llvm-project/polly/lib/Transform/ScheduleOptimizer.cpp

625 lines
22 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass the isl to calculate a schedule that is optimized for parallelism
// and tileablility. The algorithm used in isl is an optimized version of the
// algorithm described in following paper:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI 08, pages 101113. ACM, 2008.
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "isl/aff.h"
#include "isl/band.h"
#include "isl/constraint.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/schedule.h"
#include "isl/space.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/Dependences.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-opt-isl"
namespace polly {
bool DisablePollyTiling;
}
static cl::opt<bool, true>
DisableTiling("polly-no-tiling",
cl::desc("Disable tiling in the scheduler"),
cl::location(polly::DisablePollyTiling), cl::init(false),
cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
OptimizeDeps("polly-opt-optimize-only",
cl::desc("Only a certain kind of dependences (all/raw)"),
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<std::string>
SimplifyDeps("polly-opt-simplify-deps",
cl::desc("Dependences should be simplified (yes/no)"),
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> MaxConstantTerm(
"polly-opt-max-constant-term",
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> MaxCoefficient(
"polly-opt-max-coefficient",
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> FusionStrategy(
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
MaximizeBandDepth("polly-opt-maximize-bands",
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> DefaultTileSize(
"polly-default-tile-size",
cl::desc("The default tile size (if not enough were provided by"
" --polly-tile-sizes)"),
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int> TileSizes("polly-tile-sizes",
cl::desc("A tile size"
" for each loop dimension, filled with"
" --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
namespace {
class IslScheduleOptimizer : public ScopPass {
public:
static char ID;
explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
virtual bool runOnScop(Scop &S);
void printScop(llvm::raw_ostream &OS) const;
void getAnalysisUsage(AnalysisUsage &AU) const;
private:
isl_schedule *LastSchedule;
static void extendScattering(Scop &S, unsigned NewDimensions);
/// @brief Create a map that describes a n-dimensonal tiling.
///
/// getTileMap creates a map from a n-dimensional scattering space into an
/// 2*n-dimensional scattering space. The map describes a rectangular
/// tiling.
///
/// Example:
/// scheduleDimensions = 2, parameterDimensions = 1, TileSizes = <32, 64>
///
/// tileMap := [p0] -> {[s0, s1] -> [t0, t1, s0, s1]:
/// t0 % 32 = 0 and t0 <= s0 < t0 + 32 and
/// t1 % 64 = 0 and t1 <= s1 < t1 + 64}
///
/// Before tiling:
///
/// for (i = 0; i < N; i++)
/// for (j = 0; j < M; j++)
/// S(i,j)
///
/// After tiling:
///
/// for (t_i = 0; t_i < N; i+=32)
/// for (t_j = 0; t_j < M; j+=64)
/// for (i = t_i; i < min(t_i + 32, N); i++) | Unknown that N % 32 = 0
/// for (j = t_j; j < t_j + 64; j++) | Known that M % 64 = 0
/// S(i,j)
///
static isl_basic_map *getTileMap(isl_ctx *ctx, int scheduleDimensions,
isl_space *SpaceModel);
/// @brief Get the schedule for this band.
///
/// Polly applies transformations like tiling on top of the isl calculated
/// value. This can influence the number of scheduling dimension. The
/// number of schedule dimensions is returned in the parameter 'Dimension'.
static isl_union_map *getScheduleForBand(isl_band *Band, int *Dimensions);
/// @brief Create a map that pre-vectorizes one scheduling dimension.
///
/// getPrevectorMap creates a map that maps each input dimension to the same
/// output dimension, except for the dimension DimToVectorize.
/// DimToVectorize is strip mined by 'VectorWidth' and the newly created
/// point loop of DimToVectorize is moved to the innermost level.
///
/// Example (DimToVectorize=0, ScheduleDimensions=2, VectorWidth=4):
///
/// | Before transformation
/// |
/// | A[i,j] -> [i,j]
/// |
/// | for (i = 0; i < 128; i++)
/// | for (j = 0; j < 128; j++)
/// | A(i,j);
///
/// Prevector map:
/// [i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
///
/// | After transformation:
/// |
/// | A[i,j] -> [it,j,ip] : it % 4 = 0 and it <= ip <= it + 3 and i = ip
/// |
/// | for (it = 0; it < 128; it+=4)
/// | for (j = 0; j < 128; j++)
/// | for (ip = max(0,it); ip < min(128, it + 3); ip++)
/// | A(ip,j);
///
/// The goal of this transformation is to create a trivially vectorizable
/// loop. This means a parallel loop at the innermost level that has a
/// constant number of iterations corresponding to the target vector width.
