llvm-project/lldb/source/Core/ConnectionFileDescriptor.cpp

1727 lines
59 KiB
C++

//===-- ConnectionFileDescriptor.cpp ----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#if defined(__APPLE__)
// Enable this special support for Apple builds where we can have unlimited
// select bounds. We tried switching to poll() and kqueue and we were panicing
// the kernel, so we have to stick with select for now.
#define _DARWIN_UNLIMITED_SELECT
#endif
#include "lldb/Core/ConnectionFileDescriptor.h"
#include "lldb/Host/Config.h"
#include "lldb/Host/SocketAddress.h"
// C Includes
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#ifndef LLDB_DISABLE_POSIX
#include <arpa/inet.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <termios.h>
#include <unistd.h>
#endif
#ifdef _WIN32
#include "lldb/Host/windows/windows.h"
#include <winsock2.h>
#include <WS2tcpip.h>
#endif
// C++ Includes
// Other libraries and framework includes
#include "llvm/Support/ErrorHandling.h"
#if defined(__APPLE__)
#include "llvm/ADT/SmallVector.h"
#endif
// Project includes
#include "lldb/lldb-private-log.h"
#include "lldb/Interpreter/Args.h"
#include "lldb/Core/Communication.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/Timer.h"
#include "lldb/Host/Host.h"
using namespace lldb;
using namespace lldb_private;
static bool
DecodeHostAndPort (const char *host_and_port,
std::string &host_str,
std::string &port_str,
int32_t& port,
Error *error_ptr)
{
static RegularExpression g_regex ("([^:]+):([0-9]+)");
RegularExpression::Match regex_match(2);
if (g_regex.Execute (host_and_port, &regex_match))
{
if (regex_match.GetMatchAtIndex (host_and_port, 1, host_str) &&
regex_match.GetMatchAtIndex (host_and_port, 2, port_str))
{
port = Args::StringToSInt32 (port_str.c_str(), INT32_MIN);
if (port != INT32_MIN)
{
if (error_ptr)
error_ptr->Clear();
return true;
}
}
}
host_str.clear();
port_str.clear();
port = INT32_MIN;
if (error_ptr)
error_ptr->SetErrorStringWithFormat("invalid host:port specification: '%s'", host_and_port);
return false;
}
ConnectionFileDescriptor::ConnectionFileDescriptor () :
Connection(),
m_fd_send (-1),
m_fd_recv (-1),
m_fd_send_type (eFDTypeFile),
m_fd_recv_type (eFDTypeFile),
m_udp_send_sockaddr (new SocketAddress()),
m_socket_timeout_usec(0),
m_pipe_read(-1),
m_pipe_write(-1),
m_mutex (Mutex::eMutexTypeRecursive),
m_should_close_fd (false),
m_shutting_down (false)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION | LIBLLDB_LOG_OBJECT));
if (log)
log->Printf ("%p ConnectionFileDescriptor::ConnectionFileDescriptor ()", this);
}
ConnectionFileDescriptor::ConnectionFileDescriptor (int fd, bool owns_fd) :
Connection(),
m_fd_send (fd),
m_fd_recv (fd),
m_fd_send_type (eFDTypeFile),
m_fd_recv_type (eFDTypeFile),
m_udp_send_sockaddr (new SocketAddress()),
m_socket_timeout_usec(0),
m_pipe_read(-1),
m_pipe_write(-1),
m_mutex (Mutex::eMutexTypeRecursive),
m_should_close_fd (owns_fd),
m_shutting_down (false)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION | LIBLLDB_LOG_OBJECT));
if (log)
log->Printf ("%p ConnectionFileDescriptor::ConnectionFileDescriptor (fd = %i, owns_fd = %i)", this, fd, owns_fd);
OpenCommandPipe ();
}
ConnectionFileDescriptor::~ConnectionFileDescriptor ()
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION | LIBLLDB_LOG_OBJECT));
if (log)
log->Printf ("%p ConnectionFileDescriptor::~ConnectionFileDescriptor ()", this);
Disconnect (NULL);
CloseCommandPipe ();
}
void
ConnectionFileDescriptor::OpenCommandPipe ()
{
CloseCommandPipe();
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
// Make the command file descriptor here:
int filedes[2];
#ifndef LLDB_DISABLE_POSIX
int result = pipe (filedes);
#else
int result = -1;
#endif
if (result != 0)
{
if (log)
log->Printf ("%p ConnectionFileDescriptor::OpenCommandPipe () - could not make pipe: %s",
this,
strerror(errno));
}
else
{
m_pipe_read = filedes[0];
m_pipe_write = filedes[1];
if (log)
log->Printf ("%p ConnectionFileDescriptor::OpenCommandPipe() - success readfd=%d writefd=%d",
this,
m_pipe_read,
m_pipe_write);
}
}
void
ConnectionFileDescriptor::CloseCommandPipe ()
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf ("%p ConnectionFileDescriptor::CloseCommandPipe()",
this);
if (m_pipe_read != -1)
{
#ifdef _MSC_VER
llvm_unreachable("pipe close unsupported in MSVC");
#else
close (m_pipe_read);
#endif
m_pipe_read = -1;
}
if (m_pipe_write != -1)
{
#ifdef _MSC_VER
llvm_unreachable("pipe close unsupported in MSVC");
#else
close (m_pipe_write);
#endif
m_pipe_write = -1;
}
}
bool
ConnectionFileDescriptor::IsConnected () const
{
return m_fd_send >= 0 || m_fd_recv >= 0;
}
ConnectionStatus
ConnectionFileDescriptor::Connect (const char *s, Error *error_ptr)
{
Mutex::Locker locker (m_mutex);
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf ("%p ConnectionFileDescriptor::Connect (url = '%s')", this, s);
OpenCommandPipe();
if (s && s[0])
{
if (strstr(s, "listen://"))
{
// listen://HOST:PORT
return SocketListen (s + strlen("listen://"), error_ptr);
}
else if (strstr(s, "accept://"))
{
// unix://SOCKNAME
return NamedSocketAccept (s + strlen("accept://"), error_ptr);
}
else if (strstr(s, "unix-accept://"))
{
// unix://SOCKNAME
return NamedSocketAccept (s + strlen("unix-accept://"), error_ptr);
}
else if (strstr(s, "connect://"))
{
return ConnectTCP (s + strlen("connect://"), error_ptr);
}
else if (strstr(s, "tcp-connect://"))
{
return ConnectTCP (s + strlen("tcp-connect://"), error_ptr);
}
else if (strstr(s, "udp://"))
{
return ConnectUDP (s + strlen("udp://"), error_ptr);
}
else if (strstr(s, "fd://"))
{
// Just passing a native file descriptor within this current process
// that is already opened (possibly from a service or other source).
