llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp

393 lines
15 KiB
C++

//===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
//
// This pass performs peephole optimizations to clean up ugly code
// sequences at the MachineInstruction layer. It runs at the end of
// the SSA phases, following VSX swap removal. A pass of dead code
// elimination follows this one for quick clean-up of any dead
// instructions introduced here. Although we could do this as callbacks
// from the generic peephole pass, this would have a couple of bad
// effects: it might remove optimization opportunities for VSX swap
// removal, and it would miss cleanups made possible following VSX
// swap removal.
//
//===---------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "ppc-mi-peepholes"
namespace llvm {
void initializePPCMIPeepholePass(PassRegistry&);
}
namespace {
struct PPCMIPeephole : public MachineFunctionPass {
static char ID;
const PPCInstrInfo *TII;
MachineFunction *MF;
MachineRegisterInfo *MRI;
PPCMIPeephole() : MachineFunctionPass(ID) {
initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
}
private:
// Initialize class variables.
void initialize(MachineFunction &MFParm);
// Perform peepholes.
bool simplifyCode(void);
// Find the "true" register represented by SrcReg (following chains
// of copies and subreg_to_reg operations).
unsigned lookThruCopyLike(unsigned SrcReg);
public:
// Main entry point for this pass.
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(*MF.getFunction()))
return false;
initialize(MF);
return simplifyCode();
}
};
// Initialize class variables.
void PPCMIPeephole::initialize(MachineFunction &MFParm) {
MF = &MFParm;
MRI = &MF->getRegInfo();
TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
DEBUG(MF->dump());
}
// Perform peephole optimizations.
bool PPCMIPeephole::simplifyCode(void) {
bool Simplified = false;
MachineInstr* ToErase = nullptr;
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
// If the previous instruction was marked for elimination,
// remove it now.
if (ToErase) {
ToErase->eraseFromParent();
ToErase = nullptr;
}
// Ignore debug instructions.
if (MI.isDebugValue())
continue;
// Per-opcode peepholes.
switch (MI.getOpcode()) {
default:
break;
case PPC::XXPERMDI: {
// Perform simplifications of 2x64 vector swaps and splats.
// A swap is identified by an immediate value of 2, and a splat
// is identified by an immediate value of 0 or 3.
int Immed = MI.getOperand(3).getImm();
if (Immed != 1) {
// For each of these simplifications, we need the two source
// regs to match. Unfortunately, MachineCSE ignores COPY and
// SUBREG_TO_REG, so for example we can see
// XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
// We have to look through chains of COPY and SUBREG_TO_REG
// to find the real source values for comparison.
unsigned TrueReg1 = lookThruCopyLike(MI.getOperand(1).getReg());
unsigned TrueReg2 = lookThruCopyLike(MI.getOperand(2).getReg());
if (TrueReg1 == TrueReg2
&& TargetRegisterInfo::isVirtualRegister(TrueReg1)) {
MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0;
// If this is a splat fed by a splatting load, the splat is
// redundant. Replace with a copy. This doesn't happen directly due
// to code in PPCDAGToDAGISel.cpp, but it can happen when converting
// a load of a double to a vector of 64-bit integers.
auto isConversionOfLoadAndSplat = [=]() -> bool {
if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
return false;
unsigned DefReg = lookThruCopyLike(DefMI->getOperand(1).getReg());
if (TargetRegisterInfo::isVirtualRegister(DefReg)) {
MachineInstr *LoadMI = MRI->getVRegDef(DefReg);
if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
return true;
}
return false;
};
if (DefMI && (Immed == 0 || Immed == 3)) {
if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) {
DEBUG(dbgs()
<< "Optimizing load-and-splat/splat "
"to load-and-splat/copy: ");
DEBUG(MI.dump());
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
MI.getOperand(0).getReg())
.add(MI.getOperand(1));
ToErase = &MI;
Simplified = true;
}
}
// If this is a splat or a swap fed by another splat, we
// can replace it with a copy.
if (DefOpc == PPC::XXPERMDI) {
unsigned FeedImmed = DefMI->getOperand(3).getImm();
unsigned FeedReg1
= lookThruCopyLike(DefMI->getOperand(1).getReg());
unsigned FeedReg2
= lookThruCopyLike(DefMI->getOperand(2).getReg());
if ((FeedImmed == 0 || FeedImmed == 3) && FeedReg1 == FeedReg2) {
DEBUG(dbgs()
<< "Optimizing splat/swap or splat/splat "
"to splat/copy: ");
DEBUG(MI.dump());
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
MI.getOperand(0).getReg())
.add(MI.getOperand(1));
ToErase = &MI;
Simplified = true;
}
// If this is a splat fed by a swap, we can simplify modify
// the splat to splat the other value from the swap's input
// parameter.
else if ((Immed == 0 || Immed == 3)
&& FeedImmed == 2 && FeedReg1 == FeedReg2) {
DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
DEBUG(MI.dump());
MI.getOperand(1).setReg(DefMI->getOperand(1).getReg());
MI.getOperand(2).setReg(DefMI->getOperand(2).getReg());
MI.getOperand(3).setImm(3 - Immed);
Simplified = true;
}
// If this is a swap fed by a swap, we can replace it
// with a copy from the first swap's input.
else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
DEBUG(MI.dump());
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
MI.getOperand(0).getReg())
.add(DefMI->getOperand(1));
ToErase = &MI;
Simplified = true;
}
} else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
(DefMI->getOperand(2).getImm() == 0 ||
DefMI->getOperand(2).getImm() == 3)) {
// Splat fed by another splat - switch the output of the first
// and remove the second.
DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
ToErase = &MI;
Simplified = true;
DEBUG(dbgs() << "Removing redundant splat: ");
DEBUG(MI.dump());
}
}
}
break;
}
case PPC::VSPLTB:
case PPC::VSPLTH:
case PPC::XXSPLTW: {
unsigned MyOpcode = MI.getOpcode();
unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
unsigned TrueReg = lookThruCopyLike(MI.getOperand(OpNo).getReg());
if (!TargetRegisterInfo::isVirtualRegister(TrueReg))
break;
MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
if (!DefMI)
break;
unsigned DefOpcode = DefMI->getOpcode();
auto isConvertOfSplat = [=]() -> bool {
if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
return false;
unsigned ConvReg = DefMI->getOperand(1).getReg();
if (!TargetRegisterInfo::isVirtualRegister(ConvReg))
return false;
MachineInstr *Splt = MRI->getVRegDef(ConvReg);
return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
Splt->getOpcode() == PPC::XXSPLTW);
};
bool AlreadySplat = (MyOpcode == DefOpcode) ||
(MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
(MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
(MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
(MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
(MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
(MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
// If the instruction[s] that feed this splat have already splat
// the value, this splat is redundant.
if (AlreadySplat) {
DEBUG(dbgs() << "Changing redundant splat to a copy: ");
DEBUG(MI.dump());
BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
MI.getOperand(0).getReg())
.add(MI.getOperand(OpNo));
ToErase = &MI;
Simplified = true;
}
// Splat fed by a shift. Usually when we align value to splat into
// vector element zero.
if (DefOpcode == PPC::XXSLDWI) {
unsigned ShiftRes = DefMI->getOperand(0).getReg();
unsigned ShiftOp1 = DefMI->getOperand(1).getReg();
unsigned ShiftOp2 = DefMI->getOperand(2).getReg();
unsigned ShiftImm = DefMI->getOperand(3).getImm();
unsigned SplatImm = MI.getOperand(2).getImm();
if (ShiftOp1 == ShiftOp2) {
unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
if (MRI->hasOneNonDBGUse(ShiftRes)) {
DEBUG(dbgs() << "Removing redundant shift: ");
DEBUG(DefMI->dump());
ToErase = DefMI;
}
Simplified = true;
DEBUG(dbgs() << "Changing splat immediate from " << SplatImm <<
" to " << NewElem << " in instruction: ");
DEBUG(MI.dump());
MI.getOperand(1).setReg(ShiftOp1);
MI.getOperand(2).setImm(NewElem);
}
}
break;
}
case PPC::XVCVDPSP: {
// If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
unsigned TrueReg = lookThruCopyLike(MI.getOperand(1).getReg());
if (!TargetRegisterInfo::isVirtualRegister(TrueReg))
break;
MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
// This can occur when building a vector of single precision or integer
// values.
if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
unsigned DefsReg1 = lookThruCopyLike(DefMI->getOperand(1).getReg());
unsigned DefsReg2 = lookThruCopyLike(DefMI->getOperand(2).getReg());
if (!TargetRegisterInfo::isVirtualRegister(DefsReg1) ||
!TargetRegisterInfo::isVirtualRegister(DefsReg2))
break;
MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
if (!P1 || !P2)
break;
// Remove the passed FRSP instruction if it only feeds this MI and
// set any uses of that FRSP (in this MI) to the source of the FRSP.
auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
if (RoundInstr->getOpcode() == PPC::FRSP &&
MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
Simplified = true;
unsigned ConvReg1 = RoundInstr->getOperand(1).getReg();
unsigned FRSPDefines = RoundInstr->getOperand(0).getReg();
MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
if (Use.getOperand(i).isReg() &&
Use.getOperand(i).getReg() == FRSPDefines)
Use.getOperand(i).setReg(ConvReg1);
DEBUG(dbgs() << "Removing redundant FRSP:\n");
DEBUG(RoundInstr->dump());
DEBUG(dbgs() << "As it feeds instruction:\n");
DEBUG(MI.dump());
DEBUG(dbgs() << "Through instruction:\n");
DEBUG(DefMI->dump());
RoundInstr->eraseFromParent();
}
};
// If the input to XVCVDPSP is a vector that was built (even
// partially) out of FRSP's, the FRSP(s) can safely be removed
// since this instruction performs the same operation.
if (P1 != P2) {
removeFRSPIfPossible(P1);
removeFRSPIfPossible(P2);
break;
}
removeFRSPIfPossible(P1);
}
break;
}
}
}
// If the last instruction was marked for elimination,
// remove it now.
if (ToErase) {
ToErase->eraseFromParent();
ToErase = nullptr;
}
}
return Simplified;
}
// This is used to find the "true" source register for an
// XXPERMDI instruction, since MachineCSE does not handle the
// "copy-like" operations (Copy and SubregToReg). Returns
// the original SrcReg unless it is the target of a copy-like
// operation, in which case we chain backwards through all
// such operations to the ultimate source register. If a
// physical register is encountered, we stop the search.
unsigned PPCMIPeephole::lookThruCopyLike(unsigned SrcReg) {
while (true) {
MachineInstr *MI = MRI->getVRegDef(SrcReg);
if (!MI->isCopyLike())
return SrcReg;
unsigned CopySrcReg;
if (MI->isCopy())
CopySrcReg = MI->getOperand(1).getReg();
else {
assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
CopySrcReg = MI->getOperand(2).getReg();
}
if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg))
return CopySrcReg;
SrcReg = CopySrcReg;
}
}
} // end default namespace
INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
"PowerPC MI Peephole Optimization", false, false)
INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
"PowerPC MI Peephole Optimization", false, false)
char PPCMIPeephole::ID = 0;
FunctionPass*
llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }