forked from OSchip/llvm-project
459 lines
19 KiB
C++
459 lines
19 KiB
C++
//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass optimizes scalar/vector interactions using target cost models. The
|
|
// transforms implemented here may not fit in traditional loop-based or SLP
|
|
// vectorization passes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Vectorize/VectorCombine.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "vector-combine"
|
|
STATISTIC(NumVecCmp, "Number of vector compares formed");
|
|
STATISTIC(NumVecBO, "Number of vector binops formed");
|
|
STATISTIC(NumScalarBO, "Number of scalar binops formed");
|
|
|
|
static cl::opt<bool> DisableVectorCombine(
|
|
"disable-vector-combine", cl::init(false), cl::Hidden,
|
|
cl::desc("Disable all vector combine transforms"));
|
|
|
|
static cl::opt<bool> DisableBinopExtractShuffle(
|
|
"disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
|
|
cl::desc("Disable binop extract to shuffle transforms"));
|
|
|
|
|
|
/// Compare the relative costs of 2 extracts followed by scalar operation vs.
|
|
/// vector operation(s) followed by extract. Return true if the existing
|
|
/// instructions are cheaper than a vector alternative. Otherwise, return false
|
|
/// and if one of the extracts should be transformed to a shufflevector, set
|
|
/// \p ConvertToShuffle to that extract instruction.
|
|
static bool isExtractExtractCheap(Instruction *Ext0, Instruction *Ext1,
|
|
unsigned Opcode,
|
|
const TargetTransformInfo &TTI,
|
|
Instruction *&ConvertToShuffle,
|
|
unsigned PreferredExtractIndex) {
|
|
assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
|
|
isa<ConstantInt>(Ext1->getOperand(1)) &&
|
|
"Expected constant extract indexes");
|
|
Type *ScalarTy = Ext0->getType();
|
|
auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
|
|
int ScalarOpCost, VectorOpCost;
|
|
|
|
// Get cost estimates for scalar and vector versions of the operation.
|
|
bool IsBinOp = Instruction::isBinaryOp(Opcode);
|
|
if (IsBinOp) {
|
|
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
|
|
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
|
|
} else {
|
|
assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
|
|
"Expected a compare");
|
|
ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
|
|
CmpInst::makeCmpResultType(ScalarTy));
|
|
VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
|
|
CmpInst::makeCmpResultType(VecTy));
|
|
}
|
|
|
|
// Get cost estimates for the extract elements. These costs will factor into
|
|
// both sequences.
|
|
unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
|
|
unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
|
|
|
|
int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement,
|
|
VecTy, Ext0Index);
|
|
int Extract1Cost = TTI.getVectorInstrCost(Instruction::ExtractElement,
|
|
VecTy, Ext1Index);
|
|
|
|
// A more expensive extract will always be replaced by a splat shuffle.
|
|
// For example, if Ext0 is more expensive:
|
|
// opcode (extelt V0, Ext0), (ext V1, Ext1) -->
|
|
// extelt (opcode (splat V0, Ext0), V1), Ext1
|
|
// TODO: Evaluate whether that always results in lowest cost. Alternatively,
|
|
// check the cost of creating a broadcast shuffle and shuffling both
|
|
// operands to element 0.
|
|
int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
|
|
|
|
// Extra uses of the extracts mean that we include those costs in the
|
|
// vector total because those instructions will not be eliminated.
|
|
int OldCost, NewCost;
|
|
if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
|
|
// Handle a special case. If the 2 extracts are identical, adjust the
|
|
// formulas to account for that. The extra use charge allows for either the
|
|
// CSE'd pattern or an unoptimized form with identical values:
|
|
// opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
|
|
bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
|
|
: !Ext0->hasOneUse() || !Ext1->hasOneUse();
|
|
OldCost = CheapExtractCost + ScalarOpCost;
|
|
NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
|
|
} else {
|
|
// Handle the general case. Each extract is actually a different value:
|
|
// opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
|
|
OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
|
|
NewCost = VectorOpCost + CheapExtractCost +
|
|
!Ext0->hasOneUse() * Extract0Cost +
|
|
!Ext1->hasOneUse() * Extract1Cost;
|
|
}
|
|
|
|
if (Ext0Index == Ext1Index) {
|
|
// If the extract indexes are identical, no shuffle is needed.