s += strlen ("fd://");
bool success = false;
m_fd_send = m_fd_recv = Args::StringToSInt32 (s, -1, 0, &success);
if (success)
{
// We have what looks to be a valid file descriptor, but we
// should make sure it is. We currently are doing this by trying to
// get the flags from the file descriptor and making sure it
// isn't a bad fd.
errno = 0;
#ifndef LLDB_DISABLE_POSIX
int flags = ::fcntl (m_fd_send, F_GETFL, 0);
#else
int flags = -1;
#endif
if (flags == -1 || errno == EBADF)
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("stale file descriptor: %s", s);
m_fd_send = m_fd_recv = -1;
return eConnectionStatusError;
}
else
{
// Try and get a socket option from this file descriptor to
// see if this is a socket and set m_is_socket accordingly.
int resuse;
bool is_socket = GetSocketOption (m_fd_send, SOL_SOCKET, SO_REUSEADDR, resuse) == 0;
if (is_socket)
m_fd_send_type = m_fd_recv_type = eFDTypeSocket;
// Don't take ownership of a file descriptor that gets passed
// to us since someone else opened the file descriptor and
// handed it to us.
// TODO: Since are using a URL to open connection we should
// eventually parse options using the web standard where we
// have "fd://123?opt1=value;opt2=value" and we can have an
// option be "owns=1" or "owns=0" or something like this to
// allow us to specify this. For now, we assume we must
// assume we don't own it.
m_should_close_fd = false;
return eConnectionStatusSuccess;
}
}
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("invalid file descriptor: \"fd://%s\"", s);
m_fd_send = m_fd_recv = -1;
return eConnectionStatusError;
}
else if (strstr(s, "file://"))
{
// file:///PATH
const char *path = s + strlen("file://");
#ifndef LLDB_DISABLE_POSIX
do
{
m_fd_send = m_fd_recv = ::open (path, O_RDWR);
} while (m_fd_send == -1 && errno == EINTR);
if (m_fd_send == -1)
{
if (error_ptr)
error_ptr->SetErrorToErrno();
return eConnectionStatusError;
}
if (::isatty(m_fd_send))
{
// Set up serial terminal emulation
struct termios options;
::tcgetattr (m_fd_send, &options);
// Set port speed to maximum
::cfsetospeed (&options, B115200);
::cfsetispeed (&options, B115200);
// Raw input, disable echo and signals
options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
// Make sure only one character is needed to return from a read
options.c_cc[VMIN] = 1;
options.c_cc[VTIME] = 0;
::tcsetattr (m_fd_send, TCSANOW, &options);
}
int flags = ::fcntl (m_fd_send, F_GETFL, 0);
if (flags >= 0)
{
if ((flags & O_NONBLOCK) == 0)
{
flags |= O_NONBLOCK;
::fcntl (m_fd_send, F_SETFL, flags);
}
}
m_should_close_fd = true;
return eConnectionStatusSuccess;
#else
return eConnectionStatusError;
#endif
}
if (error_ptr)
error_ptr->SetErrorStringWithFormat ("unsupported connection URL: '%s'", s);
return eConnectionStatusError;
}
if (error_ptr)
error_ptr->SetErrorString("invalid connect arguments");
return eConnectionStatusError;
}
ConnectionStatus
ConnectionFileDescriptor::Disconnect (Error *error_ptr)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf ("%p ConnectionFileDescriptor::Disconnect ()", this);
// Reset the port predicate when disconnecting and don't broadcast
m_port_predicate.SetValue(0, eBroadcastNever);
ConnectionStatus status = eConnectionStatusSuccess;
if (m_fd_send < 0 && m_fd_recv < 0)
{
if (log)
log->Printf ("%p ConnectionFileDescriptor::Disconnect(): Nothing to disconnect", this);
return eConnectionStatusSuccess;
}
// Try to get the ConnectionFileDescriptor's mutex. If we fail, that is quite likely
// because somebody is doing a blocking read on our file descriptor. If that's the case,
// then send the "q" char to the command file channel so the read will wake up and the connection
// will then know to shut down.
m_shutting_down = true;
Mutex::Locker locker;
bool got_lock= locker.TryLock (m_mutex);
if (!got_lock)
{
if (m_pipe_write != -1 )
{
int result;
result = write (m_pipe_write, "q", 1);
if (log)
log->Printf ("%p ConnectionFileDescriptor::Disconnect(): Couldn't get the lock, sent 'q' to %d, result = %d.", this, m_pipe_write, result);
}
else if (log)
log->Printf ("%p ConnectionFileDescriptor::Disconnect(): Couldn't get the lock, but no command pipe is available.", this);
locker.Lock (m_mutex);
}
if (m_should_close_fd == true)
{
if (m_fd_send == m_fd_recv)
{
status = Close (m_fd_send, m_fd_send_type, error_ptr);
}
else
{
// File descriptors are the different, close both if needed
if (m_fd_send >= 0)
status = Close (m_fd_send, m_fd_send_type, error_ptr);
if (m_fd_recv >= 0)
{
ConnectionStatus recv_status = Close (m_fd_recv, m_fd_recv_type, error_ptr);
if (status == eConnectionStatusSuccess)
status = recv_status;
}
}
}
// Now set all our descriptors to invalid values.