///
/// This transformation creates a loop at the innermost level. The loop has
/// a constant number of iterations, if the number of loop iterations at
/// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
/// currently constant and not yet target specific. This function does not
/// reason about parallelism.
static isl_map *getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
int ScheduleDimensions, int VectorWidth = 4);
/// @brief Get the scheduling map for a list of bands.
///
/// Walk recursively the forest of bands to combine the schedules of the
/// individual bands to the overall schedule. In case tiling is requested,
/// the individual bands are tiled.
static isl_union_map *getScheduleForBandList(isl_band_list *BandList);
static isl_union_map *getScheduleMap(isl_schedule *Schedule);
using llvm::Pass::doFinalization;
virtual bool doFinalization() {
isl_schedule_free(LastSchedule);
LastSchedule = nullptr;
return true;
}
};
}
char IslScheduleOptimizer::ID = 0;
void IslScheduleOptimizer::extendScattering(Scop &S, unsigned NewDimensions) {
for (ScopStmt *Stmt : S) {
unsigned OldDimensions = Stmt->getNumScattering();
isl_space *Space;
isl_map *Map, *New;
Space = isl_space_alloc(Stmt->getIslCtx(), 0, OldDimensions, NewDimensions);
Map = isl_map_universe(Space);
for (unsigned i = 0; i < OldDimensions; i++)
Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
for (unsigned i = OldDimensions; i < NewDimensions; i++)
Map = isl_map_fix_si(Map, isl_dim_out, i, 0);
Map = isl_map_align_params(Map, S.getParamSpace());
New = isl_map_apply_range(Stmt->getScattering(), Map);
Stmt->setScattering(New);
}
}
isl_basic_map *IslScheduleOptimizer::getTileMap(isl_ctx *ctx,
int scheduleDimensions,
isl_space *SpaceModel) {
// We construct
//
// tileMap := [p0] -> {[s0, s1] -> [t0, t1, p0, p1, a0, a1]:
// s0 = a0 * 32 and s0 = p0 and t0 <= p0 < t0 + 64 and
// s1 = a1 * 64 and s1 = p1 and t1 <= p1 < t1 + 64}
//
// and project out the auxilary dimensions a0 and a1.
isl_space *Space =
isl_space_alloc(ctx, 0, scheduleDimensions, scheduleDimensions * 3);
isl_basic_map *tileMap = isl_basic_map_universe(isl_space_copy(Space));
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
for (int x = 0; x < scheduleDimensions; x++) {
int sX = x;
int tX = x;
int pX = scheduleDimensions + x;
int aX = 2 * scheduleDimensions + x;
int tileSize = (int)TileSizes.size() > x ? TileSizes[x] : DefaultTileSize;
assert(tileSize > 0 && "Invalid tile size");
isl_constraint *c;
// sX = aX * tileSize;
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, sX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, aX, -tileSize);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// pX = sX;
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_in, sX, -1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// tX <= pX
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, tX, -1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
// pX <= tX + (tileSize - 1)
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, tX, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, pX, -1);
isl_constraint_set_constant_si(c, tileSize - 1);
tileMap = isl_basic_map_add_constraint(tileMap, c);
}
// Project out auxilary dimensions.
//
// The auxilary dimensions are transformed into existentially quantified ones.
// This reduces the number of visible scattering dimensions and allows Cloog
// to produces better code.
tileMap = isl_basic_map_project_out(
tileMap, isl_dim_out, 2 * scheduleDimensions, scheduleDimensions);
isl_local_space_free(LocalSpace);
return tileMap;
}
isl_union_map *IslScheduleOptimizer::getScheduleForBand(isl_band *Band,
int *Dimensions) {
isl_union_map *PartialSchedule;
isl_ctx *ctx;
isl_space *Space;
isl_basic_map *TileMap;
isl_union_map *TileUMap;
PartialSchedule = isl_band_get_partial_schedule(Band);
*Dimensions = isl_band_n_member(Band);
if (DisableTiling)
return PartialSchedule;
// It does not make any sense to tile a band with just one dimension.
if (*Dimensions == 1)
return PartialSchedule;
ctx = isl_union_map_get_ctx(PartialSchedule);
Space = isl_union_map_get_space(PartialSchedule);
TileMap = getTileMap(ctx, *Dimensions, Space);
TileUMap = isl_union_map_from_map(isl_map_from_basic_map(TileMap));
TileUMap = isl_union_map_align_params(TileUMap, Space);
*Dimensions = 2 * *Dimensions;
return isl_union_map_apply_range(PartialSchedule, TileUMap);
}
isl_map *IslScheduleOptimizer::getPrevectorMap(isl_ctx *ctx, int DimToVectorize,
int ScheduleDimensions,
int VectorWidth) {
isl_space *Space;
isl_local_space *LocalSpace, *LocalSpaceRange;
isl_set *Modulo;
isl_map *TilingMap;
isl_constraint *c;
isl_aff *Aff;
int PointDimension; /* ip */
int TileDimension; /* it */
isl_val *VectorWidthMP;
assert(0 <= DimToVectorize && DimToVectorize < ScheduleDimensions);
Space = isl_space_alloc(ctx, 0, ScheduleDimensions, ScheduleDimensions + 1);
TilingMap = isl_map_universe(isl_space_copy(Space));
LocalSpace = isl_local_space_from_space(Space);
PointDimension = ScheduleDimensions;
TileDimension = DimToVectorize;
// Create an identity map for everything except DimToVectorize and map
// DimToVectorize to the point loop at the innermost dimension.