|
|
ConvertToShuffle = nullptr;
|
|
} else {
|
|
if (IsBinOp && DisableBinopExtractShuffle)
|
|
return true;
|
|
|
|
// If we are extracting from 2 different indexes, then one operand must be
|
|
// shuffled before performing the vector operation. The shuffle mask is
|
|
// undefined except for 1 lane that is being translated to the remaining
|
|
// extraction lane. Therefore, it is a splat shuffle. Ex:
|
|
// ShufMask = { undef, undef, 0, undef }
|
|
// TODO: The cost model has an option for a "broadcast" shuffle
|
|
// (splat-from-element-0), but no option for a more general splat.
|
|
NewCost +=
|
|
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
|
|
|
|
// The more expensive extract will be replaced by a shuffle. If the costs
|
|
// are equal and there is a preferred extract index, shuffle the opposite
|
|
// operand. Otherwise, replace the extract with the higher index.
|
|
if (Extract0Cost > Extract1Cost)
|
|
ConvertToShuffle = Ext0;
|
|
else if (Extract1Cost > Extract0Cost)
|
|
ConvertToShuffle = Ext1;
|
|
else if (PreferredExtractIndex == Ext0Index)
|
|
ConvertToShuffle = Ext1;
|
|
else if (PreferredExtractIndex == Ext1Index)
|
|
ConvertToShuffle = Ext0;
|
|
else
|
|
ConvertToShuffle = Ext0Index > Ext1Index ? Ext0 : Ext1;
|
|
}
|
|
|
|
// Aggressively form a vector op if the cost is equal because the transform
|
|
// may enable further optimization.
|
|
// Codegen can reverse this transform (scalarize) if it was not profitable.
|
|
return OldCost < NewCost;
|
|
}
|
|
|
|
/// Try to reduce extract element costs by converting scalar compares to vector
|
|
/// compares followed by extract.
|
|
/// cmp (ext0 V0, C), (ext1 V1, C)
|
|
static void foldExtExtCmp(Instruction *Ext0, Instruction *Ext1,
|
|
Instruction &I, const TargetTransformInfo &TTI) {
|
|
assert(isa<CmpInst>(&I) && "Expected a compare");
|
|
|
|
// cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
|
|
++NumVecCmp;
|
|
IRBuilder<> Builder(&I);
|
|
CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
|
|
Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
|
|
Value *VecCmp =
|
|
Ext0->getType()->isFloatingPointTy() ? Builder.CreateFCmp(Pred, V0, V1)
|
|
: Builder.CreateICmp(Pred, V0, V1);
|
|
Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1));
|
|
I.replaceAllUsesWith(Extract);
|
|
}
|
|
|
|
/// Try to reduce extract element costs by converting scalar binops to vector
|
|
/// binops followed by extract.
|
|
/// bo (ext0 V0, C), (ext1 V1, C)
|
|
static void foldExtExtBinop(Instruction *Ext0, Instruction *Ext1,
|
|
Instruction &I, const TargetTransformInfo &TTI) {
|
|
assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
|
|
|
|
// bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
|
|
++NumVecBO;
|
|
IRBuilder<> Builder(&I);
|
|
Value *V0 = Ext0->getOperand(0), *V1 = Ext1->getOperand(0);
|
|
Value *VecBO =
|
|
Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
|
|
|
|
// All IR flags are safe to back-propagate because any potential poison
|
|
// created in unused vector elements is discarded by the extract.
|
|
if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
|
|
VecBOInst->copyIRFlags(&I);
|
|
|
|
Value *Extract = Builder.CreateExtractElement(VecBO, Ext0->getOperand(1));
|
|
I.replaceAllUsesWith(Extract);
|
|
}
|
|
|
|
/// Match an instruction with extracted vector operands.
|
|
static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) {
|
|
// It is not safe to transform things like div, urem, etc. because we may
|
|
// create undefined behavior when executing those on unknown vector elements.
|
|
if (!isSafeToSpeculativelyExecute(&I))
|
|
return false;
|
|
|
|
Instruction *Ext0, *Ext1;
|
|
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
|
|
if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) &&
|
|
!match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1))))
|
|
return false;
|
|
|
|
Value *V0, *V1;
|
|
uint64_t C0, C1;
|
|
if (!match(Ext0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
|
|
!match(Ext1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
|
|
V0->getType() != V1->getType())
|
|
return false;
|
|
|
|
// If the scalar value 'I' is going to be re-inserted into a vector, then try
|
|
// to create an extract to that same element. The extract/insert can be
|
|
// reduced to a "select shuffle".
|
|
// TODO: If we add a larger pattern match that starts from an insert, this
|
|
// probably becomes unnecessary.
