECORD(EXPR_IMPLICIT_VALUE_INIT);
RECORD(EXPR_VA_ARG);
RECORD(EXPR_ADDR_LABEL);
RECORD(EXPR_STMT);
RECORD(EXPR_TYPES_COMPATIBLE);
RECORD(EXPR_CHOOSE);
RECORD(EXPR_GNU_NULL);
RECORD(EXPR_SHUFFLE_VECTOR);
RECORD(EXPR_BLOCK);
RECORD(EXPR_BLOCK_DECL_REF);
RECORD(EXPR_OBJC_STRING_LITERAL);
RECORD(EXPR_OBJC_ENCODE);
RECORD(EXPR_OBJC_SELECTOR_EXPR);
RECORD(EXPR_OBJC_PROTOCOL_EXPR);
RECORD(EXPR_OBJC_IVAR_REF_EXPR);
RECORD(EXPR_OBJC_PROPERTY_REF_EXPR);
RECORD(EXPR_OBJC_KVC_REF_EXPR);
RECORD(EXPR_OBJC_MESSAGE_EXPR);
RECORD(EXPR_OBJC_SUPER_EXPR);
RECORD(STMT_OBJC_FOR_COLLECTION);
RECORD(STMT_OBJC_CATCH);
RECORD(STMT_OBJC_FINALLY);
RECORD(STMT_OBJC_AT_TRY);
RECORD(STMT_OBJC_AT_SYNCHRONIZED);
RECORD(STMT_OBJC_AT_THROW);
RECORD(EXPR_CXX_OPERATOR_CALL);
RECORD(EXPR_CXX_CONSTRUCT);
RECORD(EXPR_CXX_STATIC_CAST);
RECORD(EXPR_CXX_DYNAMIC_CAST);
RECORD(EXPR_CXX_REINTERPRET_CAST);
RECORD(EXPR_CXX_CONST_CAST);
RECORD(EXPR_CXX_FUNCTIONAL_CAST);
RECORD(EXPR_CXX_BOOL_LITERAL);
RECORD(EXPR_CXX_NULL_PTR_LITERAL);
#undef RECORD
}
void PCHWriter::WriteBlockInfoBlock() {
RecordData Record;
Stream.EnterSubblock(llvm::bitc::BLOCKINFO_BLOCK_ID, 3);
#define BLOCK(X) EmitBlockID(pch::X ## _ID, #X, Stream, Record)
#define RECORD(X) EmitRecordID(pch::X, #X, Stream, Record)
// PCH Top-Level Block.
BLOCK(PCH_BLOCK);
RECORD(ORIGINAL_FILE_NAME);
RECORD(TYPE_OFFSET);
RECORD(DECL_OFFSET);
RECORD(LANGUAGE_OPTIONS);
RECORD(METADATA);
RECORD(IDENTIFIER_OFFSET);
RECORD(IDENTIFIER_TABLE);
RECORD(EXTERNAL_DEFINITIONS);
RECORD(SPECIAL_TYPES);
RECORD(STATISTICS);
RECORD(TENTATIVE_DEFINITIONS);
RECORD(UNUSED_STATIC_FUNCS);
RECORD(LOCALLY_SCOPED_EXTERNAL_DECLS);
RECORD(SELECTOR_OFFSETS);
RECORD(METHOD_POOL);
RECORD(PP_COUNTER_VALUE);
RECORD(SOURCE_LOCATION_OFFSETS);
RECORD(SOURCE_LOCATION_PRELOADS);
RECORD(STAT_CACHE);
RECORD(EXT_VECTOR_DECLS);
RECORD(VERSION_CONTROL_BRANCH_REVISION);
RECORD(UNUSED_STATIC_FUNCS);
RECORD(MACRO_DEFINITION_OFFSETS);
RECORD(CHAINED_METADATA);
RECORD(REFERENCED_SELECTOR_POOL);
// SourceManager Block.
BLOCK(SOURCE_MANAGER_BLOCK);
RECORD(SM_SLOC_FILE_ENTRY);
RECORD(SM_SLOC_BUFFER_ENTRY);
RECORD(SM_SLOC_BUFFER_BLOB);
RECORD(SM_SLOC_INSTANTIATION_ENTRY);
RECORD(SM_LINE_TABLE);
// Preprocessor Block.
BLOCK(PREPROCESSOR_BLOCK);
RECORD(PP_MACRO_OBJECT_LIKE);
RECORD(PP_MACRO_FUNCTION_LIKE);
RECORD(PP_TOKEN);
RECORD(PP_MACRO_INSTANTIATION);
RECORD(PP_MACRO_DEFINITION);
// Decls and Types block.
BLOCK(DECLTYPES_BLOCK);
RECORD(TYPE_EXT_QUAL);
RECORD(TYPE_COMPLEX);
RECORD(TYPE_POINTER);
RECORD(TYPE_BLOCK_POINTER);
RECORD(TYPE_LVALUE_REFERENCE);
RECORD(TYPE_RVALUE_REFERENCE);
RECORD(TYPE_MEMBER_POINTER);
RECORD(TYPE_CONSTANT_ARRAY);
RECORD(TYPE_INCOMPLETE_ARRAY);
RECORD(TYPE_VARIABLE_ARRAY);
RECORD(TYPE_VECTOR);
RECORD(TYPE_EXT_VECTOR);
RECORD(TYPE_FUNCTION_PROTO);
RECORD(TYPE_FUNCTION_NO_PROTO);
RECORD(TYPE_TYPEDEF);
RECORD(TYPE_TYPEOF_EXPR);
RECORD(TYPE_TYPEOF);
RECORD(TYPE_RECORD);
RECORD(TYPE_ENUM);
RECORD(TYPE_OBJC_INTERFACE);
RECORD(TYPE_OBJC_OBJECT);
RECORD(TYPE_OBJC_OBJECT_POINTER);
RECORD(DECL_ATTR);
RECORD(DECL_TRANSLATION_UNIT);
RECORD(DECL_TYPEDEF);
RECORD(DECL_ENUM);
RECORD(DECL_RECORD);
RECORD(DECL_ENUM_CONSTANT);
RECORD(DECL_FUNCTION);
RECORD(DECL_OBJC_METHOD);
RECORD(DECL_OBJC_INTERFACE);
RECORD(DECL_OBJC_PROTOCOL);
RECORD(DECL_OBJC_IVAR);
RECORD(DECL_OBJC_AT_DEFS_FIELD);
RECORD(DECL_OBJC_CLASS);
RECORD(DECL_OBJC_FORWARD_PROTOCOL);
RECORD(DECL_OBJC_CATEGORY);
RECORD(DECL_OBJC_CATEGORY_IMPL);
RECORD(DECL_OBJC_IMPLEMENTATION);
RECORD(DECL_OBJC_COMPATIBLE_ALIAS);
RECORD(DECL_OBJC_PROPERTY);
RECORD(DECL_OBJC_PROPERTY_IMPL);
RECORD(DECL_FIELD);
RECORD(DECL_VAR);
RECORD(DECL_IMPLICIT_PARAM);
RECORD(DECL_PARM_VAR);
RECORD(DECL_FILE_SCOPE_ASM);
RECORD(DECL_BLOCK);
RECORD(DECL_CONTEXT_LEXICAL);
RECORD(DECL_CONTEXT_VISIBLE);
// Statements and Exprs can occur in the Decls and Types block.
AddStmtsExprs(Stream, Record);
#undef RECORD
#undef BLOCK
Stream.ExitBlock();
}
/// \brief Adjusts the given filename to only write out the portion of the
/// filename that is not part of the system root directory.
///
/// \param Filename the file name to adjust.
///
/// \param isysroot When non-NULL, the PCH file is a relocatable PCH file and
/// the returned filename will be adjusted by this system root.
///
/// \returns either the original filename (if it needs no adjustment) or the
/// adjusted filename (which points into the @p Filename parameter).
static const char *
adjustFilenameForRelocatablePCH(const char *Filename, const char *isysroot) {
assert(Filename && "No file name to adjust?");
if (!isysroot)
return Filename;
// Verify that the filename and the system root have the same prefix.
unsigned Pos = 0;
for (; Filename[Pos] && isysroot[Pos]; ++Pos)
if (Filename[Pos] != isysroot[Pos])
return Filename; // Prefixes don't match.
// We hit the end of the filename before we hit the end of the system root.
if (!Filename[Pos])
return Filename;
// If the file name has a '/' at the current position, skip over the '/'.
// We distinguish sysroot-based includes from absolute includes by the
// absence of '/' at the beginning of sysroot-based includes.
if (Filename[Pos] == '/')
++Pos;
return Filename + Pos;
}
/// \brief Write the PCH metadata (e.g., i686-apple-darwin9).
void PCHWriter::WriteMetadata(ASTContext &Context, const char *isysroot) {
using namespace llvm;
// Metadata
const TargetInfo &Target = Context.Target;
BitCodeAbbrev *MetaAbbrev = new BitCodeAbbrev();
MetaAbbrev->Add(BitCodeAbbrevOp(
Chain ? pch::CHAINED_METADATA : pch::METADATA));
MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // PCH major
MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // PCH minor
MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang major
MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 16)); // Clang minor
MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Relocatable
// Target triple or chained PCH name
MetaAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned MetaAbbrevCode = Stream.EmitAbbrev(MetaAbbrev);
RecordData Record;
Record.push_back(Chain ? pch::CHAINED_METADATA : pch::METADATA);
Record.push_back(pch::VERSION_MAJOR);
Record.push_back(pch::VERSION_MINOR);
Record.push_back(CLANG_VERSION_MAJOR);
Record.push_back(CLANG_VERSION_MINOR);
Record.push_back(isysroot != 0);
// FIXME: This writes the absolute path for chained headers.
const std::string &BlobStr = Chain ? Chain->getFileName() : Target.getTriple().getTriple();
Stream.EmitRecordWithBlob(MetaAbbrevCode, Record, BlobStr);
// Original file name
SourceManager &SM = Context.getSourceManager();
if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
BitCodeAbbrev *FileAbbrev = new BitCodeAbbrev();
FileAbbrev->Add(BitCodeAbbrevOp(pch::ORIGINAL_FILE_NAME));
FileAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
unsigned FileAbbrevCode = Stream.EmitAbbrev(FileAbbrev);
llvm::sys::Path MainFilePath(MainFile->getName());
MainFilePath.makeAbsolute();
const char *MainFileNameStr = MainFilePath.c_str();
MainFileNameStr = adjustFilenameForRelocatablePCH(MainFileNameStr,
isysroot);
RecordData Record;
Record.push_back(pch::ORIGINAL_FILE_NAME);
Stream.EmitRecordWithBlob(FileAbbrevCode, Record, MainFileNameStr);
}
// Repository branch/version information.
BitCodeAbbrev *RepoAbbrev = new BitCodeAbbrev();
RepoAbbrev->Add(BitCodeAbbrevOp(pch::VERSION_CONTROL_BRANCH_REVISION));
RepoAbbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // SVN branch/tag
unsigned RepoAbbrevCode = Stream.EmitAbbrev(RepoAbbrev);
Record.clear();
Record.push_back(pch::VERSION_CONTROL_BRANCH_REVISION);
Stream.EmitRecordWithBlob(RepoAbbrevCode, Record,
getClangFullRepositoryVersion());
}
/// \brief Write the LangOptions structure.
void PCHWriter::WriteLanguageOptions(const LangOptions &LangOpts) {
RecordData Record;
Record.push_back(LangOpts.Trigraphs);
Record.push_back(LangOpts.BCPLComment); // BCPL-style '//' comments.
Record.push_back(LangOpts.DollarIdents); // '$' allowed in identifiers.
Record.push_back(LangOpts.AsmPreprocessor); // Preprocessor in asm mode.
Record.push_back(LangOpts.GNUMode); // True in gnu99 mode false in c99 mode (etc)
Record.push_back(LangOpts.GNUKeywords); // Allow GNU-extension keywords
Record.push_back(LangOpts.ImplicitInt); // C89 implicit 'int'.
Record.push_back(LangOpts.Digraphs); // C94, C99 and C++
Record.push_back(LangOpts.HexFloats); // C99 Hexadecimal float constants.
Record.push_back(LangOpts.C99); // C99 Support
Record.push_back(LangOpts.Microsoft); // Microsoft extensions.
Record.push_back(LangOpts.CPlusPlus); // C++ Support
Record.push_back(LangOpts.CPlusPlus0x); // C++0x Support
Record.push_back(LangOpts.CXXOperatorNames); // Treat C++ operator names as keywords.
Record.push_back(LangOpts.ObjC1); // Objective-C 1 support enabled.
Record.push_back(LangOpts.ObjC2); // Objective-C 2 support enabled.
Record.push_back(LangOpts.ObjCNonFragileABI); // Objective-C
// modern abi enabled.
Record.push_back(LangOpts.ObjCNonFragileABI2); // Objective-C enhanced
// modern abi enabled.
Record.push_back(LangOpts.NoConstantCFStrings); // non cfstring generation enabled..
Record.push_back(LangOpts.PascalStrings); // Allow Pascal strings
Record.push_back(LangOpts.WritableStrings); // Allow writable strings
Record.push_back(LangOpts.LaxVectorConversions);
Record.push_back(LangOpts.AltiVec);
Record.push_back(LangOpts.Exceptions); // Support exception handling.
Record.push_back(LangOpts.SjLjExceptions);
Record.push_back(LangOpts.NeXTRuntime); // Use NeXT runtime.
Record.push_back(LangOpts.Freestanding); // Freestanding implementation
Record.push_back(LangOpts.NoBuiltin); // Do not use builtin functions (-fno-builtin)
// Whether static initializers are protected by locks.
Record.push_back(LangOpts.ThreadsafeStatics);
Record.push_back(LangOpts.POSIXThreads);
Record.push_back(LangOpts.Blocks); // block extension to C
Record.push_back(LangOpts.EmitAllDecls); // Emit all declarations, even if
// they are unused.
Record.push_back(LangOpts.MathErrno); // Math functions must respect errno
// (modulo the platform support).
Record.push_back(LangOpts.getSignedOverflowBehavior());
Record.push_back(LangOpts.HeinousExtensions);
Record.push_back(LangOpts.Optimize); // Whether __OPTIMIZE__ should be defined.
Record.push_back(LangOpts.OptimizeSize); // Whether __OPTIMIZE_SIZE__ should be
// defined.
Record.push_back(LangOpts.Static); // Should __STATIC__ be defined (as
// opposed to __DYNAMIC__).
Record.push_back(LangOpts.PICLevel); // The value for __PIC__, if non-zero.
Record.push_back(LangOpts.GNUInline); // Should GNU inline semantics be
// used (instead of C99 semantics).
Record.push_back(LangOpts.NoInline); // Should __NO_INLINE__ be defined.
Record.push_back(LangOpts.AccessControl); // Whether C++ access control should
// be enabled.
Record.push_back(LangOpts.CharIsSigned); // Whether char is a signed or
// unsigned type
Record.push_back(LangOpts.ShortWChar); // force wchar_t to be unsigned short
Record.push_back(LangOpts.getGCMode());
Record.push_back(LangOpts.getVisibilityMode());
Record.push_back(LangOpts.getStackProtectorMode());
Record.push_back(LangOpts.InstantiationDepth);
Record.push_back(LangOpts.OpenCL);
Record.push_back(LangOpts.CatchUndefined);
Record.push_back(LangOpts.ElideConstructors);
Record.push_back(LangOpts.SpellChecking);
Stream.EmitRecord(pch::LANGUAGE_OPTIONS, Record);
}
//===----------------------------------------------------------------------===//
// stat cache Serialization
//===----------------------------------------------------------------------===//
namespace {
// Trait used for the on-disk hash table of stat cache results.
class PCHStatCacheTrait {
public:
typedef const char * key_type;
typedef key_type key_type_ref;
typedef std::pair<int, struct stat> data_type;
typedef const data_type& data_type_ref;
static unsigned ComputeHash(const char *path) {
return llvm::HashString(path);
}
std::pair<unsigned,unsigned>
EmitKeyDataLength(llvm::raw_ostream& Out, const char *path,
data_type_ref Data) {
unsigned StrLen = strlen(path);
clang::io::Emit16(Out, StrLen);
unsigned DataLen = 1; // result value
if (Data.first == 0)
DataLen += 4 + 4 + 2 + 8 + 8;
clang::io::Emit8(Out, DataLen);
return std::make_pair(StrLen + 1, DataLen);
}
void EmitKey(llvm::raw_ostream& Out, const char *path, unsigned KeyLen) {
Out.write(path, KeyLen);
}
void EmitData(llvm::raw_ostream& Out, key_type_ref,
data_type_ref Data, unsigned DataLen) {
using namespace clang::io;
uint64_t Start = Out.tell(); (void)Start;
// Result of stat()
Emit8(Out, Data.first? 1 : 0);
if (Data.first == 0) {
Emit32(Out, (uint32_t) Data.second.st_ino);
Emit32(Out, (uint32_t) Data.second.st_dev);
Emit16(Out, (uint16_t) Data.second.st_mode);
Emit64(Out, (uint64_t) Data.second.st_mtime);
Emit64(Out, (uint64_t) Data.second.st_size);
}
assert(Out.tell() - Start == DataLen && "Wrong data length");
}
};
} // end anonymous namespace
/// \brief Write the stat() system call cache to the PCH file.
void PCHWriter::WriteStatCache(MemorizeStatCalls &StatCalls) {
// Build the on-disk hash table containing information about every
// stat() call.
OnDiskChainedHashTableGenerator<PCHStatCacheTrait> Generator;
unsigned NumStatEntries = 0;
for (MemorizeStatCalls::iterator Stat = StatCalls.begin(),
StatEnd = StatCalls.end();
Stat != StatEnd; ++Stat, ++NumStatEntries) {
const char *Filename = Stat->first();
Generator.insert(Filename, Stat->second);
}
// Create the on-disk hash table in a buffer.
llvm::SmallString<4096> StatCacheData;
uint32_t BucketOffset;
{
llvm::raw_svector_ostream Out(StatCacheData);
// Make sure that no bucket is at offset 0
clang::io::Emit32(Out, 0);
BucketOffset = Generator.Emit(Out);
}
// Create a blob abbreviation
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::STAT_CACHE));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned StatCacheAbbrev = Stream.EmitAbbrev(Abbrev);
// Write the stat cache
RecordData Record;
Record.push_back(pch::STAT_CACHE);
Record.push_back(BucketOffset);
Record.push_back(NumStatEntries);
Stream.EmitRecordWithBlob(StatCacheAbbrev, Record, StatCacheData.str());
}
//===----------------------------------------------------------------------===//
// Source Manager Serialization
//===----------------------------------------------------------------------===//
/// \brief Create an abbreviation for the SLocEntry that refers to a
/// file.
static unsigned CreateSLocFileAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::SM_SLOC_FILE_ENTRY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
// FileEntry fields.
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 12)); // Size
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 32)); // Modification time
// HeaderFileInfo fields.
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isImport
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // DirInfo
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // NumIncludes
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // ControllingMacro
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // File name
return Stream.EmitAbbrev(Abbrev);
}
/// \brief Create an abbreviation for the SLocEntry that refers to a
/// buffer.
static unsigned CreateSLocBufferAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::SM_SLOC_BUFFER_ENTRY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Include location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2)); // Characteristic
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Line directives
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Buffer name blob
return Stream.EmitAbbrev(Abbrev);
}
/// \brief Create an abbreviation for the SLocEntry that refers to a
/// buffer's blob.
static unsigned CreateSLocBufferBlobAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::SM_SLOC_BUFFER_BLOB));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // Blob
return Stream.EmitAbbrev(Abbrev);
}
/// \brief Create an abbreviation for the SLocEntry that refers to an
/// buffer.
static unsigned CreateSLocInstantiationAbbrev(llvm::BitstreamWriter &Stream) {
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::SM_SLOC_INSTANTIATION_ENTRY));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Spelling location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // Start location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // End location
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Token length
return Stream.EmitAbbrev(Abbrev);
}
/// \brief Writes the block containing the serialized form of the
/// source manager.
///
/// TODO: We should probably use an on-disk hash table (stored in a
/// blob), indexed based on the file name, so that we only create
/// entries for files that we actually need. In the common case (no
/// errors), we probably won't have to create file entries for any of
/// the files in the AST.
void PCHWriter::WriteSourceManagerBlock(SourceManager &SourceMgr,
const Preprocessor &PP,
const char *isysroot) {
RecordData Record;
// Enter the source manager block.
Stream.EnterSubblock(pch::SOURCE_MANAGER_BLOCK_ID, 3);
// Abbreviations for the various kinds of source-location entries.
unsigned SLocFileAbbrv = CreateSLocFileAbbrev(Stream);
unsigned SLocBufferAbbrv = CreateSLocBufferAbbrev(Stream);
unsigned SLocBufferBlobAbbrv = CreateSLocBufferBlobAbbrev(Stream);
unsigned SLocInstantiationAbbrv = CreateSLocInstantiationAbbrev(Stream);
// Write the line table.
if (SourceMgr.hasLineTable()) {
LineTableInfo &LineTable = SourceMgr.getLineTable();
// Emit the file names
Record.push_back(LineTable.getNumFilenames());
for (unsigned I = 0, N = LineTable.getNumFilenames(); I != N; ++I) {
// Emit the file name
const char *Filename = LineTable.getFilename(I);
Filename = adjustFilenameForRelocatablePCH(Filename, isysroot);
unsigned FilenameLen = Filename? strlen(Filename) : 0;
Record.push_back(FilenameLen);
if (FilenameLen)
Record.insert(Record.end(), Filename, Filename + FilenameLen);
}
// Emit the line entries
for (LineTableInfo::iterator L = LineTable.begin(), LEnd = LineTable.end();
L != LEnd; ++L) {
// Emit the file ID
Record.push_back(L->first);
// Emit the line entries
Record.push_back(L->second.size());
for (std::vector<LineEntry>::iterator LE = L->second.begin(),
LEEnd = L->second.end();
LE != LEEnd; ++LE) {
Record.push_back(LE->FileOffset);
Record.push_back(LE->LineNo);
Record.push_back(LE->FilenameID);
Record.push_back((unsigned)LE->FileKind);
Record.push_back(LE->IncludeOffset);
}
}
Stream.EmitRecord(pch::SM_LINE_TABLE, Record);
}
// Write out the source location entry table. We skip the first
// entry, which is always the same dummy entry.
std::vector<uint32_t> SLocEntryOffsets;
RecordData PreloadSLocs;
unsigned BaseSLocID = Chain ? Chain->getTotalNumSLocs() : 0;
SLocEntryOffsets.reserve(SourceMgr.sloc_entry_size() - 1 - BaseSLocID);
for (unsigned I = BaseSLocID + 1, N = SourceMgr.sloc_entry_size();
I != N; ++I) {
// Get this source location entry.
const SrcMgr::SLocEntry *SLoc = &SourceMgr.getSLocEntry(I);
// Record the offset of this source-location entry.
SLocEntryOffsets.push_back(Stream.GetCurrentBitNo());
// Figure out which record code to use.
unsigned Code;
if (SLoc->isFile()) {
if (SLoc->getFile().getContentCache()->Entry)
Code = pch::SM_SLOC_FILE_ENTRY;
else
Code = pch::SM_SLOC_BUFFER_ENTRY;
} else
Code = pch::SM_SLOC_INSTANTIATION_ENTRY;
Record.clear();
Record.push_back(Code);
Record.push_back(SLoc->getOffset());
if (SLoc->isFile()) {
const SrcMgr::FileInfo &File = SLoc->getFile();
Record.push_back(File.getIncludeLoc().getRawEncoding());
Record.push_back(File.getFileCharacteristic()); // FIXME: stable encoding
Record.push_back(File.hasLineDirectives());
const SrcMgr::ContentCache *Content = File.getContentCache();
if (Content->Entry) {
// The source location entry is a file. The blob associated
// with this entry is the file name.
// Emit size/modification time for this file.
Record.push_back(Content->Entry->getSize());
Record.push_back(Content->Entry->getModificationTime());
// Emit header-search information associated with this file.
HeaderFileInfo HFI;
HeaderSearch &HS = PP.getHeaderSearchInfo();
if (Content->Entry->getUID() < HS.header_file_size())
HFI = HS.header_file_begin()[Content->Entry->getUID()];
Record.push_back(HFI.isImport);
Record.push_back(HFI.DirInfo);
Record.push_back(HFI.NumIncludes);
AddIdentifierRef(HFI.ControllingMacro, Record);
// Turn the file name into an absolute path, if it isn't already.
const char *Filename = Content->Entry->getName();
llvm::sys::Path FilePath(Filename, strlen(Filename));
FilePath.makeAbsolute();
Filename = FilePath.c_str();
Filename = adjustFilenameForRelocatablePCH(Filename, isysroot);
Stream.EmitRecordWithBlob(SLocFileAbbrv, Record, Filename);
// FIXME: For now, preload all file source locations, so that
// we get the appropriate File entries in the reader. This is
// a temporary measure.
PreloadSLocs.push_back(BaseSLocID + SLocEntryOffsets.size());
} else {
// The source location entry is a buffer. The blob associated
// with this entry contains the contents of the buffer.
// We add one to the size so that we capture the trailing NULL
// that is required by llvm::MemoryBuffer::getMemBuffer (on
// the reader side).
const llvm::MemoryBuffer *Buffer
= Content->getBuffer(PP.getDiagnostics(), PP.getSourceManager());
const char *Name = Buffer->getBufferIdentifier();
Stream.EmitRecordWithBlob(SLocBufferAbbrv, Record,
llvm::StringRef(Name, strlen(Name) + 1));
Record.clear();
Record.push_back(pch::SM_SLOC_BUFFER_BLOB);
Stream.EmitRecordWithBlob(SLocBufferBlobAbbrv, Record,
llvm::StringRef(Buffer->getBufferStart(),
Buffer->getBufferSize() + 1));
if (strcmp(Name, "<built-in>") == 0)
PreloadSLocs.push_back(BaseSLocID + SLocEntryOffsets.size());
}
} else {
// The source location entry is an instantiation.
const SrcMgr::InstantiationInfo &Inst = SLoc->getInstantiation();
Record.push_back(Inst.getSpellingLoc().getRawEncoding());
Record.push_back(Inst.getInstantiationLocStart().getRawEncoding());
Record.push_back(Inst.getInstantiationLocEnd().getRawEncoding());
// Compute the token length for this macro expansion.
unsigned NextOffset = SourceMgr.getNextOffset();
if (I + 1 != N)
NextOffset = SourceMgr.getSLocEntry(I + 1).getOffset();
Record.push_back(NextOffset - SLoc->getOffset() - 1);
Stream.EmitRecordWithAbbrev(SLocInstantiationAbbrv, Record);
}
}
Stream.ExitBlock();
if (SLocEntryOffsets.empty())
return;
// Write the source-location offsets table into the PCH block. This
// table is used for lazily loading source-location information.
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::SOURCE_LOCATION_OFFSETS));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // # of slocs
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 16)); // next offset
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // offsets
unsigned SLocOffsetsAbbrev = Stream.EmitAbbrev(Abbrev);
Record.clear();
Record.push_back(pch::SOURCE_LOCATION_OFFSETS);
Record.push_back(SLocEntryOffsets.size());
Record.push_back(SourceMgr.getNextOffset());
Stream.EmitRecordWithBlob(SLocOffsetsAbbrev, Record,
(const char *)data(SLocEntryOffsets),
SLocEntryOffsets.size()*sizeof(SLocEntryOffsets[0]));
// Write the source location entry preloads array, telling the PCH
// reader which source locations entries it should load eagerly.
Stream.EmitRecord(pch::SOURCE_LOCATION_PRELOADS, PreloadSLocs);
}
//===----------------------------------------------------------------------===//
// Preprocessor Serialization
//===----------------------------------------------------------------------===//
/// \brief Writes the block containing the serialized form of the
/// preprocessor.
///
void PCHWriter::WritePreprocessor(const Preprocessor &PP) {
RecordData Record;
// If the preprocessor __COUNTER__ value has been bumped, remember it.
if (PP.getCounterValue() != 0) {
Record.push_back(PP.getCounterValue());
Stream.EmitRecord(pch::PP_COUNTER_VALUE, Record);
Record.clear();
}
// Enter the preprocessor block.
Stream.EnterSubblock(pch::PREPROCESSOR_BLOCK_ID, 2);
// If the PCH file contains __DATE__ or __TIME__ emit a warning about this.
// FIXME: use diagnostics subsystem for localization etc.
if (PP.SawDateOrTime())
fprintf(stderr, "warning: precompiled header used __DATE__ or __TIME__.\n");
// Loop over all the macro definitions that are live at the end of the file,
// emitting each to the PP section.
PreprocessingRecord *PPRec = PP.getPreprocessingRecord();
for (Preprocessor::macro_iterator I = PP.macro_begin(), E = PP.macro_end();
I != E; ++I) {
// FIXME: This emits macros in hash table order, we should do it in a stable
// order so that output is reproducible.
MacroInfo *MI = I->second;
// Don't emit builtin macros like __LINE__ to the PCH file unless they have
// been redefined by the header (in which case they are not isBuiltinMacro).
// Also skip macros from a PCH file if we're chaining.
if (MI->isBuiltinMacro() || (Chain && MI->isFromPCH()))
continue;
AddIdentifierRef(I->first, Record);
MacroOffsets[I->first] = Stream.GetCurrentBitNo();
Record.push_back(MI->getDefinitionLoc().getRawEncoding());
Record.push_back(MI->isUsed());
unsigned Code;
if (MI->isObjectLike()) {
Code = pch::PP_MACRO_OBJECT_LIKE;
} else {
Code = pch::PP_MACRO_FUNCTION_LIKE;
Record.push_back(MI->isC99Varargs());
Record.push_back(MI->isGNUVarargs());
Record.push_back(MI->getNumArgs());
for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
I != E; ++I)
AddIdentifierRef(*I, Record);
}
// If we have a detailed preprocessing record, record the macro definition
// ID that corresponds to this macro.
if (PPRec)
Record.push_back(getMacroDefinitionID(PPRec->findMacroDefinition(MI)));
Stream.EmitRecord(Code, Record);
Record.clear();
// Emit the tokens array.
for (unsigned TokNo = 0, e = MI->getNumTokens(); TokNo != e; ++TokNo) {
// Note that we know that the preprocessor does not have any annotation
// tokens in it because they are created by the parser, and thus can't be
// in a macro definition.
const Token &Tok = MI->getReplacementToken(TokNo);
Record.push_back(Tok.getLocation().getRawEncoding());
Record.push_back(Tok.getLength());
// FIXME: When reading literal tokens, reconstruct the literal pointer if
// it is needed.
AddIdentifierRef(Tok.getIdentifierInfo(), Record);
// FIXME: Should translate token kind to a stable encoding.
Record.push_back(Tok.getKind());
// FIXME: Should translate token flags to a stable encoding.
Record.push_back(Tok.getFlags());
Stream.EmitRecord(pch::PP_TOKEN, Record);
Record.clear();
}
++NumMacros;
}
// If the preprocessor has a preprocessing record, emit it.
unsigned NumPreprocessingRecords = 0;
if (PPRec) {
for (PreprocessingRecord::iterator E = PPRec->begin(), EEnd = PPRec->end();
E != EEnd; ++E) {
Record.clear();
if (MacroInstantiation *MI = dyn_cast<MacroInstantiation>(*E)) {
Record.push_back(NumPreprocessingRecords++);
AddSourceLocation(MI->getSourceRange().getBegin(), Record);
AddSourceLocation(MI->getSourceRange().getEnd(), Record);
AddIdentifierRef(MI->getName(), Record);
Record.push_back(getMacroDefinitionID(MI->getDefinition()));
Stream.EmitRecord(pch::PP_MACRO_INSTANTIATION, Record);
continue;
}
if (MacroDefinition *MD = dyn_cast<MacroDefinition>(*E)) {
// Record this macro definition's location.
pch::IdentID ID = getMacroDefinitionID(MD);
if (ID != MacroDefinitionOffsets.size()) {
if (ID > MacroDefinitionOffsets.size())
MacroDefinitionOffsets.resize(ID + 1);
MacroDefinitionOffsets[ID] = Stream.GetCurrentBitNo();
} else
MacroDefinitionOffsets.push_back(Stream.GetCurrentBitNo());
Record.push_back(NumPreprocessingRecords++);
Record.push_back(ID);
AddSourceLocation(MD->getSourceRange().getBegin(), Record);
AddSourceLocation(MD->getSourceRange().getEnd(), Record);
AddIdentifierRef(MD->getName(), Record);
AddSourceLocation(MD->getLocation(), Record);
Stream.EmitRecord(pch::PP_MACRO_DEFINITION, Record);
continue;
}
}
}
Stream.ExitBlock();
// Write the offsets table for the preprocessing record.
if (NumPreprocessingRecords > 0) {
// Write the offsets table for identifier IDs.
using namespace llvm;
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::MACRO_DEFINITION_OFFSETS));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of records
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of macro defs
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned MacroDefOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
Record.clear();
Record.push_back(pch::MACRO_DEFINITION_OFFSETS);
Record.push_back(NumPreprocessingRecords);
Record.push_back(MacroDefinitionOffsets.size());
Stream.EmitRecordWithBlob(MacroDefOffsetAbbrev, Record,
(const char *)data(MacroDefinitionOffsets),
MacroDefinitionOffsets.size() * sizeof(uint32_t));
}
}
//===----------------------------------------------------------------------===//
// Type Serialization
//===----------------------------------------------------------------------===//
/// \brief Write the representation of a type to the PCH stream.
void PCHWriter::WriteType(QualType T) {
pch::TypeID &ID = TypeIDs[T];
if (ID == 0) // we haven't seen this type before.