m_fd_send = m_fd_recv = -1;
if (status != eConnectionStatusSuccess)
{
return status;
}
m_shutting_down = false;
return eConnectionStatusSuccess;
}
size_t
ConnectionFileDescriptor::Read (void *dst,
size_t dst_len,
uint32_t timeout_usec,
ConnectionStatus &status,
Error *error_ptr)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf ("%p ConnectionFileDescriptor::Read () ::read (fd = %i, dst = %p, dst_len = %" PRIu64 ")...",
this, m_fd_recv, dst, (uint64_t)dst_len);
Mutex::Locker locker;
bool got_lock = locker.TryLock (m_mutex);
if (!got_lock)
{
if (log)
log->Printf ("%p ConnectionFileDescriptor::Read () failed to get the connection lock.",
this);
if (error_ptr)
error_ptr->SetErrorString ("failed to get the connection lock for read.");
status = eConnectionStatusTimedOut;
return 0;
}
else if (m_shutting_down)
return eConnectionStatusError;
ssize_t bytes_read = 0;
status = BytesAvailable (timeout_usec, error_ptr);
if (status == eConnectionStatusSuccess)
{
do
{
#ifndef LLDB_DISABLE_POSIX
bytes_read = ::read (m_fd_recv, dst, dst_len);
#else
switch (m_fd_send_type) {
case eFDTypeSocket:
case eFDTypeSocketUDP:
bytes_read = ::recv (m_fd_recv, (char*)dst, dst_len, 0);
break;
default:
bytes_read = -1;
break;
}
#endif
} while (bytes_read < 0 && errno == EINTR);
}
if (status != eConnectionStatusSuccess)
return 0;
Error error;
if (bytes_read == 0)
{
error.Clear(); // End-of-file. Do not automatically close; pass along for the end-of-file handlers.
status = eConnectionStatusEndOfFile;
}
else if (bytes_read < 0)
{
error.SetErrorToErrno();
}
else
{
error.Clear();
}
if (log)
log->Printf ("%p ConnectionFileDescriptor::Read () ::read (fd = %i, dst = %p, dst_len = %" PRIu64 ") => %" PRIi64 ", error = %s",
this,
m_fd_recv,
dst,
(uint64_t)dst_len,
(int64_t)bytes_read,
error.AsCString());
if (error_ptr)
*error_ptr = error;
if (error.Fail())
{
uint32_t error_value = error.GetError();
switch (error_value)
{
case EAGAIN: // The file was marked for non-blocking I/O, and no data were ready to be read.
if (m_fd_recv_type == eFDTypeSocket || m_fd_recv_type == eFDTypeSocketUDP)
status = eConnectionStatusTimedOut;
else
status = eConnectionStatusSuccess;
return 0;
case EFAULT: // Buf points outside the allocated address space.
case EINTR: // A read from a slow device was interrupted before any data arrived by the delivery of a signal.
case EINVAL: // The pointer associated with fildes was negative.
case EIO: // An I/O error occurred while reading from the file system.
// The process group is orphaned.
// The file is a regular file, nbyte is greater than 0,
// the starting position is before the end-of-file, and
// the starting position is greater than or equal to the
// offset maximum established for the open file
// descriptor associated with fildes.
case EISDIR: // An attempt is made to read a directory.
case ENOBUFS: // An attempt to allocate a memory buffer fails.
case ENOMEM: // Insufficient memory is available.
status = eConnectionStatusError;
break; // Break to close....
case ENOENT: // no such file or directory
case EBADF: // fildes is not a valid file or socket descriptor open for reading.
case ENXIO: // An action is requested of a device that does not exist..
// A requested action cannot be performed by the device.
case ECONNRESET:// The connection is closed by the peer during a read attempt on a socket.
case ENOTCONN: // A read is attempted on an unconnected socket.
status = eConnectionStatusLostConnection;
break; // Break to close....
case ETIMEDOUT: // A transmission timeout occurs during a read attempt on a socket.
status = eConnectionStatusTimedOut;
return 0;
default:
if (log)
log->Printf("%p ConnectionFileDescriptor::Read (), unexpected error: %s", this, strerror(error_value));
status = eConnectionStatusError;
break; // Break to close....
}
return 0;
}
return bytes_read;
}
size_t
ConnectionFileDescriptor::Write (const void *src, size_t src_len, ConnectionStatus &status, Error *error_ptr)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf ("%p ConnectionFileDescriptor::Write (src = %p, src_len = %" PRIu64 ")", this, src, (uint64_t)src_len);
if (!IsConnected ())
{
if (error_ptr)
error_ptr->SetErrorString("not connected");
status = eConnectionStatusNoConnection;
return 0;
}
Error error;
ssize_t bytes_sent = 0;
switch (m_fd_send_type)
{
#ifndef LLDB_DISABLE_POSIX
case eFDTypeFile: // Other FD requireing read/write
do
{
bytes_sent = ::write (m_fd_send, src, src_len);
} while (bytes_sent < 0 && errno == EINTR);
break;
#endif
case eFDTypeSocket: // Socket requiring send/recv
do
{
bytes_sent = ::send (m_fd_send, (char*)src, src_len, 0);
} while (bytes_sent < 0 && errno == EINTR);
break;
case eFDTypeSocketUDP: // Unconnected UDP socket requiring sendto/recvfrom
assert (m_udp_send_sockaddr->GetFamily() != 0);
do
{
bytes_sent = ::sendto (m_fd_send,
(char*)src,
src_len,
0,
*m_udp_send_sockaddr,
m_udp_send_sockaddr->GetLength());
} while (bytes_sent < 0 && errno == EINTR);
break;
}
if (bytes_sent < 0)
error.SetErrorToErrno ();
else
error.Clear ();
if (log)
{
switch (m_fd_send_type)
{
case eFDTypeFile: // Other FD requireing read/write
log->Printf ("%p ConnectionFileDescriptor::Write() ::write (fd = %i, src = %p, src_len = %" PRIu64 ") => %" PRIi64 " (error = %s)",
this,
m_fd_send,
src,
(uint64_t)src_len,
(int64_t)bytes_sent,
error.AsCString());
break;
case eFDTypeSocket: // Socket requiring send/recv
log->Printf ("%p ConnectionFileDescriptor::Write() ::send (socket = %i, src = %p, src_len = %" PRIu64 ", flags = 0) => %" PRIi64 " (error = %s)",
this,
m_fd_send,
src,
(uint64_t)src_len,
(int64_t)bytes_sent,
error.AsCString());
break;
case eFDTypeSocketUDP: // Unconnected UDP socket requiring sendto/recvfrom
log->Printf ("%p ConnectionFileDescriptor::Write() ::sendto (socket = %i, src = %p, src_len = %" PRIu64 ", flags = 0) => %" PRIi64 " (error = %s)",
this,
m_fd_send,
src,
(uint64_t)src_len,
(int64_t)bytes_sent,
error.AsCString());
break;
}
}
if (error_ptr)
*error_ptr = error;
if (error.Fail())
{
switch (error.GetError())
{
case EAGAIN:
case EINTR:
status = eConnectionStatusSuccess;
return 0;
case ECONNRESET:// The connection is closed by the peer during a read attempt on a socket.
case ENOTCONN: // A read is attempted on an unconnected socket.
status = eConnectionStatusLostConnection;
break; // Break to close....
default:
status = eConnectionStatusError;
break; // Break to close....