|
|
uint64_t InsertIndex = std::numeric_limits<uint64_t>::max();
|
|
if (I.hasOneUse())
|
|
match(I.user_back(),
|
|
m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
|
|
|
|
Instruction *ConvertToShuffle;
|
|
if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), TTI, ConvertToShuffle,
|
|
InsertIndex))
|
|
return false;
|
|
|
|
if (ConvertToShuffle) {
|
|
// The shuffle mask is undefined except for 1 lane that is being translated
|
|
// to the cheap extraction lane. Example:
|
|
// ShufMask = { 2, undef, undef, undef }
|
|
uint64_t SplatIndex = ConvertToShuffle == Ext0 ? C0 : C1;
|
|
uint64_t CheapExtIndex = ConvertToShuffle == Ext0 ? C1 : C0;
|
|
auto *VecTy = cast<VectorType>(V0->getType());
|
|
SmallVector<int, 32> ShufMask(VecTy->getNumElements(), -1);
|
|
ShufMask[CheapExtIndex] = SplatIndex;
|
|
IRBuilder<> Builder(ConvertToShuffle);
|
|
|
|
// extelt X, C --> extelt (splat X), C'
|
|
Value *Shuf = Builder.CreateShuffleVector(ConvertToShuffle->getOperand(0),
|
|
UndefValue::get(VecTy), ShufMask);
|
|
Value *NewExt = Builder.CreateExtractElement(Shuf, CheapExtIndex);
|
|
if (ConvertToShuffle == Ext0)
|
|
Ext0 = cast<Instruction>(NewExt);
|
|
else
|
|
Ext1 = cast<Instruction>(NewExt);
|
|
}
|
|
|
|
if (Pred != CmpInst::BAD_ICMP_PREDICATE)
|
|
foldExtExtCmp(Ext0, Ext1, I, TTI);
|
|
else
|
|
foldExtExtBinop(Ext0, Ext1, I, TTI);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// If this is a bitcast of a shuffle, try to bitcast the source vector to the
|
|
/// destination type followed by shuffle. This can enable further transforms by
|
|
/// moving bitcasts or shuffles together.
|
|
static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) {
|
|
Value *V;
|
|
ArrayRef<int> Mask;
|
|
if (!match(&I, m_BitCast(
|
|
m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
|
|
return false;
|
|
|
|
// Disallow non-vector casts and length-changing shuffles.
|
|
// TODO: We could allow any shuffle.
|
|
auto *DestTy = dyn_cast<VectorType>(I.getType());
|
|
auto *SrcTy = cast<VectorType>(V->getType());
|
|
if (!DestTy || I.getOperand(0)->getType() != SrcTy)
|
|
return false;
|
|
|
|
// The new shuffle must not cost more than the old shuffle. The bitcast is
|
|
// moved ahead of the shuffle, so assume that it has the same cost as before.
|
|
if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
|
|
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
|
|
return false;
|
|
|
|
unsigned DestNumElts = DestTy->getNumElements();
|
|
unsigned SrcNumElts = SrcTy->getNumElements();
|
|
SmallVector<int, 16> NewMask;
|
|
if (SrcNumElts <= DestNumElts) {
|
|
// The bitcast is from wide to narrow/equal elements. The shuffle mask can
|
|
// always be expanded to the equivalent form choosing narrower elements.
|
|
assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
|
|
unsigned ScaleFactor = DestNumElts / SrcNumElts;
|
|
narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
|
|
} else {
|
|
// The bitcast is from narrow elements to wide elements. The shuffle mask
|
|
// must choose consecutive elements to allow casting first.
|
|
assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
|
|
unsigned ScaleFactor = SrcNumElts / DestNumElts;
|
|
if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
|
|
return false;
|
|
}
|
|
// bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
|
|
IRBuilder<> Builder(&I);
|
|
Value *CastV = Builder.CreateBitCast(V, DestTy);
|
|
Value *Shuf =
|
|
Builder.CreateShuffleVector(CastV, UndefValue::get(DestTy), NewMask);
|
|
I.replaceAllUsesWith(Shuf);
|
|
return true;
|
|
}
|
|
|
|
/// Match a vector binop instruction with inserted scalar operands and convert
|
|
/// to scalar binop followed by insertelement.
