forked from OSchip/llvm-project
721 lines
26 KiB
C++
721 lines
26 KiB
C++
//===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BlockGenerator and VectorBlockGenerator classes,
|
|
// which generate sequential code and vectorized code for a polyhedral
|
|
// statement, respectively.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/ScopInfo.h"
|
|
#include "isl/aff.h"
|
|
#include "isl/ast.h"
|
|
#include "isl/ast_build.h"
|
|
#include "isl/set.h"
|
|
#include "polly/CodeGen/BlockGenerators.h"
|
|
#include "polly/CodeGen/CodeGeneration.h"
|
|
#include "polly/CodeGen/IslExprBuilder.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/Support/GICHelper.h"
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
static cl::opt<bool> Aligned("enable-polly-aligned",
|
|
cl::desc("Assumed aligned memory accesses."),
|
|
cl::Hidden, cl::init(false), cl::ZeroOrMore,
|
|
cl::cat(PollyCategory));
|
|
|
|
bool polly::canSynthesize(const Instruction *I, const llvm::LoopInfo *LI,
|
|
ScalarEvolution *SE, const Region *R) {
|
|
if (!I || !SE->isSCEVable(I->getType()))
|
|
return false;
|
|
|
|
if (const SCEV *Scev = SE->getSCEV(const_cast<Instruction *>(I)))
|
|
if (!isa<SCEVCouldNotCompute>(Scev))
|
|
if (!hasScalarDepsInsideRegion(Scev, R))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool polly::isIgnoredIntrinsic(const Value *V) {
|
|
if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
|
|
switch (IT->getIntrinsicID()) {
|
|
// Lifetime markers are supported/ignored.
|
|
case llvm::Intrinsic::lifetime_start:
|
|
case llvm::Intrinsic::lifetime_end:
|
|
// Invariant markers are supported/ignored.
|
|
case llvm::Intrinsic::invariant_start:
|
|
case llvm::Intrinsic::invariant_end:
|
|
// Some misc annotations are supported/ignored.
|
|
case llvm::Intrinsic::var_annotation:
|
|
case llvm::Intrinsic::ptr_annotation:
|
|
case llvm::Intrinsic::annotation:
|
|
case llvm::Intrinsic::donothing:
|
|
case llvm::Intrinsic::assume:
|
|
case llvm::Intrinsic::expect:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
BlockGenerator::BlockGenerator(PollyIRBuilder &B, LoopInfo &LI,
|
|
ScalarEvolution &SE, DominatorTree &DT,
|
|
IslExprBuilder *ExprBuilder)
|
|
: Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT) {}
|
|
|
|
Value *BlockGenerator::getNewValue(ScopStmt &Stmt, const Value *Old,
|
|
ValueMapT &BBMap, ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S, Loop *L) const {
|
|
// We assume constants never change.
|
|
// This avoids map lookups for many calls to this function.
|
|
if (isa<Constant>(Old))
|
|
return const_cast<Value *>(Old);
|
|
|
|
if (Value *New = GlobalMap.lookup(Old)) {
|
|
if (Old->getType()->getScalarSizeInBits() <
|
|
New->getType()->getScalarSizeInBits())
|
|
New = Builder.CreateTruncOrBitCast(New, Old->getType());
|
|
|
|
return New;
|
|
}
|
|
|
|
if (Value *New = BBMap.lookup(Old))
|
|
return New;
|
|
|
|
if (SE.isSCEVable(Old->getType()))
|
|
if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) {
|
|
if (!isa<SCEVCouldNotCompute>(Scev)) {
|
|
const SCEV *NewScev = apply(Scev, LTS, SE);
|
|
ValueToValueMap VTV;
|
|
VTV.insert(BBMap.begin(), BBMap.end());
|
|
VTV.insert(GlobalMap.begin(), GlobalMap.end());
|
|
NewScev = SCEVParameterRewriter::rewrite(NewScev, SE, VTV);
|
|
SCEVExpander Expander(SE, "polly");
|
|
Value *Expanded = Expander.expandCodeFor(NewScev, Old->getType(),
|
|
Builder.GetInsertPoint());
|
|
|
|
BBMap[Old] = Expanded;
|
|
return Expanded;
|
|
}
|
|
}
|
|
|
|
// A scop-constant value defined by a global or a function parameter.
|
|
if (isa<GlobalValue>(Old) || isa<Argument>(Old))
|
|
return const_cast<Value *>(Old);
|
|
|
|
// A scop-constant value defined by an instruction executed outside the scop.
|
|
if (const Instruction *Inst = dyn_cast<Instruction>(Old))
|
|
if (!Stmt.getParent()->getRegion().contains(Inst->getParent()))
|
|
return const_cast<Value *>(Old);
|
|
|
|
// The scalar dependence is neither available nor SCEVCodegenable.
|
|
llvm_unreachable("Unexpected scalar dependence in region!");
|
|
return nullptr;
|
|
}
|
|
|
|
void BlockGenerator::copyInstScalar(ScopStmt &Stmt, const Instruction *Inst,
|
|
ValueMapT &BBMap, ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
// We do not generate debug intrinsics as we did not investigate how to
|
|
// copy them correctly. At the current state, they just crash the code
|
|
// generation as the meta-data operands are not correctly copied.
|
|
if (isa<DbgInfoIntrinsic>(Inst))
|
|
return;
|
|
|
|
Instruction *NewInst = Inst->clone();
|
|
|
|
// Replace old operands with the new ones.
|
|
for (Value *OldOperand : Inst->operands()) {
|
|
Value *NewOperand = getNewValue(Stmt, OldOperand, BBMap, GlobalMap, LTS,
|
|
getLoopForInst(Inst));
|
|
|
|
if (!NewOperand) {
|
|
assert(!isa<StoreInst>(NewInst) &&
|
|
"Store instructions are always needed!");
|
|
delete NewInst;
|
|
return;
|
|
}
|
|
|
|
NewInst->replaceUsesOfWith(OldOperand, NewOperand);
|
|
}
|
|
|
|
Builder.Insert(NewInst);
|
|
BBMap[Inst] = NewInst;
|
|
|
|
if (!NewInst->getType()->isVoidTy())
|
|
NewInst->setName("p_" + Inst->getName());
|
|
}
|
|
|
|
Value *BlockGenerator::getNewAccessOperand(ScopStmt &Stmt,
|
|
const MemoryAccess &MA) {
|
|
isl_pw_multi_aff *PWAccRel;
|
|
isl_union_map *Schedule;
|
|
isl_ast_expr *Expr;
|
|
isl_ast_build *Build = Stmt.getAstBuild();
|
|
|
|
assert(ExprBuilder && Build &&
|
|
"Cannot generate new value without IslExprBuilder!");
|
|
|
|
Schedule = isl_ast_build_get_schedule(Build);
|
|
PWAccRel = MA.applyScheduleToAccessRelation(Schedule);
|
|
|
|
Expr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
|
|
Expr = isl_ast_expr_address_of(Expr);
|
|
|
|
return ExprBuilder->create(Expr);
|
|
}
|
|
|
|
Value *BlockGenerator::generateLocationAccessed(
|
|
ScopStmt &Stmt, const Instruction *Inst, const Value *Pointer,
|
|
ValueMapT &BBMap, ValueMapT &GlobalMap, LoopToScevMapT <S) {
|
|
const MemoryAccess &MA = Stmt.getAccessFor(Inst);
|
|
|
|
Value *NewPointer;
|
|
if (MA.hasNewAccessRelation())
|
|
NewPointer = getNewAccessOperand(Stmt, MA);
|
|
else
|
|
NewPointer =
|
|
getNewValue(Stmt, Pointer, BBMap, GlobalMap, LTS, getLoopForInst(Inst));
|
|
|
|
return NewPointer;
|
|
}
|
|
|
|
Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
|
|
return LI.getLoopFor(Inst->getParent());
|
|
}
|
|
|
|
Value *BlockGenerator::generateScalarLoad(ScopStmt &Stmt, const LoadInst *Load,
|
|
ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
Value *NewPointer =
|
|
generateLocationAccessed(Stmt, Load, Pointer, BBMap, GlobalMap, LTS);
|
|
Value *ScalarLoad = Builder.CreateAlignedLoad(
|
|
NewPointer, Load->getAlignment(), Load->getName() + "_p_scalar_");
|
|
return ScalarLoad;
|
|
}
|
|
|
|
Value *BlockGenerator::generateScalarStore(ScopStmt &Stmt,
|
|
const StoreInst *Store,
|
|
ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
const Value *Pointer = Store->getPointerOperand();
|
|
Value *NewPointer =
|
|
generateLocationAccessed(Stmt, Store, Pointer, BBMap, GlobalMap, LTS);
|
|
Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap,
|
|
GlobalMap, LTS, getLoopForInst(Store));
|
|
|
|
Value *NewStore = Builder.CreateAlignedStore(ValueOperand, NewPointer,
|
|
Store->getAlignment());
|
|
return NewStore;
|
|
}
|
|
|
|
void BlockGenerator::copyInstruction(ScopStmt &Stmt, const Instruction *Inst,
|
|
ValueMapT &BBMap, ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
// Terminator instructions control the control flow. They are explicitly
|
|
// expressed in the clast and do not need to be copied.