ID = NextTypeID++;
// Record the offset for this type.
unsigned Index = ID - FirstTypeID;
if (TypeOffsets.size() == Index)
TypeOffsets.push_back(Stream.GetCurrentBitNo());
else if (TypeOffsets.size() < Index) {
TypeOffsets.resize(Index + 1);
TypeOffsets[Index] = Stream.GetCurrentBitNo();
}
RecordData Record;
// Emit the type's representation.
PCHTypeWriter W(*this, Record);
if (T.hasLocalNonFastQualifiers()) {
Qualifiers Qs = T.getLocalQualifiers();
AddTypeRef(T.getLocalUnqualifiedType(), Record);
Record.push_back(Qs.getAsOpaqueValue());
W.Code = pch::TYPE_EXT_QUAL;
} else {
switch (T->getTypeClass()) {
// For all of the concrete, non-dependent types, call the
// appropriate visitor function.
#define TYPE(Class, Base) \
case Type::Class: W.Visit##Class##Type(cast<Class##Type>(T)); break;
#define ABSTRACT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.def"
}
}
// Emit the serialized record.
Stream.EmitRecord(W.Code, Record);
// Flush any expressions that were written as part of this type.
FlushStmts();
}
//===----------------------------------------------------------------------===//
// Declaration Serialization
//===----------------------------------------------------------------------===//
/// \brief Write the block containing all of the declaration IDs
/// lexically declared within the given DeclContext.
///
/// \returns the offset of the DECL_CONTEXT_LEXICAL block within the
/// bistream, or 0 if no block was written.
uint64_t PCHWriter::WriteDeclContextLexicalBlock(ASTContext &Context,
DeclContext *DC) {
if (DC->decls_empty())
return 0;
uint64_t Offset = Stream.GetCurrentBitNo();
RecordData Record;
Record.push_back(pch::DECL_CONTEXT_LEXICAL);
llvm::SmallVector<pch::DeclID, 64> Decls;
for (DeclContext::decl_iterator D = DC->decls_begin(), DEnd = DC->decls_end();
D != DEnd; ++D)
Decls.push_back(GetDeclRef(*D));
++NumLexicalDeclContexts;
Stream.EmitRecordWithBlob(DeclContextLexicalAbbrev, Record,
reinterpret_cast<char*>(Decls.data()), Decls.size() * sizeof(pch::DeclID));
return Offset;
}
/// \brief Write the block containing all of the declaration IDs
/// visible from the given DeclContext.
///
/// \returns the offset of the DECL_CONTEXT_VISIBLE block within the
/// bistream, or 0 if no block was written.
uint64_t PCHWriter::WriteDeclContextVisibleBlock(ASTContext &Context,
DeclContext *DC) {
if (DC->getPrimaryContext() != DC)
return 0;
// Since there is no name lookup into functions or methods, don't bother to
// build a visible-declarations table for these entities.
if (DC->isFunctionOrMethod())
return 0;
// If not in C++, we perform name lookup for the translation unit via the
// IdentifierInfo chains, don't bother to build a visible-declarations table.
// FIXME: In C++ we need the visible declarations in order to "see" the
// friend declarations, is there a way to do this without writing the table ?
if (DC->isTranslationUnit() && !Context.getLangOptions().CPlusPlus)
return 0;
// Force the DeclContext to build a its name-lookup table.
DC->lookup(DeclarationName());
// Serialize the contents of the mapping used for lookup. Note that,
// although we have two very different code paths, the serialized
// representation is the same for both cases: a declaration name,
// followed by a size, followed by references to the visible
// declarations that have that name.
uint64_t Offset = Stream.GetCurrentBitNo();
RecordData Record;
StoredDeclsMap *Map = static_cast<StoredDeclsMap*>(DC->getLookupPtr());
if (!Map)
return 0;
for (StoredDeclsMap::iterator D = Map->begin(), DEnd = Map->end();
D != DEnd; ++D) {
AddDeclarationName(D->first, Record);
DeclContext::lookup_result Result = D->second.getLookupResult(Context);
Record.push_back(Result.second - Result.first);
for (; Result.first != Result.second; ++Result.first)
AddDeclRef(*Result.first, Record);
}
if (Record.size() == 0)
return 0;
Stream.EmitRecord(pch::DECL_CONTEXT_VISIBLE, Record);
++NumVisibleDeclContexts;
return Offset;
}
void PCHWriter::WriteTypeDeclOffsets() {
using namespace llvm;
RecordData Record;
// Write the type offsets array
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::TYPE_OFFSET));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of types
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // types block
unsigned TypeOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
Record.clear();
Record.push_back(pch::TYPE_OFFSET);
Record.push_back(TypeOffsets.size());
Stream.EmitRecordWithBlob(TypeOffsetAbbrev, Record,
(const char *)data(TypeOffsets),
TypeOffsets.size() * sizeof(TypeOffsets[0]));
// Write the declaration offsets array
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::DECL_OFFSET));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of declarations
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); // declarations block
unsigned DeclOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
Record.clear();
Record.push_back(pch::DECL_OFFSET);
Record.push_back(DeclOffsets.size());
Stream.EmitRecordWithBlob(DeclOffsetAbbrev, Record,
(const char *)data(DeclOffsets),
DeclOffsets.size() * sizeof(DeclOffsets[0]));
}
//===----------------------------------------------------------------------===//
// Global Method Pool and Selector Serialization
//===----------------------------------------------------------------------===//
namespace {
// Trait used for the on-disk hash table used in the method pool.
class PCHMethodPoolTrait {
PCHWriter &Writer;
public:
typedef Selector key_type;
typedef key_type key_type_ref;
typedef std::pair<ObjCMethodList, ObjCMethodList> data_type;
typedef const data_type& data_type_ref;
explicit PCHMethodPoolTrait(PCHWriter &Writer) : Writer(Writer) { }
static unsigned ComputeHash(Selector Sel) {
unsigned N = Sel.getNumArgs();
if (N == 0)
++N;
unsigned R = 5381;
for (unsigned I = 0; I != N; ++I)
if (IdentifierInfo *II = Sel.getIdentifierInfoForSlot(I))
R = llvm::HashString(II->getName(), R);
return R;
}
std::pair<unsigned,unsigned>
EmitKeyDataLength(llvm::raw_ostream& Out, Selector Sel,
data_type_ref Methods) {
unsigned KeyLen = 2 + (Sel.getNumArgs()? Sel.getNumArgs() * 4 : 4);
clang::io::Emit16(Out, KeyLen);
unsigned DataLen = 2 + 2; // 2 bytes for each of the method counts
for (const ObjCMethodList *Method = &Methods.first; Method;
Method = Method->Next)
if (Method->Method)
DataLen += 4;
for (const ObjCMethodList *Method = &Methods.second; Method;
Method = Method->Next)
if (Method->Method)
DataLen += 4;
clang::io::Emit16(Out, DataLen);
return std::make_pair(KeyLen, DataLen);
}
void EmitKey(llvm::raw_ostream& Out, Selector Sel, unsigned) {
uint64_t Start = Out.tell();
assert((Start >> 32) == 0 && "Selector key offset too large");
Writer.SetSelectorOffset(Sel, Start);
unsigned N = Sel.getNumArgs();
clang::io::Emit16(Out, N);
if (N == 0)
N = 1;
for (unsigned I = 0; I != N; ++I)
clang::io::Emit32(Out,
Writer.getIdentifierRef(Sel.getIdentifierInfoForSlot(I)));
}
void EmitData(llvm::raw_ostream& Out, key_type_ref,
data_type_ref Methods, unsigned DataLen) {
uint64_t Start = Out.tell(); (void)Start;
unsigned NumInstanceMethods = 0;
for (const ObjCMethodList *Method = &Methods.first; Method;
Method = Method->Next)
if (Method->Method)
++NumInstanceMethods;
unsigned NumFactoryMethods = 0;
for (const ObjCMethodList *Method = &Methods.second; Method;
Method = Method->Next)
if (Method->Method)
++NumFactoryMethods;
clang::io::Emit16(Out, NumInstanceMethods);
clang::io::Emit16(Out, NumFactoryMethods);
for (const ObjCMethodList *Method = &Methods.first; Method;
Method = Method->Next)
if (Method->Method)
clang::io::Emit32(Out, Writer.getDeclID(Method->Method));
for (const ObjCMethodList *Method = &Methods.second; Method;
Method = Method->Next)
if (Method->Method)
clang::io::Emit32(Out, Writer.getDeclID(Method->Method));
assert(Out.tell() - Start == DataLen && "Data length is wrong");
}
};
} // end anonymous namespace
/// \brief Write the method pool into the PCH file.
///
/// The method pool contains both instance and factory methods, stored
/// in an on-disk hash table indexed by the selector.
void PCHWriter::WriteMethodPool(Sema &SemaRef) {
using namespace llvm;
// Create and write out the blob that contains the instance and
// factor method pools.
bool Empty = true;
{
OnDiskChainedHashTableGenerator<PCHMethodPoolTrait> Generator;
// Create the on-disk hash table representation. Start by
// iterating through the instance method pool.
PCHMethodPoolTrait::key_type Key;
unsigned NumSelectorsInMethodPool = 0;
for (llvm::DenseMap<Selector, ObjCMethodList>::iterator
Instance = SemaRef.InstanceMethodPool.begin(),
InstanceEnd = SemaRef.InstanceMethodPool.end();
Instance != InstanceEnd; ++Instance) {
// Check whether there is a factory method with the same
// selector.
llvm::DenseMap<Selector, ObjCMethodList>::iterator Factory
= SemaRef.FactoryMethodPool.find(Instance->first);
if (Factory == SemaRef.FactoryMethodPool.end())
Generator.insert(Instance->first,
std::make_pair(Instance->second,
ObjCMethodList()));
else
Generator.insert(Instance->first,
std::make_pair(Instance->second, Factory->second));
++NumSelectorsInMethodPool;
Empty = false;
}
// Now iterate through the factory method pool, to pick up any
// selectors that weren't already in the instance method pool.
for (llvm::DenseMap<Selector, ObjCMethodList>::iterator
Factory = SemaRef.FactoryMethodPool.begin(),
FactoryEnd = SemaRef.FactoryMethodPool.end();
Factory != FactoryEnd; ++Factory) {
// Check whether there is an instance method with the same
// selector. If so, there is no work to do here.
llvm::DenseMap<Selector, ObjCMethodList>::iterator Instance
= SemaRef.InstanceMethodPool.find(Factory->first);
if (Instance == SemaRef.InstanceMethodPool.end()) {
Generator.insert(Factory->first,
std::make_pair(ObjCMethodList(), Factory->second));
++NumSelectorsInMethodPool;
}
Empty = false;
}
if (Empty && SelectorOffsets.empty())
return;
// Create the on-disk hash table in a buffer.
llvm::SmallString<4096> MethodPool;
uint32_t BucketOffset;
SelectorOffsets.resize(SelVector.size());
{
PCHMethodPoolTrait Trait(*this);
llvm::raw_svector_ostream Out(MethodPool);
// Make sure that no bucket is at offset 0
clang::io::Emit32(Out, 0);
BucketOffset = Generator.Emit(Out, Trait);
// For every selector that we have seen but which was not
// written into the hash table, write the selector itself and
// record it's offset.
for (unsigned I = 0, N = SelVector.size(); I != N; ++I)
if (SelectorOffsets[I] == 0)
Trait.EmitKey(Out, SelVector[I], 0);
}
// Create a blob abbreviation
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::METHOD_POOL));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned MethodPoolAbbrev = Stream.EmitAbbrev(Abbrev);
// Write the method pool
RecordData Record;
Record.push_back(pch::METHOD_POOL);
Record.push_back(BucketOffset);
Record.push_back(NumSelectorsInMethodPool);
Stream.EmitRecordWithBlob(MethodPoolAbbrev, Record, MethodPool.str());
// Create a blob abbreviation for the selector table offsets.
Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::SELECTOR_OFFSETS));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // index
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned SelectorOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
// Write the selector offsets table.
Record.clear();
Record.push_back(pch::SELECTOR_OFFSETS);
Record.push_back(SelectorOffsets.size());
Stream.EmitRecordWithBlob(SelectorOffsetAbbrev, Record,
(const char *)data(SelectorOffsets),
SelectorOffsets.size() * 4);
}
}
/// \brief Write the selectors referenced in @selector expression into PCH file.
void PCHWriter::WriteReferencedSelectorsPool(Sema &SemaRef) {
using namespace llvm;
if (SemaRef.ReferencedSelectors.empty())
return;
RecordData Record;
Record.push_back(SemaRef.ReferencedSelectors.size());
for (DenseMap<Selector, SourceLocation>::iterator S =
SemaRef.ReferencedSelectors.begin(),
E = SemaRef.ReferencedSelectors.end(); S != E; ++S) {
Selector Sel = (*S).first;
SourceLocation Loc = (*S).second;
AddSelectorRef(Sel, Record);
AddSourceLocation(Loc, Record);
}
Stream.EmitRecord(pch::REFERENCED_SELECTOR_POOL, Record);
}
//===----------------------------------------------------------------------===//
// Identifier Table Serialization
//===----------------------------------------------------------------------===//
namespace {
class PCHIdentifierTableTrait {
PCHWriter &Writer;
Preprocessor &PP;
/// \brief Determines whether this is an "interesting" identifier
/// that needs a full IdentifierInfo structure written into the hash
/// table.
static bool isInterestingIdentifier(const IdentifierInfo *II) {
return II->isPoisoned() ||
II->isExtensionToken() ||
II->hasMacroDefinition() ||
II->getObjCOrBuiltinID() ||
II->getFETokenInfo<void>();
}
public:
typedef const IdentifierInfo* key_type;
typedef key_type key_type_ref;
typedef pch::IdentID data_type;
typedef data_type data_type_ref;
PCHIdentifierTableTrait(PCHWriter &Writer, Preprocessor &PP)
: Writer(Writer), PP(PP) { }
static unsigned ComputeHash(const IdentifierInfo* II) {
return llvm::HashString(II->getName());
}
std::pair<unsigned,unsigned>
EmitKeyDataLength(llvm::raw_ostream& Out, const IdentifierInfo* II,
pch::IdentID ID) {
unsigned KeyLen = II->getLength() + 1;
unsigned DataLen = 4; // 4 bytes for the persistent ID << 1
if (isInterestingIdentifier(II)) {
DataLen += 2; // 2 bytes for builtin ID, flags
if (II->hasMacroDefinition() &&
!PP.getMacroInfo(const_cast<IdentifierInfo *>(II))->isBuiltinMacro())
DataLen += 4;
for (IdentifierResolver::iterator D = IdentifierResolver::begin(II),
DEnd = IdentifierResolver::end();
D != DEnd; ++D)
DataLen += sizeof(pch::DeclID);
}
clang::io::Emit16(Out, DataLen);
// We emit the key length after the data length so that every
// string is preceded by a 16-bit length. This matches the PTH
// format for storing identifiers.
clang::io::Emit16(Out, KeyLen);
return std::make_pair(KeyLen, DataLen);
}
void EmitKey(llvm::raw_ostream& Out, const IdentifierInfo* II,
unsigned KeyLen) {
// Record the location of the key data. This is used when generating
// the mapping from persistent IDs to strings.
Writer.SetIdentifierOffset(II, Out.tell());
Out.write(II->getNameStart(), KeyLen);
}
void EmitData(llvm::raw_ostream& Out, const IdentifierInfo* II,
pch::IdentID ID, unsigned) {
if (!isInterestingIdentifier(II)) {
clang::io::Emit32(Out, ID << 1);
return;
}
clang::io::Emit32(Out, (ID << 1) | 0x01);
uint32_t Bits = 0;
bool hasMacroDefinition =
II->hasMacroDefinition() &&
!PP.getMacroInfo(const_cast<IdentifierInfo *>(II))->isBuiltinMacro();
Bits = (uint32_t)II->getObjCOrBuiltinID();
Bits = (Bits << 1) | unsigned(hasMacroDefinition);
Bits = (Bits << 1) | unsigned(II->isExtensionToken());
Bits = (Bits << 1) | unsigned(II->isPoisoned());
Bits = (Bits << 1) | unsigned(II->isCPlusPlusOperatorKeyword());
clang::io::Emit16(Out, Bits);
if (hasMacroDefinition)
clang::io::Emit32(Out, Writer.getMacroOffset(II));
// Emit the declaration IDs in reverse order, because the
// IdentifierResolver provides the declarations as they would be
// visible (e.g., the function "stat" would come before the struct
// "stat"), but IdentifierResolver::AddDeclToIdentifierChain()
// adds declarations to the end of the list (so we need to see the
// struct "status" before the function "status").
// Only emit declarations that aren't from a chained PCH, though.
llvm::SmallVector<Decl *, 16> Decls(IdentifierResolver::begin(II),
IdentifierResolver::end());
for (llvm::SmallVector<Decl *, 16>::reverse_iterator D = Decls.rbegin(),
DEnd = Decls.rend();
D != DEnd; ++D)
clang::io::Emit32(Out, Writer.getDeclID(*D));
}
};
} // end anonymous namespace
/// \brief Write the identifier table into the PCH file.
///
/// The identifier table consists of a blob containing string data
/// (the actual identifiers themselves) and a separate "offsets" index
/// that maps identifier IDs to locations within the blob.
void PCHWriter::WriteIdentifierTable(Preprocessor &PP) {
using namespace llvm;
// Create and write out the blob that contains the identifier
// strings.
{
OnDiskChainedHashTableGenerator<PCHIdentifierTableTrait> Generator;
// Look for any identifiers that were named while processing the
// headers, but are otherwise not needed. We add these to the hash
// table to enable checking of the predefines buffer in the case
// where the user adds new macro definitions when building the PCH
// file.
for (IdentifierTable::iterator ID = PP.getIdentifierTable().begin(),
IDEnd = PP.getIdentifierTable().end();
ID != IDEnd; ++ID)
getIdentifierRef(ID->second);
// Create the on-disk hash table representation. We only store offsets
// for identifiers that appear here for the first time.
IdentifierOffsets.resize(NextIdentID - FirstIdentID);
for (llvm::DenseMap<const IdentifierInfo *, pch::IdentID>::iterator
ID = IdentifierIDs.begin(), IDEnd = IdentifierIDs.end();
ID != IDEnd; ++ID) {
assert(ID->first && "NULL identifier in identifier table");
if (!Chain || !ID->first->isFromPCH())
Generator.insert(ID->first, ID->second);
}
// Create the on-disk hash table in a buffer.
llvm::SmallString<4096> IdentifierTable;
uint32_t BucketOffset;
{
PCHIdentifierTableTrait Trait(*this, PP);
llvm::raw_svector_ostream Out(IdentifierTable);
// Make sure that no bucket is at offset 0
clang::io::Emit32(Out, 0);
BucketOffset = Generator.Emit(Out, Trait);
}
// Create a blob abbreviation
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::IDENTIFIER_TABLE));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned IDTableAbbrev = Stream.EmitAbbrev(Abbrev);
// Write the identifier table
RecordData Record;
Record.push_back(pch::IDENTIFIER_TABLE);
Record.push_back(BucketOffset);
Stream.EmitRecordWithBlob(IDTableAbbrev, Record, IdentifierTable.str());
}
// Write the offsets table for identifier IDs.
BitCodeAbbrev *Abbrev = new BitCodeAbbrev();
Abbrev->Add(BitCodeAbbrevOp(pch::IDENTIFIER_OFFSET));
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); // # of identifiers
Abbrev->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
unsigned IdentifierOffsetAbbrev = Stream.EmitAbbrev(Abbrev);
RecordData Record;
Record.push_back(pch::IDENTIFIER_OFFSET);
Record.push_back(IdentifierOffsets.size());
Stream.EmitRecordWithBlob(IdentifierOffsetAbbrev, Record,
(const char *)data(IdentifierOffsets),
IdentifierOffsets.size() * sizeof(uint32_t));
}
//===----------------------------------------------------------------------===//
// General Serialization Routines
//===----------------------------------------------------------------------===//
/// \brief Write a record containing the given attributes.
void PCHWriter::WriteAttributeRecord(const Attr *Attr) {
RecordData Record;
for (; Attr; Attr = Attr->getNext()) {
Record.push_back(Attr->getKind()); // FIXME: stable encoding, target attrs
Record.push_back(Attr->isInherited());
switch (Attr->getKind()) {
default:
assert(0 && "Does not support PCH writing for this attribute yet!");
break;
case attr::Alias:
AddString(cast<AliasAttr>(Attr)->getAliasee(), Record);
break;
case attr::AlignMac68k:
break;
case attr::Aligned:
Record.push_back(cast<AlignedAttr>(Attr)->getAlignment());
break;
case attr::AlwaysInline:
break;
case attr::AnalyzerNoReturn:
break;
case attr::Annotate:
AddString(cast<AnnotateAttr>(Attr)->getAnnotation(), Record);
break;
case attr::AsmLabel:
AddString(cast<AsmLabelAttr>(Attr)->getLabel(), Record);
break;
case attr::BaseCheck:
break;
case attr::Blocks:
Record.push_back(cast<BlocksAttr>(Attr)->getType()); // FIXME: stable
break;
case attr::CDecl:
break;
case attr::Cleanup:
AddDeclRef(cast<CleanupAttr>(Attr)->getFunctionDecl(), Record);
break;
case attr::Const:
break;
case attr::Constructor:
Record.push_back(cast<ConstructorAttr>(Attr)->getPriority());
break;
case attr::DLLExport:
case attr::DLLImport:
case attr::Deprecated:
break;
case attr::Destructor:
Record.push_back(cast<DestructorAttr>(Attr)->getPriority());
break;
case attr::FastCall:
case attr::Final:
break;
case attr::Format: {
const FormatAttr *Format = cast<FormatAttr>(Attr);
AddString(Format->getType(), Record);
Record.push_back(Format->getFormatIdx());
Record.push_back(Format->getFirstArg());
break;
}
case attr::FormatArg: {
const FormatArgAttr *Format = cast<FormatArgAttr>(Attr);
Record.push_back(Format->getFormatIdx());
break;
}
case attr::Sentinel : {
const SentinelAttr *Sentinel = cast<SentinelAttr>(Attr);
Record.push_back(Sentinel->getSentinel());
Record.push_back(Sentinel->getNullPos());
break;
}
case attr::GNUInline:
case attr::Hiding:
case attr::IBAction:
case attr::IBOutlet:
case attr::Malloc:
case attr::NoDebug:
case attr::NoInline:
case attr::NoReturn:
case attr::NoThrow:
break;
case attr::IBOutletCollection: {
const IBOutletCollectionAttr *ICA = cast<IBOutletCollectionAttr>(Attr);
AddDeclRef(ICA->getClass(), Record);
break;
}
case attr::NonNull: {
const NonNullAttr *NonNull = cast<NonNullAttr>(Attr);
Record.push_back(NonNull->size());
Record.insert(Record.end(), NonNull->begin(), NonNull->end());
break;
}
case attr::CFReturnsNotRetained:
case attr::CFReturnsRetained:
case attr::NSReturnsNotRetained:
case attr::NSReturnsRetained:
case attr::ObjCException:
case attr::ObjCNSObject:
case attr::Overloadable:
case attr::Override:
break;
case attr::MaxFieldAlignment:
Record.push_back(cast<MaxFieldAlignmentAttr>(Attr)->getAlignment());
break;
case attr::Packed:
break;
case attr::Pure:
break;
case attr::Regparm:
Record.push_back(cast<RegparmAttr>(Attr)->getNumParams());
break;
case attr::ReqdWorkGroupSize:
Record.push_back(cast<ReqdWorkGroupSizeAttr>(Attr)->getXDim());
Record.push_back(cast<ReqdWorkGroupSizeAttr>(Attr)->getYDim());
Record.push_back(cast<ReqdWorkGroupSizeAttr>(Attr)->getZDim());
break;
case attr::Section:
AddString(cast<SectionAttr>(Attr)->getName(), Record);
break;
case attr::StdCall:
case attr::TransparentUnion:
case attr::Unavailable:
case attr::Unused:
case attr::Used:
break;
case attr::Visibility:
// FIXME: stable encoding
Record.push_back(cast<VisibilityAttr>(Attr)->getVisibility());
break;
case attr::WarnUnusedResult:
case attr::Weak:
case attr::WeakRef:
case attr::WeakImport:
break;
}
}
Stream.EmitRecord(pch::DECL_ATTR, Record);
}
void PCHWriter::AddString(const std::string &Str, RecordData &Record) {
Record.push_back(Str.size());
Record.insert(Record.end(), Str.begin(), Str.end());
}
/// \brief Note that the identifier II occurs at the given offset
/// within the identifier table.
void PCHWriter::SetIdentifierOffset(const IdentifierInfo *II, uint32_t Offset) {
pch::IdentID ID = IdentifierIDs[II];
// Only store offsets new to this PCH file. Other identifier names are looked
// up earlier in the chain and thus don't need an offset.
if (ID >= FirstIdentID)
IdentifierOffsets[ID - FirstIdentID] = Offset;
}
/// \brief Note that the selector Sel occurs at the given offset
/// within the method pool/selector table.
void PCHWriter::SetSelectorOffset(Selector Sel, uint32_t Offset) {
unsigned ID = SelectorIDs[Sel];
assert(ID && "Unknown selector");
SelectorOffsets[ID - 1] = Offset;
}
PCHWriter::PCHWriter(llvm::BitstreamWriter &Stream)
: Stream(Stream), Chain(0), FirstDeclID(1),
FirstTypeID(pch::NUM_PREDEF_TYPE_IDS), FirstIdentID(1),
CollectedStmts(&StmtsToEmit), NumStatements(0), NumMacros(0),
NumLexicalDeclContexts(0), NumVisibleDeclContexts(0) {
NextDeclID = FirstDeclID;
NextTypeID = FirstTypeID;
NextIdentID = FirstIdentID;
}
void PCHWriter::WritePCH(Sema &SemaRef, MemorizeStatCalls *StatCalls,
const char *isysroot) {
// Emit the file header.
Stream.Emit((unsigned)'C', 8);
Stream.Emit((unsigned)'P', 8);
Stream.Emit((unsigned)'C', 8);
Stream.Emit((unsigned)'H', 8);
WriteBlockInfoBlock();
if (Chain)
WritePCHChain(SemaRef, StatCalls, isysroot);
else
WritePCHCore(SemaRef, StatCalls, isysroot);
}
void PCHWriter::WritePCHCore(Sema &SemaRef, MemorizeStatCalls *StatCalls,
const char *isysroot) {
using namespace llvm;
ASTContext &Context = SemaRef.Context;
Preprocessor &PP = SemaRef.PP;
// The translation unit is the first declaration we'll emit.
DeclIDs[Context.getTranslationUnitDecl()] = 1;
++NextDeclID;
DeclTypesToEmit.push(Context.getTranslationUnitDecl());
// Make sure that we emit IdentifierInfos (and any attached
// declarations) for builtins.
{
IdentifierTable &Table = PP.getIdentifierTable();
llvm::SmallVector<const char *, 32> BuiltinNames;
Context.BuiltinInfo.GetBuiltinNames(BuiltinNames,
Context.getLangOptions().NoBuiltin);
for (unsigned I = 0, N = BuiltinNames.size(); I != N; ++I)
getIdentifierRef(&Table.get(BuiltinNames[I]));
}
// Build a record containing all of the tentative definitions in this file, in
// TentativeDefinitions order. Generally, this record will be empty for
// headers.
RecordData TentativeDefinitions;
for (unsigned i = 0, e = SemaRef.TentativeDefinitions.size(); i != e; ++i) {
AddDeclRef(SemaRef.TentativeDefinitions[i], TentativeDefinitions);
}
// Build a record containing all of the static unused functions in this file.
RecordData UnusedStaticFuncs;
for (unsigned i=0, e = SemaRef.UnusedStaticFuncs.size(); i !=e; ++i)
AddDeclRef(SemaRef.UnusedStaticFuncs[i], UnusedStaticFuncs);
// Build a record containing all of the locally-scoped external
// declarations in this header file. Generally, this record will be
// empty.
RecordData LocallyScopedExternalDecls;
// FIXME: This is filling in the PCH file in densemap order which is
// nondeterminstic!
for (llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
TD = SemaRef.LocallyScopedExternalDecls.begin(),
TDEnd = SemaRef.LocallyScopedExternalDecls.end();
TD != TDEnd; ++TD)
AddDeclRef(TD->second, LocallyScopedExternalDecls);
// Build a record containing all of the ext_vector declarations.
RecordData ExtVectorDecls;
for (unsigned I = 0, N = SemaRef.ExtVectorDecls.size(); I != N; ++I)
AddDeclRef(SemaRef.ExtVectorDecls[I], ExtVectorDecls);
// Build a record containing all of the VTable uses information.
RecordData VTableUses;
VTableUses.push_back(SemaRef.VTableUses.size());
for (unsigned I = 0, N = SemaRef.VTableUses.size(); I != N; ++I) {
AddDeclRef(SemaRef.VTableUses[I].first, VTableUses);
AddSourceLocation(SemaRef.VTableUses[I].second, VTableUses);
VTableUses.push_back(SemaRef.VTablesUsed[SemaRef.VTableUses[I].first]);
}
// Build a record containing all of dynamic classes declarations.
RecordData DynamicClasses;
for (unsigned I = 0, N = SemaRef.DynamicClasses.size(); I != N; ++I)
AddDeclRef(SemaRef.DynamicClasses[I], DynamicClasses);
// Build a record containing some declaration references.
RecordData SemaDeclRefs;
if (SemaRef.StdNamespace || SemaRef.StdBadAlloc) {
AddDeclRef(SemaRef.getStdNamespace(), SemaDeclRefs);
AddDeclRef(SemaRef.getStdBadAlloc(), SemaDeclRefs);
}
// Write the remaining PCH contents.
RecordData Record;
Stream.EnterSubblock(pch::PCH_BLOCK_ID, 5);
WriteMetadata(Context, isysroot);
WriteLanguageOptions(Context.getLangOptions());
if (StatCalls && !isysroot)
WriteStatCache(*StatCalls);
WriteSourceManagerBlock(Context.getSourceManager(), PP, isysroot);
// Write the record of special types.
Record.clear();
AddTypeRef(Context.getBuiltinVaListType(), Record);
AddTypeRef(Context.getObjCIdType(), Record);
AddTypeRef(Context.getObjCSelType(), Record);
AddTypeRef(Context.getObjCProtoType(), Record);
AddTypeRef(Context.getObjCClassType(), Record);
AddTypeRef(Context.getRawCFConstantStringType(), Record);
AddTypeRef(Context.getRawObjCFastEnumerationStateType(), Record);
AddTypeRef(Context.getFILEType(), Record);
AddTypeRef(Context.getjmp_bufType(), Record);
AddTypeRef(Context.getsigjmp_bufType(), Record);
AddTypeRef(Context.ObjCIdRedefinitionType, Record);
AddTypeRef(Context.ObjCClassRedefinitionType, Record);
AddTypeRef(Context.getRawBlockdescriptorType(), Record);
AddTypeRef(Context.getRawBlockdescriptorExtendedType(), Record);
AddTypeRef(Context.ObjCSelRedefinitionType, Record);
AddTypeRef(Context.getRawNSConstantStringType(), Record);
Record.push_back(Context.isInt128Installed());
Stream.EmitRecord(pch::SPECIAL_TYPES, Record);
// Keep writing types and declarations until all types and
// declarations have been written.