}
return 0;
}
status = eConnectionStatusSuccess;
return bytes_sent;
}
#if defined(__APPLE__)
// This ConnectionFileDescriptor::BytesAvailable() uses select().
//
// PROS:
// - select is consistent across most unix platforms
// - this Apple specific version allows for unlimited fds in the fd_sets by
// setting the _DARWIN_UNLIMITED_SELECT define prior to including the
// required header files.
// CONS:
// - Darwin only
ConnectionStatus
ConnectionFileDescriptor::BytesAvailable (uint32_t timeout_usec, Error *error_ptr)
{
// Don't need to take the mutex here separately since we are only called from Read. If we
// ever get used more generally we will need to lock here as well.
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable (timeout_usec = %u)", this, timeout_usec);
struct timeval *tv_ptr;
struct timeval tv;
if (timeout_usec == UINT32_MAX)
{
// Infinite wait...
tv_ptr = NULL;
}
else
{
TimeValue time_value;
time_value.OffsetWithMicroSeconds (timeout_usec);
tv.tv_sec = time_value.seconds();
tv.tv_usec = time_value.microseconds();
tv_ptr = &tv;
}
// Make a copy of the file descriptors to make sure we don't
// have another thread change these values out from under us
// and cause problems in the loop below where like in FS_SET()
const int data_fd = m_fd_recv;
const int pipe_fd = m_pipe_read;
if (data_fd >= 0)
{
const bool have_pipe_fd = pipe_fd >= 0;
while (data_fd == m_fd_recv)
{
const int nfds = std::max<int>(data_fd, pipe_fd) + 1;
llvm::SmallVector<fd_set, 1> read_fds;
read_fds.resize((nfds/FD_SETSIZE) + 1);
for (size_t i=0; i<read_fds.size(); ++i)
FD_ZERO (&read_fds[i]);
// FD_SET doesn't bounds check, it just happily walks off the end
// but we have taken care of making the extra storage with our
// SmallVector of fd_set objects
FD_SET (data_fd, read_fds.data());
if (have_pipe_fd)
FD_SET (pipe_fd, read_fds.data());
Error error;
if (log)
{
if (have_pipe_fd)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() ::select (nfds=%i, fds={%i, %i}, NULL, NULL, timeout=%p)...",
this, nfds, data_fd, pipe_fd, tv_ptr);
else
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() ::select (nfds=%i, fds={%i}, NULL, NULL, timeout=%p)...",
this, nfds, data_fd, tv_ptr);
}
const int num_set_fds = ::select (nfds, read_fds.data(), NULL, NULL, tv_ptr);
if (num_set_fds < 0)
error.SetErrorToErrno();
else
error.Clear();
if (log)
{
if (have_pipe_fd)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() ::select (nfds=%i, fds={%i, %i}, NULL, NULL, timeout=%p) => %d, error = %s",
this, nfds, data_fd, pipe_fd, tv_ptr, num_set_fds, error.AsCString());
else
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() ::select (nfds=%i, fds={%i}, NULL, NULL, timeout=%p) => %d, error = %s",
this, nfds, data_fd, tv_ptr, num_set_fds, error.AsCString());
}
if (error_ptr)
*error_ptr = error;
if (error.Fail())
{
switch (error.GetError())
{
case EBADF: // One of the descriptor sets specified an invalid descriptor.
return eConnectionStatusLostConnection;
case EINVAL: // The specified time limit is invalid. One of its components is negative or too large.
default: // Other unknown error
return eConnectionStatusError;
case EAGAIN: // The kernel was (perhaps temporarily) unable to
// allocate the requested number of file descriptors,
// or we have non-blocking IO
case EINTR: // A signal was delivered before the time limit
// expired and before any of the selected events
// occurred.
break; // Lets keep reading to until we timeout
}
}
else if (num_set_fds == 0)
{
return eConnectionStatusTimedOut;
}
else if (num_set_fds > 0)
{
// FD_ISSET is happy to deal with a something larger than
// a single fd_set.
if (FD_ISSET(data_fd, read_fds.data()))
return eConnectionStatusSuccess;
if (have_pipe_fd && FD_ISSET(pipe_fd, read_fds.data()))
{
// We got a command to exit. Read the data from that pipe:
char buffer[16];
ssize_t bytes_read;
do
{
bytes_read = ::read (pipe_fd, buffer, sizeof(buffer));
} while (bytes_read < 0 && errno == EINTR);
assert (bytes_read == 1 && buffer[0] == 'q');
if (log)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() got data: %*s from the command channel.",
this, (int) bytes_read, buffer);
return eConnectionStatusEndOfFile;
}
}
}
}
if (error_ptr)
error_ptr->SetErrorString("not connected");
return eConnectionStatusLostConnection;
}
#else
// This ConnectionFileDescriptor::BytesAvailable() uses select().
//
// PROS:
// - select is consistent across most unix platforms
// CONS:
// - only supports file descriptors up to FD_SETSIZE. This implementation
// will assert if it runs into that hard limit to let users know that
// another ConnectionFileDescriptor::BytesAvailable() should be used
// or a new version of ConnectionFileDescriptor::BytesAvailable() should
// be written for the system that is running into the limitations. MacOSX
// uses kqueues, and there is a poll() based implementation below.
ConnectionStatus
ConnectionFileDescriptor::BytesAvailable (uint32_t timeout_usec, Error *error_ptr)
{
// Don't need to take the mutex here separately since we are only called from Read. If we
// ever get used more generally we will need to lock here as well.
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable (timeout_usec = %u)", this, timeout_usec);
struct timeval *tv_ptr;
struct timeval tv;
if (timeout_usec == UINT32_MAX)
{
// Infinite wait...
tv_ptr = NULL;
}
else
{
TimeValue time_value;
time_value.OffsetWithMicroSeconds (timeout_usec);
tv.tv_sec = time_value.seconds();
tv.tv_usec = time_value.microseconds();
tv_ptr = &tv;
}
// Make a copy of the file descriptors to make sure we don't
// have another thread change these values out from under us
// and cause problems in the loop below where like in FS_SET()
const int data_fd = m_fd_recv;
const int pipe_fd = m_pipe_read;
if (data_fd >= 0)
{
// If this assert fires off on MacOSX, we will need to switch to using
// libdispatch to read from file descriptors because poll() is causing
// kernel panics and if we exceed FD_SETSIZE we will have no choice...
#ifndef _MSC_VER
assert (data_fd < FD_SETSIZE);
#endif
const bool have_pipe_fd = pipe_fd >= 0;
if (have_pipe_fd)
{
assert (pipe_fd < FD_SETSIZE);
}
while (data_fd == m_fd_recv)
{
fd_set read_fds;
FD_ZERO (&read_fds);
FD_SET (data_fd, &read_fds);
if (have_pipe_fd)
FD_SET (pipe_fd, &read_fds);
const int nfds = std::max<int>(data_fd, pipe_fd) + 1;
Error error;
if (log)
{
if (have_pipe_fd)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() ::select (nfds=%i, fds={%i, %i}, NULL, NULL, timeout=%p)...",
this, nfds, data_fd, pipe_fd, tv_ptr);
else
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() ::select (nfds=%i, fds={%i}, NULL, NULL, timeout=%p)...",
this, nfds, data_fd, tv_ptr);
}
const int num_set_fds = ::select (nfds, &read_fds, NULL, NULL, tv_ptr);
if (num_set_fds < 0)
error.SetErrorToErrno();
else
error.Clear();
if (log)
{
if (have_pipe_fd)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() ::select (nfds=%i, fds={%i, %i}, NULL, NULL, timeout=%p) => %d, error = %s",
this, nfds, data_fd, pipe_fd, tv_ptr, num_set_fds, error.AsCString());
else
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() ::select (nfds=%i, fds={%i}, NULL, NULL, timeout=%p) => %d, error = %s",
this, nfds, data_fd, tv_ptr, num_set_fds, error.AsCString());
}
if (error_ptr)
*error_ptr = error;
if (error.Fail())
{
switch (error.GetError())
{
case EBADF: // One of the descriptor sets specified an invalid descriptor.
return eConnectionStatusLostConnection;
case EINVAL: // The specified time limit is invalid. One of its components is negative or too large.
default: // Other unknown error
return eConnectionStatusError;
case EAGAIN: // The kernel was (perhaps temporarily) unable to
// allocate the requested number of file descriptors,
// or we have non-blocking IO
case EINTR: // A signal was delivered before the time limit
// expired and before any of the selected events
// occurred.
break; // Lets keep reading to until we timeout
}
}
else if (num_set_fds == 0)
{
return eConnectionStatusTimedOut;
}
else if (num_set_fds > 0)
{
if (FD_ISSET(data_fd, &read_fds))
return eConnectionStatusSuccess;
if (have_pipe_fd && FD_ISSET(pipe_fd, &read_fds))
{
// We got a command to exit. Read the data from that pipe:
char buffer[16];
ssize_t bytes_read;
do
{
bytes_read = ::read (pipe_fd, buffer, sizeof(buffer));
} while (bytes_read < 0 && errno == EINTR);
assert (bytes_read == 1 && buffer[0] == 'q');
if (log)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() got data: %*s from the command channel.",
this, (int) bytes_read, buffer);
return eConnectionStatusEndOfFile;
}
}
}
}
if (error_ptr)
error_ptr->SetErrorString("not connected");
return eConnectionStatusLostConnection;
}
#endif
#if 0
#include <poll.h>
// This ConnectionFileDescriptor::BytesAvailable() uses poll(). poll() should NOT
// be used on MacOSX as it has all sorts of restrictions on the types of file descriptors
// that it doesn't support.
//
// There may be some systems that properly support poll() that could use this
// implementation. I will let each system opt into this on their own.
//
// PROS:
// - no restrictions on the fd value that is used
// CONS:
// - varies wildly from platform to platform in its implementation restrictions
ConnectionStatus
ConnectionFileDescriptor::BytesAvailable (uint32_t timeout_usec, Error *error_ptr)
{
// Don't need to take the mutex here separately since we are only called from Read. If we
// ever get used more generally we will need to lock here as well.
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable (timeout_usec = %u)", this, timeout_usec);
int timeout_msec = 0;
if (timeout_usec == UINT32_MAX)
{
// Infinite wait...
timeout_msec = -1;
}
else if (timeout_usec == 0)
{
// Return immediately, don't wait
timeout_msec = 0;
}
else
{
// Convert usec to msec
timeout_msec = (timeout_usec + 999) / 1000;
}
// Make a copy of the file descriptors to make sure we don't
// have another thread change these values out from under us
// and cause problems in the loop below where like in FS_SET()
const int data_fd = m_fd_recv;
const int pipe_fd = m_pipe_read;
// Make sure the file descriptor can be used with select as it
// must be in range
if (data_fd >= 0)
{
const bool have_pipe_fd = pipe_fd >= 0;
struct pollfd fds[2] =
{
{ data_fd, POLLIN, 0 },
{ pipe_fd, POLLIN, 0 }
};
const int nfds = have_pipe_fd ? 2 : 1;
Error error;
while (data_fd == m_fd_recv)
{
const int num_set_fds = ::poll (fds, nfds, timeout_msec);
if (num_set_fds < 0)
error.SetErrorToErrno();
else
error.Clear();
if (error_ptr)
*error_ptr = error;
if (log)
{
if (have_pipe_fd)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() ::poll (fds={{%i,POLLIN},{%i,POLLIN}}, nfds=%i, timeout_ms=%i) => %d, error = %s\n",
this,
data_fd,
pipe_fd,
nfds,
timeout_msec,
num_set_fds,
error.AsCString());
else
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() ::poll (fds={{%i,POLLIN}}, nfds=%i, timeout_ms=%i) => %d, error = %s\n",
this,
data_fd,
nfds,
timeout_msec,
num_set_fds,
error.AsCString());
}
if (error.Fail())
{
switch (error.GetError())
{
case EBADF: // One of the descriptor sets specified an invalid descriptor.
return eConnectionStatusLostConnection;
case EINVAL: // The specified time limit is invalid. One of its components is negative or too large.