|
|
if (Inst->isTerminator())
|
|
return;
|
|
|
|
if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()))
|
|
return;
|
|
|
|
if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
|
|
Value *NewLoad = generateScalarLoad(Stmt, Load, BBMap, GlobalMap, LTS);
|
|
// Compute NewLoad before its insertion in BBMap to make the insertion
|
|
// deterministic.
|
|
BBMap[Load] = NewLoad;
|
|
return;
|
|
}
|
|
|
|
if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
|
|
Value *NewStore = generateScalarStore(Stmt, Store, BBMap, GlobalMap, LTS);
|
|
// Compute NewStore before its insertion in BBMap to make the insertion
|
|
// deterministic.
|
|
BBMap[Store] = NewStore;
|
|
return;
|
|
}
|
|
|
|
// Skip some special intrinsics for which we do not adjust the semantics to
|
|
// the new schedule. All others are handled like every other instruction.
|
|
if (auto *IT = dyn_cast<IntrinsicInst>(Inst)) {
|
|
switch (IT->getIntrinsicID()) {
|
|
// Lifetime markers are ignored.
|
|
case llvm::Intrinsic::lifetime_start:
|
|
case llvm::Intrinsic::lifetime_end:
|
|
// Invariant markers are ignored.
|
|
case llvm::Intrinsic::invariant_start:
|
|
case llvm::Intrinsic::invariant_end:
|
|
// Some misc annotations are ignored.
|
|
case llvm::Intrinsic::var_annotation:
|
|
case llvm::Intrinsic::ptr_annotation:
|
|
case llvm::Intrinsic::annotation:
|
|
case llvm::Intrinsic::donothing:
|
|
case llvm::Intrinsic::assume:
|
|
case llvm::Intrinsic::expect:
|
|
return;
|
|
default:
|
|
// Other intrinsics are copied.
|
|
break;
|
|
}
|
|
}
|
|
|
|
copyInstScalar(Stmt, Inst, BBMap, GlobalMap, LTS);
|
|
}
|
|
|
|
void BlockGenerator::copyStmt(ScopStmt &Stmt, ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
assert(Stmt.isBlockStmt() &&
|
|
"Only block statements can be copied by the block generator");
|
|
|
|
ValueMapT BBMap;
|
|
|
|
BasicBlock *BB = Stmt.getBasicBlock();
|
|
copyBB(Stmt, BB, BBMap, GlobalMap, LTS);
|
|
}
|
|
|
|
BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
|
|
ValueMapT &BBMap, ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
BasicBlock *CopyBB =
|
|
SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
|
|
CopyBB->setName("polly.stmt." + BB->getName());
|
|
Builder.SetInsertPoint(CopyBB->begin());
|
|
|
|
for (Instruction &Inst : *BB)
|
|
copyInstruction(Stmt, &Inst, BBMap, GlobalMap, LTS);
|
|
|
|
return CopyBB;
|
|
}
|
|
|
|
VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
|
|
VectorValueMapT &GlobalMaps,
|
|
std::vector<LoopToScevMapT> &VLTS,
|
|
isl_map *Schedule)
|
|
: BlockGenerator(BlockGen), GlobalMaps(GlobalMaps), VLTS(VLTS),
|
|
Schedule(Schedule) {
|
|
assert(GlobalMaps.size() > 1 && "Only one vector lane found");
|
|
assert(Schedule && "No statement domain provided");
|
|
}
|
|
|
|
Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, const Value *Old,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps,
|
|
Loop *L) {
|
|
if (Value *NewValue = VectorMap.lookup(Old))
|
|
return NewValue;
|
|
|
|
int Width = getVectorWidth();
|
|
|
|
Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
|
|
|
|
for (int Lane = 0; Lane < Width; Lane++)
|
|
Vector = Builder.CreateInsertElement(
|
|
Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], GlobalMaps[Lane],
|
|
VLTS[Lane], L),
|
|
Builder.getInt32(Lane));
|
|
|
|
VectorMap[Old] = Vector;
|
|
|
|
return Vector;
|
|
}
|
|
|
|
Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
|
|
PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
|
|
assert(PointerTy && "PointerType expected");
|
|
|
|
Type *ScalarType = PointerTy->getElementType();
|
|
VectorType *VectorType = VectorType::get(ScalarType, Width);
