forked from OSchip/llvm-project
a144fb148b
As a CFG is often structured we can simplify the steps performed during domain generation. When we push domain information we can utilize the information from a block A to build the domain of a block B, if A dominates B. When we pull domain information we can use information from a block A to build the domain of a block B if B post-dominates A. This patch implements both ideas and thereby simplifies domains that were not simplified by isl. For the FINAL basic block in test/ScopInfo/complex-successor-structure-3.ll . we used to build a universe set with 81 basic sets. Now it actually is represented as universe set. While the initial idea to utilize the graph structure depended on the dominator and post-dominator tree we can use the available region information as a coarse grained replacement. To this end we push the region entry domain to the region exit and pull it from the region entry for the region exit. Differential Revision: http://reviews.llvm.org/D18450 llvm-svn: 264789 |
||
---|---|---|
.. | ||
cmake | ||
docs | ||
include/polly | ||
lib | ||
test | ||
tools | ||
utils | ||
www | ||
.arcconfig | ||
.arclint | ||
.gitattributes | ||
.gitignore | ||
CMakeLists.txt | ||
CREDITS.txt | ||
LICENSE.txt | ||
README |
README
Polly - Polyhedral optimizations for LLVM ----------------------------------------- http://polly.llvm.org/ Polly uses a mathematical representation, the polyhedral model, to represent and transform loops and other control flow structures. Using an abstract representation it is possible to reason about transformations in a more general way and to use highly optimized linear programming libraries to figure out the optimal loop structure. These transformations can be used to do constant propagation through arrays, remove dead loop iterations, optimize loops for cache locality, optimize arrays, apply advanced automatic parallelization, drive vectorization, or they can be used to do software pipelining.