|
|
static bool scalarizeBinop(Instruction &I, const TargetTransformInfo &TTI) {
|
|
Instruction *Ins0, *Ins1;
|
|
if (!match(&I, m_BinOp(m_Instruction(Ins0), m_Instruction(Ins1))))
|
|
return false;
|
|
|
|
// TODO: Deal with mismatched index constants and variable indexes?
|
|
Constant *VecC0, *VecC1;
|
|
Value *V0, *V1;
|
|
uint64_t Index;
|
|
if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
|
|
m_ConstantInt(Index))) ||
|
|
!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
|
|
m_SpecificInt(Index))))
|
|
return false;
|
|
|
|
Type *ScalarTy = V0->getType();
|
|
Type *VecTy = I.getType();
|
|
assert(VecTy->isVectorTy() && ScalarTy == V1->getType() &&
|
|
(ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy()) &&
|
|
"Unexpected types for insert into binop");
|
|
|
|
Instruction::BinaryOps Opcode = cast<BinaryOperator>(&I)->getOpcode();
|
|
int ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
|
|
int VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
|
|
|
|
// Get cost estimate for the insert element. This cost will factor into
|
|
// both sequences.
|
|
int InsertCost =
|
|
TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
|
|
int OldCost = InsertCost + InsertCost + VectorOpCost;
|
|
int NewCost = ScalarOpCost + InsertCost +
|
|
!Ins0->hasOneUse() * InsertCost +
|
|
!Ins1->hasOneUse() * InsertCost;
|
|
|
|
// We want to scalarize unless the vector variant actually has lower cost.
|
|
if (OldCost < NewCost)
|
|
return false;
|
|
|
|
// vec_bo (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
|
|
// inselt NewVecC, (scalar_bo V0, V1), Index
|
|
++NumScalarBO;
|
|
IRBuilder<> Builder(&I);
|
|
Value *Scalar = Builder.CreateBinOp(Opcode, V0, V1, I.getName() + ".scalar");
|
|
|
|
// All IR flags are safe to back-propagate. There is no potential for extra
|
|
// poison to be created by the scalar instruction.
|
|
if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
|
|
ScalarInst->copyIRFlags(&I);
|
|
|
|
// Fold the vector constants in the original vectors into a new base vector.
|
|
Constant *NewVecC = ConstantExpr::get(Opcode, VecC0, VecC1);
|
|
Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
|
|
I.replaceAllUsesWith(Insert);
|
|
Insert->takeName(&I);
|
|
return true;
|
|
}
|
|
|
|
/// This is the entry point for all transforms. Pass manager differences are
|
|
/// handled in the callers of this function.
|
|
static bool runImpl(Function &F, const TargetTransformInfo &TTI,
|
|
const DominatorTree &DT) {
|
|
if (DisableVectorCombine)
|
|
return false;
|
|
|
|
bool MadeChange = false;
|
|
for (BasicBlock &BB : F) {
|
|
// Ignore unreachable basic blocks.
|
|
if (!DT.isReachableFromEntry(&BB))
|
|
continue;
|
|
// Do not delete instructions under here and invalidate the iterator.
|
|
// Walk the block forwards to enable simple iterative chains of transforms.
|
|
// TODO: It could be more efficient to remove dead instructions
|
|
// iteratively in this loop rather than waiting until the end.
|
|
for (Instruction &I : BB) {
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
continue;
|
|
MadeChange |= foldExtractExtract(I, TTI);
|
|
MadeChange |= foldBitcastShuf(I, TTI);
|
|
MadeChange |= scalarizeBinop(I, TTI);
|
|
}
|
|
}
|
|
|
|
// We're done with transforms, so remove dead instructions.
|
|
if (MadeChange)
|
|
for (BasicBlock &BB : F)
|
|
SimplifyInstructionsInBlock(&BB);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
// Pass manager boilerplate below here.
|
|
|
|
namespace {
|
|
class VectorCombineLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
VectorCombineLegacyPass() : FunctionPass(ID) {
|
|
initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<BasicAAWrapperPass>();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
return runImpl(F, TTI, DT);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
char VectorCombineLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
|
|
"Optimize scalar/vector ops", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
|
|
"Optimize scalar/vector ops", false, false)
|
|
Pass *llvm::createVectorCombinePass() {
|
|
return new VectorCombineLegacyPass();
|
|
}
|
|
|
|
PreservedAnalyses VectorCombinePass::run(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
|
|
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
|
|
if (!runImpl(F, TTI, DT))
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<GlobalsAA>();
|
|
PA.preserve<AAManager>();
|
|
PA.preserve<BasicAA>();
|
|
return PA;
|
|
}
|