for (int i = 0; i < ScheduleDimensions; i++) {
c = isl_equality_alloc(isl_local_space_copy(LocalSpace));
c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
if (i == DimToVectorize)
c = isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1);
else
c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, 1);
TilingMap = isl_map_add_constraint(TilingMap, c);
}
// it % 'VectorWidth' = 0
LocalSpaceRange = isl_local_space_range(isl_local_space_copy(LocalSpace));
Aff = isl_aff_zero_on_domain(LocalSpaceRange);
Aff = isl_aff_set_constant_si(Aff, VectorWidth);
Aff = isl_aff_set_coefficient_si(Aff, isl_dim_in, TileDimension, 1);
VectorWidthMP = isl_val_int_from_si(ctx, VectorWidth);
Aff = isl_aff_mod_val(Aff, VectorWidthMP);
Modulo = isl_pw_aff_zero_set(isl_pw_aff_from_aff(Aff));
TilingMap = isl_map_intersect_range(TilingMap, Modulo);
// it <= ip
c = isl_inequality_alloc(isl_local_space_copy(LocalSpace));
isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, -1);
isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, 1);
TilingMap = isl_map_add_constraint(TilingMap, c);
// ip <= it + ('VectorWidth' - 1)
c = isl_inequality_alloc(LocalSpace);
isl_constraint_set_coefficient_si(c, isl_dim_out, TileDimension, 1);
isl_constraint_set_coefficient_si(c, isl_dim_out, PointDimension, -1);
isl_constraint_set_constant_si(c, VectorWidth - 1);
TilingMap = isl_map_add_constraint(TilingMap, c);
return TilingMap;
}
isl_union_map *
IslScheduleOptimizer::getScheduleForBandList(isl_band_list *BandList) {
int NumBands;
isl_union_map *Schedule;
isl_ctx *ctx;
ctx = isl_band_list_get_ctx(BandList);
NumBands = isl_band_list_n_band(BandList);
Schedule = isl_union_map_empty(isl_space_params_alloc(ctx, 0));
for (int i = 0; i < NumBands; i++) {
isl_band *Band;
isl_union_map *PartialSchedule;
int ScheduleDimensions;
isl_space *Space;
Band = isl_band_list_get_band(BandList, i);
PartialSchedule = getScheduleForBand(Band, &ScheduleDimensions);
Space = isl_union_map_get_space(PartialSchedule);
if (isl_band_has_children(Band)) {
isl_band_list *Children;
isl_union_map *SuffixSchedule;
Children = isl_band_get_children(Band);
SuffixSchedule = getScheduleForBandList(Children);
PartialSchedule =
isl_union_map_flat_range_product(PartialSchedule, SuffixSchedule);
isl_band_list_free(Children);
} else if (PollyVectorizerChoice != VECTORIZER_NONE) {
// In case we are at the innermost band, we try to prepare for
// vectorization. This means, we look for the innermost parallel loop
// and strip mine this loop to the innermost level using a strip-mine
// factor corresponding to the number of vector iterations.
int NumDims = isl_band_n_member(Band);
for (int j = NumDims - 1; j >= 0; j--) {
if (isl_band_member_is_coincident(Band, j)) {
isl_map *TileMap;
isl_union_map *TileUMap;
TileMap = getPrevectorMap(ctx, ScheduleDimensions - NumDims + j,
ScheduleDimensions);
TileUMap = isl_union_map_from_map(TileMap);
TileUMap =
isl_union_map_align_params(TileUMap, isl_space_copy(Space));
PartialSchedule =
isl_union_map_apply_range(PartialSchedule, TileUMap);
break;
}
}
}
Schedule = isl_union_map_union(Schedule, PartialSchedule);
isl_band_free(Band);
isl_space_free(Space);
}
return Schedule;
}
isl_union_map *IslScheduleOptimizer::getScheduleMap(isl_schedule *Schedule) {
isl_band_list *BandList = isl_schedule_get_band_forest(Schedule);
isl_union_map *ScheduleMap = getScheduleForBandList(BandList);
isl_band_list_free(BandList);
return ScheduleMap;
}
bool IslScheduleOptimizer::runOnScop(Scop &S) {
Dependences *D = &getAnalysis<Dependences>();
if (!D->hasValidDependences())
return false;
isl_schedule_free(LastSchedule);
LastSchedule = nullptr;
// Build input data.
int ValidityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
int ProximityKinds;
if (OptimizeDeps == "all")
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
else if (OptimizeDeps == "raw")
ProximityKinds = Dependences::TYPE_RAW;
else {
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
<< " Falling back to optimizing all dependences.\n";
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
}
isl_union_set *Domain = S.getDomains();
if (!Domain)
return false;
isl_union_map *Validity = D->getDependences(ValidityKinds);
isl_union_map *Proximity = D->getDependences(ProximityKinds);
// Simplify the dependences by removing the constraints introduced by the
// domains. This can speed up the scheduling time significantly, as large
// constant coefficients will be removed from the dependences. The
// introduction of some additional dependences reduces the possible
// transformations, but in most cases, such transformation do not seem to be
// interesting anyway. In some cases this option may stop the scheduler to
// find any schedule.
if (SimplifyDeps == "yes") {
Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
Proximity =
isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
} else if (SimplifyDeps != "no") {
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
"or 'no'. Falling back to default: 'yes'\n";
}
DEBUG(dbgs() << "\n\nCompute schedule from: ");
DEBUG(dbgs() << "Domain := "; isl_union_set_dump(Domain); dbgs() << ";\n");
DEBUG(dbgs() << "Proximity := "; isl_union_map_dump(Proximity);
dbgs() << ";\n");
DEBUG(dbgs() << "Validity := "; isl_union_map_dump(Validity);
dbgs() << ";\n");
int IslFusionStrategy;
if (FusionStrategy == "max") {
IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
} else if (FusionStrategy == "min") {
IslFusionStrategy = ISL_SCHEDULE_FUSE_MIN;
} else {
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
"fusion.\n";
IslFusionStrategy = ISL_SCHEDULE_FUSE_MAX;
}
int IslMaximizeBands;
if (MaximizeBandDepth == "yes") {
IslMaximizeBands = 1;
} else if (MaximizeBandDepth == "no") {
IslMaximizeBands = 0;
} else {
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
" or 'no'. Falling back to default: 'yes'\n";
IslMaximizeBands = 1;
}
isl_options_set_schedule_fuse(S.getIslCtx(), IslFusionStrategy);
isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands);
isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm);
isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient);
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);
isl_schedule_constraints *ScheduleConstraints;
ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
ScheduleConstraints =
isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
ScheduleConstraints = isl_schedule_constraints_set_validity(
ScheduleConstraints, isl_union_map_copy(Validity));
ScheduleConstraints =
isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
isl_schedule *Schedule;
Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);
// In cases the scheduler is not able to optimize the code, we just do not
// touch the schedule.
if (!Schedule)
return false;
DEBUG(dbgs() << "Schedule := "; isl_schedule_dump(Schedule); dbgs() << ";\n");
isl_union_map *ScheduleMap = getScheduleMap(Schedule);
for (ScopStmt *Stmt : S) {
isl_map *StmtSchedule;
isl_set *Domain = Stmt->getDomain();
isl_union_map *StmtBand;
StmtBand = isl_union_map_intersect_domain(isl_union_map_copy(ScheduleMap),
isl_union_set_from_set(Domain));
if (isl_union_map_is_empty(StmtBand)) {
StmtSchedule = isl_map_from_domain(isl_set_empty(Stmt->getDomainSpace()));
isl_union_map_free(StmtBand);
} else {
assert(isl_union_map_n_map(StmtBand) == 1);
StmtSchedule = isl_map_from_union_map(StmtBand);
}
Stmt->setScattering(StmtSchedule);
}
isl_union_map_free(ScheduleMap);
LastSchedule = Schedule;
unsigned MaxScatDims = 0;
for (ScopStmt *Stmt : S)
MaxScatDims = std::max(Stmt->getNumScattering(), MaxScatDims);
extendScattering(S, MaxScatDims);
return false;
}
void IslScheduleOptimizer::printScop(raw_ostream &OS) const {
isl_printer *p;
char *ScheduleStr;
OS << "Calculated schedule:\n";
if (!LastSchedule) {
OS << "n/a\n";
return;
}
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
p = isl_printer_print_schedule(p, LastSchedule);
ScheduleStr = isl_printer_get_str(p);
isl_printer_free(p);
OS << ScheduleStr << "\n";
}
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<Dependences>();
}
Pass *polly::createIslScheduleOptimizerPass() {
return new IslScheduleOptimizer();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(Dependences);
INITIALIZE_PASS_DEPENDENCY(ScopInfo);
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)