Stream.EnterSubblock(pch::DECLTYPES_BLOCK_ID, 3);
WriteDeclsBlockAbbrevs();
while (!DeclTypesToEmit.empty()) {
DeclOrType DOT = DeclTypesToEmit.front();
DeclTypesToEmit.pop();
if (DOT.isType())
WriteType(DOT.getType());
else
WriteDecl(Context, DOT.getDecl());
}
Stream.ExitBlock();
WritePreprocessor(PP);
WriteMethodPool(SemaRef);
WriteReferencedSelectorsPool(SemaRef);
WriteIdentifierTable(PP);
WriteTypeDeclOffsets();
// Write the record containing external, unnamed definitions.
if (!ExternalDefinitions.empty())
Stream.EmitRecord(pch::EXTERNAL_DEFINITIONS, ExternalDefinitions);
// Write the record containing tentative definitions.
if (!TentativeDefinitions.empty())
Stream.EmitRecord(pch::TENTATIVE_DEFINITIONS, TentativeDefinitions);
// Write the record containing unused static functions.
if (!UnusedStaticFuncs.empty())
Stream.EmitRecord(pch::UNUSED_STATIC_FUNCS, UnusedStaticFuncs);
// Write the record containing locally-scoped external definitions.
if (!LocallyScopedExternalDecls.empty())
Stream.EmitRecord(pch::LOCALLY_SCOPED_EXTERNAL_DECLS,
LocallyScopedExternalDecls);
// Write the record containing ext_vector type names.
if (!ExtVectorDecls.empty())
Stream.EmitRecord(pch::EXT_VECTOR_DECLS, ExtVectorDecls);
// Write the record containing VTable uses information.
if (!VTableUses.empty())
Stream.EmitRecord(pch::VTABLE_USES, VTableUses);
// Write the record containing dynamic classes declarations.
if (!DynamicClasses.empty())
Stream.EmitRecord(pch::DYNAMIC_CLASSES, DynamicClasses);
// Write the record containing declaration references of Sema.
if (!SemaDeclRefs.empty())
Stream.EmitRecord(pch::SEMA_DECL_REFS, SemaDeclRefs);
// Some simple statistics
Record.clear();
Record.push_back(NumStatements);
Record.push_back(NumMacros);
Record.push_back(NumLexicalDeclContexts);
Record.push_back(NumVisibleDeclContexts);
Stream.EmitRecord(pch::STATISTICS, Record);
Stream.ExitBlock();
}
void PCHWriter::WritePCHChain(Sema &SemaRef, MemorizeStatCalls *StatCalls,
const char *isysroot) {
using namespace llvm;
FirstDeclID += Chain->getTotalNumDecls();
FirstTypeID += Chain->getTotalNumTypes();
FirstIdentID += Chain->getTotalNumIdentifiers();
NextDeclID = FirstDeclID;
NextTypeID = FirstTypeID;
NextIdentID = FirstIdentID;
ASTContext &Context = SemaRef.Context;
Preprocessor &PP = SemaRef.PP;
RecordData Record;
Stream.EnterSubblock(pch::PCH_BLOCK_ID, 5);
WriteMetadata(Context, isysroot);
if (StatCalls && !isysroot)
WriteStatCache(*StatCalls);
// FIXME: Source manager block should only write new stuff, which could be
// done by tracking the largest ID in the chain
WriteSourceManagerBlock(Context.getSourceManager(), PP, isysroot);
// The special types are in the chained PCH.
// We don't start with the translation unit, but with its decls that
// don't come from the other PCH.
const TranslationUnitDecl *TU = Context.getTranslationUnitDecl();
llvm::SmallVector<pch::DeclID, 64> NewGlobalDecls;
for (DeclContext::decl_iterator I = TU->noload_decls_begin(),
E = TU->noload_decls_end();
I != E; ++I) {
if ((*I)->getPCHLevel() == 0)
NewGlobalDecls.push_back(GetDeclRef(*I));
}
// We also need to write a lexical updates block for the TU.
llvm::BitCodeAbbrev *Abv = new llvm::BitCodeAbbrev();
Abv->Add(llvm::BitCodeAbbrevOp(pch::TU_UPDATE_LEXICAL));
Abv->Add(llvm::BitCodeAbbrevOp(llvm::BitCodeAbbrevOp::Blob));
unsigned TuUpdateLexicalAbbrev = Stream.EmitAbbrev(Abv);
Record.clear();
Record.push_back(pch::TU_UPDATE_LEXICAL);
Stream.EmitRecordWithBlob(TuUpdateLexicalAbbrev, Record,
reinterpret_cast<const char*>(NewGlobalDecls.data()),
NewGlobalDecls.size() * sizeof(pch::DeclID));
// Build a record containing all of the new tentative definitions in this
// file, in TentativeDefinitions order.
RecordData TentativeDefinitions;
for (unsigned i = 0, e = SemaRef.TentativeDefinitions.size(); i != e; ++i) {
if (SemaRef.TentativeDefinitions[i]->getPCHLevel() == 0)
AddDeclRef(SemaRef.TentativeDefinitions[i], TentativeDefinitions);
}
// Build a record containing all of the static unused functions in this file.
RecordData UnusedStaticFuncs;
for (unsigned i=0, e = SemaRef.UnusedStaticFuncs.size(); i !=e; ++i) {
if (SemaRef.UnusedStaticFuncs[i]->getPCHLevel() == 0)
AddDeclRef(SemaRef.UnusedStaticFuncs[i], UnusedStaticFuncs);
}
// Build a record containing all of the locally-scoped external
// declarations in this header file. Generally, this record will be
// empty.
RecordData LocallyScopedExternalDecls;
// FIXME: This is filling in the PCH file in densemap order which is
// nondeterminstic!
for (llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
TD = SemaRef.LocallyScopedExternalDecls.begin(),
TDEnd = SemaRef.LocallyScopedExternalDecls.end();
TD != TDEnd; ++TD) {
if (TD->second->getPCHLevel() == 0)
AddDeclRef(TD->second, LocallyScopedExternalDecls);
}
// Build a record containing all of the ext_vector declarations.
RecordData ExtVectorDecls;
for (unsigned I = 0, N = SemaRef.ExtVectorDecls.size(); I != N; ++I) {
if (SemaRef.ExtVectorDecls[I]->getPCHLevel() == 0)
AddDeclRef(SemaRef.ExtVectorDecls[I], ExtVectorDecls);
}
Stream.EnterSubblock(pch::DECLTYPES_BLOCK_ID, 3);
WriteDeclsBlockAbbrevs();
while (!DeclTypesToEmit.empty()) {
DeclOrType DOT = DeclTypesToEmit.front();
DeclTypesToEmit.pop();
if (DOT.isType())
WriteType(DOT.getType());
else
WriteDecl(Context, DOT.getDecl());
}
Stream.ExitBlock();
WritePreprocessor(PP);
// FIXME: Method pool
WriteIdentifierTable(PP);
WriteTypeDeclOffsets();
// Write the record containing external, unnamed definitions.
if (!ExternalDefinitions.empty())
Stream.EmitRecord(pch::EXTERNAL_DEFINITIONS, ExternalDefinitions);
// Write the record containing tentative definitions.
if (!TentativeDefinitions.empty())
Stream.EmitRecord(pch::TENTATIVE_DEFINITIONS, TentativeDefinitions);
// Write the record containing unused static functions.
if (!UnusedStaticFuncs.empty())
Stream.EmitRecord(pch::UNUSED_STATIC_FUNCS, UnusedStaticFuncs);
// Write the record containing locally-scoped external definitions.
if (!LocallyScopedExternalDecls.empty())
Stream.EmitRecord(pch::LOCALLY_SCOPED_EXTERNAL_DECLS,
LocallyScopedExternalDecls);
// Write the record containing ext_vector type names.
if (!ExtVectorDecls.empty())
Stream.EmitRecord(pch::EXT_VECTOR_DECLS, ExtVectorDecls);
// FIXME: Vtable uses
// FIXME: Dynamic classes declarations
Record.clear();
Record.push_back(NumStatements);
Record.push_back(NumMacros);
Record.push_back(NumLexicalDeclContexts);
Record.push_back(NumVisibleDeclContexts);
Stream.EmitRecord(pch::STATISTICS, Record);
Stream.ExitBlock();
}
void PCHWriter::AddSourceLocation(SourceLocation Loc, RecordData &Record) {
Record.push_back(Loc.getRawEncoding());
}
void PCHWriter::AddSourceRange(SourceRange Range, RecordData &Record) {
AddSourceLocation(Range.getBegin(), Record);
AddSourceLocation(Range.getEnd(), Record);
}
void PCHWriter::AddAPInt(const llvm::APInt &Value, RecordData &Record) {
Record.push_back(Value.getBitWidth());
unsigned N = Value.getNumWords();
const uint64_t* Words = Value.getRawData();
for (unsigned I = 0; I != N; ++I)
Record.push_back(Words[I]);
}
void PCHWriter::AddAPSInt(const llvm::APSInt &Value, RecordData &Record) {
Record.push_back(Value.isUnsigned());
AddAPInt(Value, Record);
}
void PCHWriter::AddAPFloat(const llvm::APFloat &Value, RecordData &Record) {
AddAPInt(Value.bitcastToAPInt(), Record);
}
void PCHWriter::AddIdentifierRef(const IdentifierInfo *II, RecordData &Record) {
Record.push_back(getIdentifierRef(II));
}
pch::IdentID PCHWriter::getIdentifierRef(const IdentifierInfo *II) {
if (II == 0)
return 0;
pch::IdentID &ID = IdentifierIDs[II];
if (ID == 0)
ID = NextIdentID++;
return ID;
}
pch::IdentID PCHWriter::getMacroDefinitionID(MacroDefinition *MD) {
if (MD == 0)
return 0;
pch::IdentID &ID = MacroDefinitions[MD];
if (ID == 0)
ID = MacroDefinitions.size();
return ID;
}
void PCHWriter::AddSelectorRef(const Selector SelRef, RecordData &Record) {
if (SelRef.getAsOpaquePtr() == 0) {
Record.push_back(0);
return;
}
pch::SelectorID &SID = SelectorIDs[SelRef];
if (SID == 0) {
SID = SelectorIDs.size();
SelVector.push_back(SelRef);
}
Record.push_back(SID);
}
void PCHWriter::AddCXXTemporary(const CXXTemporary *Temp, RecordData &Record) {
AddDeclRef(Temp->getDestructor(), Record);
}
void PCHWriter::AddTemplateArgumentLocInfo(TemplateArgument::ArgKind Kind,
const TemplateArgumentLocInfo &Arg,
RecordData &Record) {
switch (Kind) {
case TemplateArgument::Expression:
AddStmt(Arg.getAsExpr());
break;
case TemplateArgument::Type:
AddTypeSourceInfo(Arg.getAsTypeSourceInfo(), Record);
break;
case TemplateArgument::Template:
AddSourceRange(Arg.getTemplateQualifierRange(), Record);
AddSourceLocation(Arg.getTemplateNameLoc(), Record);
break;
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Declaration:
case TemplateArgument::Pack:
break;
}
}
void PCHWriter::AddTemplateArgumentLoc(const TemplateArgumentLoc &Arg,
RecordData &Record) {
AddTemplateArgument(Arg.getArgument(), Record);
if (Arg.getArgument().getKind() == TemplateArgument::Expression) {
bool InfoHasSameExpr
= Arg.getArgument().getAsExpr() == Arg.getLocInfo().getAsExpr();
Record.push_back(InfoHasSameExpr);
if (InfoHasSameExpr)
return; // Avoid storing the same expr twice.
}
AddTemplateArgumentLocInfo(Arg.getArgument().getKind(), Arg.getLocInfo(),
Record);
}
void PCHWriter::AddTypeSourceInfo(TypeSourceInfo *TInfo, RecordData &Record) {
if (TInfo == 0) {
AddTypeRef(QualType(), Record);
return;
}
AddTypeRef(TInfo->getType(), Record);
TypeLocWriter TLW(*this, Record);
for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc())
TLW.Visit(TL);
}
void PCHWriter::AddTypeRef(QualType T, RecordData &Record) {
if (T.isNull()) {
Record.push_back(pch::PREDEF_TYPE_NULL_ID);
return;
}
unsigned FastQuals = T.getLocalFastQualifiers();
T.removeFastQualifiers();
if (T.hasLocalNonFastQualifiers()) {
pch::TypeID &ID = TypeIDs[T];
if (ID == 0) {
// We haven't seen these qualifiers applied to this type before.
// Assign it a new ID. This is the only time we enqueue a
// qualified type, and it has no CV qualifiers.
ID = NextTypeID++;
DeclTypesToEmit.push(T);
}
// Encode the type qualifiers in the type reference.
Record.push_back((ID << Qualifiers::FastWidth) | FastQuals);
return;
}
assert(!T.hasLocalQualifiers());
if (const BuiltinType *BT = dyn_cast<BuiltinType>(T.getTypePtr())) {
pch::TypeID ID = 0;
switch (BT->getKind()) {
case BuiltinType::Void: ID = pch::PREDEF_TYPE_VOID_ID; break;
case BuiltinType::Bool: ID = pch::PREDEF_TYPE_BOOL_ID; break;
case BuiltinType::Char_U: ID = pch::PREDEF_TYPE_CHAR_U_ID; break;
case BuiltinType::UChar: ID = pch::PREDEF_TYPE_UCHAR_ID; break;
case BuiltinType::UShort: ID = pch::PREDEF_TYPE_USHORT_ID; break;
case BuiltinType::UInt: ID = pch::PREDEF_TYPE_UINT_ID; break;
case BuiltinType::ULong: ID = pch::PREDEF_TYPE_ULONG_ID; break;
case BuiltinType::ULongLong: ID = pch::PREDEF_TYPE_ULONGLONG_ID; break;
case BuiltinType::UInt128: ID = pch::PREDEF_TYPE_UINT128_ID; break;
case BuiltinType::Char_S: ID = pch::PREDEF_TYPE_CHAR_S_ID; break;
case BuiltinType::SChar: ID = pch::PREDEF_TYPE_SCHAR_ID; break;
case BuiltinType::WChar: ID = pch::PREDEF_TYPE_WCHAR_ID; break;
case BuiltinType::Short: ID = pch::PREDEF_TYPE_SHORT_ID; break;
case BuiltinType::Int: ID = pch::PREDEF_TYPE_INT_ID; break;
case BuiltinType::Long: ID = pch::PREDEF_TYPE_LONG_ID; break;
case BuiltinType::LongLong: ID = pch::PREDEF_TYPE_LONGLONG_ID; break;
case BuiltinType::Int128: ID = pch::PREDEF_TYPE_INT128_ID; break;
case BuiltinType::Float: ID = pch::PREDEF_TYPE_FLOAT_ID; break;
case BuiltinType::Double: ID = pch::PREDEF_TYPE_DOUBLE_ID; break;
case BuiltinType::LongDouble: ID = pch::PREDEF_TYPE_LONGDOUBLE_ID; break;
case BuiltinType::NullPtr: ID = pch::PREDEF_TYPE_NULLPTR_ID; break;
case BuiltinType::Char16: ID = pch::PREDEF_TYPE_CHAR16_ID; break;
case BuiltinType::Char32: ID = pch::PREDEF_TYPE_CHAR32_ID; break;
case BuiltinType::Overload: ID = pch::PREDEF_TYPE_OVERLOAD_ID; break;
case BuiltinType::Dependent: ID = pch::PREDEF_TYPE_DEPENDENT_ID; break;
case BuiltinType::ObjCId: ID = pch::PREDEF_TYPE_OBJC_ID; break;
case BuiltinType::ObjCClass: ID = pch::PREDEF_TYPE_OBJC_CLASS; break;
case BuiltinType::ObjCSel: ID = pch::PREDEF_TYPE_OBJC_SEL; break;
case BuiltinType::UndeducedAuto:
assert(0 && "Should not see undeduced auto here");
break;
}
Record.push_back((ID << Qualifiers::FastWidth) | FastQuals);
return;
}
pch::TypeID &ID = TypeIDs[T];
if (ID == 0) {
// We haven't seen this type before. Assign it a new ID and put it
// into the queue of types to emit.
ID = NextTypeID++;
DeclTypesToEmit.push(T);
}
// Encode the type qualifiers in the type reference.
Record.push_back((ID << Qualifiers::FastWidth) | FastQuals);
}
void PCHWriter::AddDeclRef(const Decl *D, RecordData &Record) {
Record.push_back(GetDeclRef(D));
}
pch::DeclID PCHWriter::GetDeclRef(const Decl *D) {
if (D == 0) {
return 0;
}
pch::DeclID &ID = DeclIDs[D];
if (ID == 0) {
// We haven't seen this declaration before. Give it a new ID and
// enqueue it in the list of declarations to emit.
ID = NextDeclID++;
DeclTypesToEmit.push(const_cast<Decl *>(D));
}
return ID;
}
pch::DeclID PCHWriter::getDeclID(const Decl *D) {
if (D == 0)
return 0;
assert(DeclIDs.find(D) != DeclIDs.end() && "Declaration not emitted!");
return DeclIDs[D];
}
void PCHWriter::AddDeclarationName(DeclarationName Name, RecordData &Record) {
// FIXME: Emit a stable enum for NameKind. 0 = Identifier etc.
Record.push_back(Name.getNameKind());
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
AddIdentifierRef(Name.getAsIdentifierInfo(), Record);
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
AddSelectorRef(Name.getObjCSelector(), Record);
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
AddTypeRef(Name.getCXXNameType(), Record);
break;
case DeclarationName::CXXOperatorName:
Record.push_back(Name.getCXXOverloadedOperator());
break;
case DeclarationName::CXXLiteralOperatorName:
AddIdentifierRef(Name.getCXXLiteralIdentifier(), Record);
break;
case DeclarationName::CXXUsingDirective:
// No extra data to emit
break;
}
}
void PCHWriter::AddNestedNameSpecifier(NestedNameSpecifier *NNS,
RecordData &Record) {
// Nested name specifiers usually aren't too long. I think that 8 would
// typically accomodate the vast majority.
llvm::SmallVector<NestedNameSpecifier *, 8> NestedNames;
// Push each of the NNS's onto a stack for serialization in reverse order.
while (NNS) {
NestedNames.push_back(NNS);
NNS = NNS->getPrefix();
}
Record.push_back(NestedNames.size());
while(!NestedNames.empty()) {
NNS = NestedNames.pop_back_val();
NestedNameSpecifier::SpecifierKind Kind = NNS->getKind();
Record.push_back(Kind);
switch (Kind) {
case NestedNameSpecifier::Identifier:
AddIdentifierRef(NNS->getAsIdentifier(), Record);
break;
case NestedNameSpecifier::Namespace:
AddDeclRef(NNS->getAsNamespace(), Record);
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
AddTypeRef(QualType(NNS->getAsType(), 0), Record);
Record.push_back(Kind == NestedNameSpecifier::TypeSpecWithTemplate);
break;
case NestedNameSpecifier::Global:
// Don't need to write an associated value.
break;
}
}
}
void PCHWriter::AddTemplateName(TemplateName Name, RecordData &Record) {
TemplateName::NameKind Kind = Name.getKind();
Record.push_back(Kind);
switch (Kind) {
case TemplateName::Template:
AddDeclRef(Name.getAsTemplateDecl(), Record);
break;
case TemplateName::OverloadedTemplate: {
OverloadedTemplateStorage *OvT = Name.getAsOverloadedTemplate();
Record.push_back(OvT->size());
for (OverloadedTemplateStorage::iterator I = OvT->begin(), E = OvT->end();
I != E; ++I)
AddDeclRef(*I, Record);
break;
}
case TemplateName::QualifiedTemplate: {
QualifiedTemplateName *QualT = Name.getAsQualifiedTemplateName();
AddNestedNameSpecifier(QualT->getQualifier(), Record);
Record.push_back(QualT->hasTemplateKeyword());
AddDeclRef(QualT->getTemplateDecl(), Record);
break;
}
case TemplateName::DependentTemplate: {
DependentTemplateName *DepT = Name.getAsDependentTemplateName();
AddNestedNameSpecifier(DepT->getQualifier(), Record);
Record.push_back(DepT->isIdentifier());
if (DepT->isIdentifier())
AddIdentifierRef(DepT->getIdentifier(), Record);
else
Record.push_back(DepT->getOperator());
break;
}
}
}
void PCHWriter::AddTemplateArgument(const TemplateArgument &Arg,
RecordData &Record) {
Record.push_back(Arg.getKind());
switch (Arg.getKind()) {
case TemplateArgument::Null:
break;
case TemplateArgument::Type:
AddTypeRef(Arg.getAsType(), Record);
break;
case TemplateArgument::Declaration:
AddDeclRef(Arg.getAsDecl(), Record);
break;
case TemplateArgument::Integral:
AddAPSInt(*Arg.getAsIntegral(), Record);
AddTypeRef(Arg.getIntegralType(), Record);
break;
case TemplateArgument::Template:
AddTemplateName(Arg.getAsTemplate(), Record);
break;
case TemplateArgument::Expression:
AddStmt(Arg.getAsExpr());
break;
case TemplateArgument::Pack:
Record.push_back(Arg.pack_size());
for (TemplateArgument::pack_iterator I=Arg.pack_begin(), E=Arg.pack_end();
I != E; ++I)
AddTemplateArgument(*I, Record);
break;
}
}
void
PCHWriter::AddTemplateParameterList(const TemplateParameterList *TemplateParams,
RecordData &Record) {
assert(TemplateParams && "No TemplateParams!");
AddSourceLocation(TemplateParams->getTemplateLoc(), Record);
AddSourceLocation(TemplateParams->getLAngleLoc(), Record);
AddSourceLocation(TemplateParams->getRAngleLoc(), Record);
Record.push_back(TemplateParams->size());
for (TemplateParameterList::const_iterator
P = TemplateParams->begin(), PEnd = TemplateParams->end();
P != PEnd; ++P)
AddDeclRef(*P, Record);
}
/// \brief Emit a template argument list.
void
PCHWriter::AddTemplateArgumentList(const TemplateArgumentList *TemplateArgs,
RecordData &Record) {
assert(TemplateArgs && "No TemplateArgs!");
Record.push_back(TemplateArgs->flat_size());
for (int i=0, e = TemplateArgs->flat_size(); i != e; ++i)
AddTemplateArgument(TemplateArgs->get(i), Record);
}
void
PCHWriter::AddUnresolvedSet(const UnresolvedSetImpl &Set, RecordData &Record) {
Record.push_back(Set.size());
for (UnresolvedSetImpl::const_iterator
I = Set.begin(), E = Set.end(); I != E; ++I) {
AddDeclRef(I.getDecl(), Record);
Record.push_back(I.getAccess());
}
}
void PCHWriter::AddCXXBaseSpecifier(const CXXBaseSpecifier &Base,
RecordData &Record) {
Record.push_back(Base.isVirtual());
Record.push_back(Base.isBaseOfClass());
Record.push_back(Base.getAccessSpecifierAsWritten());
AddTypeSourceInfo(Base.getTypeSourceInfo(), Record);
AddSourceRange(Base.getSourceRange(), Record);
}
void PCHWriter::SetReader(PCHReader *Reader) {
assert(Reader && "Cannot remove chain");
assert(FirstDeclID == NextDeclID &&
FirstTypeID == NextTypeID &&
FirstIdentID == NextIdentID &&
"Setting chain after writing has started.");
Chain = Reader;
}
void PCHWriter::IdentifierRead(pch::IdentID ID, IdentifierInfo *II) {
IdentifierIDs[II] = ID;
}
void PCHWriter::TypeRead(pch::TypeID ID, QualType T) {
TypeIDs[T] = ID;
}
void PCHWriter::DeclRead(pch::DeclID ID, const Decl *D) {
DeclIDs[D] = ID;
}