default: // Other unknown error
return eConnectionStatusError;
case EAGAIN: // The kernel was (perhaps temporarily) unable to
// allocate the requested number of file descriptors,
// or we have non-blocking IO
case EINTR: // A signal was delivered before the time limit
// expired and before any of the selected events
// occurred.
break; // Lets keep reading to until we timeout
}
}
else if (num_set_fds == 0)
{
return eConnectionStatusTimedOut;
}
else if (num_set_fds > 0)
{
if (fds[0].revents & POLLIN)
return eConnectionStatusSuccess;
if (fds[1].revents & POLLIN)
{
// We got a command to exit. Read the data from that pipe:
char buffer[16];
ssize_t bytes_read;
do
{
bytes_read = ::read (pipe_fd, buffer, sizeof(buffer));
} while (bytes_read < 0 && errno == EINTR);
assert (bytes_read == 1 && buffer[0] == 'q');
if (log)
log->Printf("%p ConnectionFileDescriptor::BytesAvailable() got data: %*s from the command channel.",
this, (int) bytes_read, buffer);
return eConnectionStatusEndOfFile;
}
}
}
}
if (error_ptr)
error_ptr->SetErrorString("not connected");
return eConnectionStatusLostConnection;
}
#endif
ConnectionStatus
ConnectionFileDescriptor::Close (int& fd, FDType type, Error *error_ptr)
{
if (error_ptr)
error_ptr->Clear();
bool success = true;
// Avoid taking a lock if we can
if (fd >= 0)
{
Mutex::Locker locker (m_mutex);
// Check the FD after the lock is taken to ensure only one thread
// can get into the close scope below
if (fd >= 0)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf ("%p ConnectionFileDescriptor::Close (fd = %i)", this,fd);
#if _WIN32
if (type != eFDTypeFile)
success = closesocket(fd) == 0;
else
#endif
success = ::close (fd) == 0;
// A reference to a FD was passed in, set it to an invalid value
fd = -1;
if (!success && error_ptr)
{
// Only set the error if we have been asked to since something else
// might have caused us to try and shut down the connection and may
// have already set the error.
error_ptr->SetErrorToErrno();
}
}
}
if (success)
return eConnectionStatusSuccess;
else
return eConnectionStatusError;
}
ConnectionStatus
ConnectionFileDescriptor::NamedSocketAccept (const char *socket_name, Error *error_ptr)
{
#ifndef LLDB_DISABLE_POSIX
ConnectionStatus result = eConnectionStatusError;
struct sockaddr_un saddr_un;
m_fd_send_type = m_fd_recv_type = eFDTypeSocket;
int listen_socket = ::socket (AF_UNIX, SOCK_STREAM, 0);
if (listen_socket == -1)
{
if (error_ptr)
error_ptr->SetErrorToErrno();
return eConnectionStatusError;
}
saddr_un.sun_family = AF_UNIX;
::strncpy(saddr_un.sun_path, socket_name, sizeof(saddr_un.sun_path) - 1);
saddr_un.sun_path[sizeof(saddr_un.sun_path) - 1] = '\0';
#if defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__)
saddr_un.sun_len = SUN_LEN (&saddr_un);
#endif
Host::Unlink (socket_name);
if (::bind (listen_socket, (struct sockaddr *)&saddr_un, SUN_LEN (&saddr_un)) == 0)
{
if (::listen (listen_socket, 5) == 0)
{
m_fd_send = m_fd_recv = ::accept (listen_socket, NULL, 0);
if (m_fd_send > 0)
{
m_should_close_fd = true;
if (error_ptr)
error_ptr->Clear();
result = eConnectionStatusSuccess;
}
}
}
if (result != eConnectionStatusSuccess)
{
if (error_ptr)
error_ptr->SetErrorToErrno();
}
// We are done with the listen port
Close (listen_socket, eFDTypeSocket, NULL);
return result;
#else
return eConnectionStatusError;
#endif
}
ConnectionStatus
ConnectionFileDescriptor::NamedSocketConnect (const char *socket_name, Error *error_ptr)
{
#ifndef LLDB_DISABLE_POSIX
Disconnect (NULL);
m_fd_send_type = m_fd_recv_type = eFDTypeSocket;
// Open the socket that was passed in as an option
struct sockaddr_un saddr_un;
m_fd_send = m_fd_recv = ::socket (AF_UNIX, SOCK_STREAM, 0);
if (m_fd_send == -1)
{
if (error_ptr)
error_ptr->SetErrorToErrno();
return eConnectionStatusError;
}
saddr_un.sun_family = AF_UNIX;
::strncpy(saddr_un.sun_path, socket_name, sizeof(saddr_un.sun_path) - 1);
saddr_un.sun_path[sizeof(saddr_un.sun_path) - 1] = '\0';
#if defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__)
saddr_un.sun_len = SUN_LEN (&saddr_un);
#endif
if (::connect (m_fd_send, (struct sockaddr *)&saddr_un, SUN_LEN (&saddr_un)) < 0)
{
if (error_ptr)
error_ptr->SetErrorToErrno();
Disconnect (NULL);
return eConnectionStatusError;
}
if (error_ptr)
error_ptr->Clear();
return eConnectionStatusSuccess;
#else
return eConnectionStatusError;
#endif
}
ConnectionStatus
ConnectionFileDescriptor::SocketListen (const char *host_and_port, Error *error_ptr)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf ("%p ConnectionFileDescriptor::SocketListen (%s)", this, host_and_port);
Disconnect (NULL);
m_fd_send_type = m_fd_recv_type = eFDTypeSocket;
std::string host_str;
std::string port_str;
int32_t port = INT32_MIN;
if (!DecodeHostAndPort (host_and_port, host_str, port_str, port, error_ptr))
{
// Might be just a port number
port = Args::StringToSInt32(host_and_port, -1);
if (port == -1)
return eConnectionStatusError;
else
host_str.clear();
}
const sa_family_t family = AF_INET;
const int socktype = SOCK_STREAM;
const int protocol = IPPROTO_TCP;
int listen_fd = ::socket (family, socktype, protocol);
if (listen_fd == -1)
{
if (error_ptr)
error_ptr->SetErrorToErrno();
return eConnectionStatusError;
}
// enable local address reuse
SetSocketOption (listen_fd, SOL_SOCKET, SO_REUSEADDR, 1);
SocketAddress listen_addr;
if (host_str.empty())
listen_addr.SetToLocalhost(family, port);
else if (host_str.compare("*") == 0)
listen_addr.SetToAnyAddress(family, port);
else
{
if (!listen_addr.getaddrinfo(host_str.c_str(), port_str.c_str(), family, socktype, protocol))
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat("unable to resolve hostname '%s'", host_str.c_str());
Close (listen_fd, eFDTypeSocket, NULL);
return eConnectionStatusError;
}
}
SocketAddress anyaddr;
if (anyaddr.SetToAnyAddress (family, port))
{
int err = ::bind (listen_fd, anyaddr, anyaddr.GetLength());
if (err == -1)
{
if (error_ptr)
error_ptr->SetErrorToErrno();
Close (listen_fd, eFDTypeSocket, NULL);
return eConnectionStatusError;
}
err = ::listen (listen_fd, 1);
if (err == -1)
{
if (error_ptr)
error_ptr->SetErrorToErrno();
Close (listen_fd, eFDTypeSocket, NULL);
return eConnectionStatusError;
}
// We were asked to listen on port zero which means we
// must now read the actual port that was given to us
// as port zero is a special code for "find an open port
// for me".
if (port == 0)
port = GetSocketPort(listen_fd);
// Set the port predicate since when doing a listen://<host>:<port>
// it often needs to accept the incoming connection which is a blocking
// system call. Allowing access to the bound port using a predicate allows
// us to wait for the port predicate to be set to a non-zero value from
// another thread in an efficient manor.
m_port_predicate.SetValue(port, eBroadcastAlways);
bool accept_connection = false;
// Loop until we are happy with our connection
while (!accept_connection)
{
struct sockaddr_in accept_addr;
::memset (&accept_addr, 0, sizeof accept_addr);
#if !(defined (__linux__) || defined(_MSC_VER))
accept_addr.sin_len = sizeof accept_addr;
#endif
socklen_t accept_addr_len = sizeof accept_addr;
int fd = ::accept (listen_fd, (struct sockaddr *)&accept_addr, &accept_addr_len);
if (fd == -1)
{
if (error_ptr)
error_ptr->SetErrorToErrno();
break;
}
if (listen_addr.sockaddr_in().sin_addr.s_addr == INADDR_ANY)
{
accept_connection = true;
m_fd_send = m_fd_recv = fd;
}
else
{
if (
#if !(defined(__linux__) || (defined(_MSC_VER)))
accept_addr_len == listen_addr.sockaddr_in().sin_len &&
#endif
accept_addr.sin_addr.s_addr == listen_addr.sockaddr_in().sin_addr.s_addr)
{
accept_connection = true;
m_fd_send = m_fd_recv = fd;
}
else
{
::close (fd);
m_fd_send = m_fd_recv = -1;
const uint8_t *accept_ip = (const uint8_t *)&accept_addr.sin_addr.s_addr;
const uint8_t *listen_ip = (const uint8_t *)&listen_addr.sockaddr_in().sin_addr.s_addr;
::fprintf (stderr, "error: rejecting incoming connection from %u.%u.%u.%u (expecting %u.%u.%u.%u)\n",
accept_ip[0], accept_ip[1], accept_ip[2], accept_ip[3],
listen_ip[0], listen_ip[1], listen_ip[2], listen_ip[3]);
}
}
}
if (m_fd_send == -1)
{
Close (listen_fd, eFDTypeSocket, NULL);
return eConnectionStatusError;
}
}
// We are done with the listen port
Close (listen_fd, eFDTypeSocket, NULL);
m_should_close_fd = true;
// Keep our TCP packets coming without any delays.
SetSocketOption (m_fd_send, IPPROTO_TCP, TCP_NODELAY, 1);
if (error_ptr)
error_ptr->Clear();
return eConnectionStatusSuccess;
}
ConnectionStatus
ConnectionFileDescriptor::ConnectTCP (const char *host_and_port, Error *error_ptr)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf ("%p ConnectionFileDescriptor::ConnectTCP (host/port = %s)", this, host_and_port);
Disconnect (NULL);
m_fd_send_type = m_fd_recv_type = eFDTypeSocket;
std::string host_str;
std::string port_str;
int32_t port = INT32_MIN;
if (!DecodeHostAndPort (host_and_port, host_str, port_str, port, error_ptr))
return eConnectionStatusError;
// Create the socket
m_fd_send = m_fd_recv = ::socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (m_fd_send == -1)
{
if (error_ptr)
error_ptr->SetErrorToErrno();
return eConnectionStatusError;
}
m_should_close_fd = true;
// Enable local address reuse
SetSocketOption (m_fd_send, SOL_SOCKET, SO_REUSEADDR, 1);
struct sockaddr_in sa;
::memset (&sa, 0, sizeof (sa));
sa.sin_family = AF_INET;
sa.sin_port = htons (port);
int inet_pton_result = ::inet_pton (AF_INET, host_str.c_str(), &sa.sin_addr);
if (inet_pton_result <= 0)
{
struct hostent *host_entry = gethostbyname (host_str.c_str());
if (host_entry)
host_str = ::inet_ntoa (*(struct in_addr *)*host_entry->h_addr_list);
inet_pton_result = ::inet_pton (AF_INET, host_str.c_str(), &sa.sin_addr);
if (inet_pton_result <= 0)
{
if (error_ptr)
{
if (inet_pton_result == -1)
error_ptr->SetErrorToErrno();
else
error_ptr->SetErrorStringWithFormat("invalid host string: '%s'", host_str.c_str());
}
Disconnect (NULL);
return eConnectionStatusError;
}
}
if (-1 == ::connect (m_fd_send, (const struct sockaddr *)&sa, sizeof(sa)))
{
if (error_ptr)
error_ptr->SetErrorToErrno();
Disconnect (NULL);
return eConnectionStatusError;
}
// Keep our TCP packets coming without any delays.
SetSocketOption (m_fd_send, IPPROTO_TCP, TCP_NODELAY, 1);
if (error_ptr)
error_ptr->Clear();
return eConnectionStatusSuccess;
}
ConnectionStatus
ConnectionFileDescriptor::ConnectUDP (const char *host_and_port, Error *error_ptr)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_CONNECTION));
if (log)
log->Printf ("%p ConnectionFileDescriptor::ConnectUDP (host/port = %s)", this, host_and_port);
Disconnect (NULL);
m_fd_send_type = m_fd_recv_type = eFDTypeSocketUDP;
std::string host_str;
std::string port_str;
int32_t port = INT32_MIN;
if (!DecodeHostAndPort (host_and_port, host_str, port_str, port, error_ptr))
return eConnectionStatusError;
// Setup the receiving end of the UDP connection on this localhost
// on port zero. After we bind to port zero we can read the port.
m_fd_recv = ::socket (AF_INET, SOCK_DGRAM, 0);
if (m_fd_recv == -1)
{
// Socket creation failed...
if (error_ptr)
error_ptr->SetErrorToErrno();
}
else
{
// Socket was created, now lets bind to the requested port
SocketAddress addr;
addr.SetToAnyAddress (AF_INET, 0);
if (::bind (m_fd_recv, addr, addr.GetLength()) == -1)
{
// Bind failed...
if (error_ptr)
error_ptr->SetErrorToErrno();
Disconnect (NULL);
}
}
if (m_fd_recv == -1)
return eConnectionStatusError;
// At this point we have setup the recieve port, now we need to
// setup the UDP send socket
struct addrinfo hints;
struct addrinfo *service_info_list = NULL;
::memset (&hints, 0, sizeof(hints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_DGRAM;
int err = ::getaddrinfo (host_str.c_str(), port_str.c_str(), &hints, &service_info_list);
if (err != 0)
{
if (error_ptr)
error_ptr->SetErrorStringWithFormat("getaddrinfo(%s, %s, &hints, &info) returned error %i (%s)",
host_str.c_str(),
port_str.c_str(),
err,
gai_strerror(err));
Disconnect (NULL);
return eConnectionStatusError;
}
for (struct addrinfo *service_info_ptr = service_info_list;
service_info_ptr != NULL;
service_info_ptr = service_info_ptr->ai_next)
{
m_fd_send = ::socket (service_info_ptr->ai_family,
service_info_ptr->ai_socktype,
service_info_ptr->ai_protocol);
if (m_fd_send != -1)
{
*m_udp_send_sockaddr = service_info_ptr;
break;
}
else
continue;
}
:: freeaddrinfo (service_info_list);
if (m_fd_send == -1)
{
Disconnect (NULL);
return eConnectionStatusError;
}
if (error_ptr)
error_ptr->Clear();
m_should_close_fd = true;
return eConnectionStatusSuccess;
}
#if defined(_WIN32)
typedef const char * set_socket_option_arg_type;
typedef char * get_socket_option_arg_type;
#else // #if defined(_WIN32)
typedef const void * set_socket_option_arg_type;
typedef void * get_socket_option_arg_type;
#endif // #if defined(_WIN32)
int
ConnectionFileDescriptor::GetSocketOption(int fd, int level, int option_name, int &option_value)
{
get_socket_option_arg_type option_value_p = reinterpret_cast<get_socket_option_arg_type>(&option_value);
socklen_t option_value_size = sizeof(int);
return ::getsockopt(fd, level, option_name, option_value_p, &option_value_size);
}
int
ConnectionFileDescriptor::SetSocketOption(int fd, int level, int option_name, int option_value)
{
set_socket_option_arg_type option_value_p = reinterpret_cast<get_socket_option_arg_type>(&option_value);
return ::setsockopt(fd, level, option_name, option_value_p, sizeof(option_value));
}
bool
ConnectionFileDescriptor::SetSocketReceiveTimeout (uint32_t timeout_usec)
{
switch (m_fd_recv_type)
{
case eFDTypeFile: // Other FD requireing read/write
break;
case eFDTypeSocket: // Socket requiring send/recv
case eFDTypeSocketUDP: // Unconnected UDP socket requiring sendto/recvfrom
{
// Check in case timeout for m_fd has already been set to this value
if (timeout_usec == m_socket_timeout_usec)
return true;
//printf ("ConnectionFileDescriptor::SetSocketReceiveTimeout (timeout_usec = %u)\n", timeout_usec);
struct timeval timeout;
if (timeout_usec == UINT32_MAX)
{
timeout.tv_sec = 0;
timeout.tv_usec = 0;
}
else if (timeout_usec == 0)
{
// Sending in zero does an infinite timeout, so set this as low
// as we can go to get an effective zero timeout...
timeout.tv_sec = 0;
timeout.tv_usec = 1;
}
else
{
timeout.tv_sec = timeout_usec / TimeValue::MicroSecPerSec;
timeout.tv_usec = timeout_usec % TimeValue::MicroSecPerSec;
}
if (::setsockopt (m_fd_recv, SOL_SOCKET, SO_RCVTIMEO, reinterpret_cast<get_socket_option_arg_type>(&timeout), sizeof(timeout)) == 0)
{
m_socket_timeout_usec = timeout_usec;
return true;
}
}
}
return false;
}
uint16_t
ConnectionFileDescriptor::GetSocketPort (int fd)
{
// We bound to port zero, so we need to figure out which port we actually bound to
if (fd >= 0)
{
SocketAddress sock_addr;
socklen_t sock_addr_len = sock_addr.GetMaxLength ();
if (::getsockname (fd, sock_addr, &sock_addr_len) == 0)
return sock_addr.GetPort ();
}
return 0;
}
// If the read file descriptor is a socket, then return
// the port number that is being used by the socket.
uint16_t
ConnectionFileDescriptor::GetReadPort () const
{
return ConnectionFileDescriptor::GetSocketPort (m_fd_recv);
}
// If the write file descriptor is a socket, then return
// the port number that is being used by the socket.
uint16_t
ConnectionFileDescriptor::GetWritePort () const
{
return ConnectionFileDescriptor::GetSocketPort (m_fd_send);
}
uint16_t
ConnectionFileDescriptor::GetBoundPort (uint32_t timeout_sec)
{
uint16_t bound_port = 0;
if (timeout_sec == UINT32_MAX)
m_port_predicate.WaitForValueNotEqualTo (0, bound_port);
else
{
TimeValue timeout = TimeValue::Now();
timeout.OffsetWithSeconds(timeout_sec);
m_port_predicate.WaitForValueNotEqualTo (0, bound_port, &timeout);
}
return bound_port;
}