|
|
|
|
return PointerType::getUnqual(VectorType);
|
|
}
|
|
|
|
Value *VectorBlockGenerator::generateStrideOneLoad(
|
|
ScopStmt &Stmt, const LoadInst *Load, VectorValueMapT &ScalarMaps,
|
|
bool NegativeStride = false) {
|
|
unsigned VectorWidth = getVectorWidth();
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
|
|
unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
|
|
|
|
Value *NewPointer = nullptr;
|
|
NewPointer = generateLocationAccessed(Stmt, Load, Pointer, ScalarMaps[Offset],
|
|
GlobalMaps[Offset], VLTS[Offset]);
|
|
Value *VectorPtr =
|
|
Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
|
|
LoadInst *VecLoad =
|
|
Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
|
|
if (!Aligned)
|
|
VecLoad->setAlignment(8);
|
|
|
|
if (NegativeStride) {
|
|
SmallVector<Constant *, 16> Indices;
|
|
for (int i = VectorWidth - 1; i >= 0; i--)
|
|
Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
|
|
Constant *SV = llvm::ConstantVector::get(Indices);
|
|
Value *RevVecLoad = Builder.CreateShuffleVector(
|
|
VecLoad, VecLoad, SV, Load->getName() + "_reverse");
|
|
return RevVecLoad;
|
|
}
|
|
|
|
return VecLoad;
|
|
}
|
|
|
|
Value *VectorBlockGenerator::generateStrideZeroLoad(ScopStmt &Stmt,
|
|
const LoadInst *Load,
|
|
ValueMapT &BBMap) {
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
|
|
Value *NewPointer = generateLocationAccessed(Stmt, Load, Pointer, BBMap,
|
|
GlobalMaps[0], VLTS[0]);
|
|
Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
|
|
Load->getName() + "_p_vec_p");
|
|
LoadInst *ScalarLoad =
|
|
Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
|
|
|
|
if (!Aligned)
|
|
ScalarLoad->setAlignment(8);
|
|
|
|
Constant *SplatVector = Constant::getNullValue(
|
|
VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
|
|
|
|
Value *VectorLoad = Builder.CreateShuffleVector(
|
|
ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
|
|
return VectorLoad;
|
|
}
|
|
|
|
Value *VectorBlockGenerator::generateUnknownStrideLoad(
|
|
ScopStmt &Stmt, const LoadInst *Load, VectorValueMapT &ScalarMaps) {
|
|
int VectorWidth = getVectorWidth();
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
VectorType *VectorType = VectorType::get(
|
|
dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
|
|
|
|
Value *Vector = UndefValue::get(VectorType);
|
|
|
|
for (int i = 0; i < VectorWidth; i++) {
|
|
Value *NewPointer = generateLocationAccessed(
|
|
Stmt, Load, Pointer, ScalarMaps[i], GlobalMaps[i], VLTS[i]);
|
|
Value *ScalarLoad =
|
|
Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
|
|
Vector = Builder.CreateInsertElement(
|
|
Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
|
|
}
|
|
|
|
return Vector;
|
|
}
|
|
|
|
void VectorBlockGenerator::generateLoad(ScopStmt &Stmt, const LoadInst *Load,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
if (PollyVectorizerChoice >= VECTORIZER_FIRST_NEED_GROUPED_UNROLL ||
|
|
!VectorType::isValidElementType(Load->getType())) {
|
|
for (int i = 0; i < getVectorWidth(); i++)
|
|
ScalarMaps[i][Load] =
|
|
generateScalarLoad(Stmt, Load, ScalarMaps[i], GlobalMaps[i], VLTS[i]);
|
|
return;
|
|
}
|
|
|
|
const MemoryAccess &Access = Stmt.getAccessFor(Load);
|
|
|
|
// Make sure we have scalar values available to access the pointer to
|
|
// the data location.
|
|
extractScalarValues(Load, VectorMap, ScalarMaps);
|
|
|
|
Value *NewLoad;
|
|
if (Access.isStrideZero(isl_map_copy(Schedule)))
|
|
NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0]);
|
|
else if (Access.isStrideOne(isl_map_copy(Schedule)))
|
|
NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps);
|
|
else if (Access.isStrideX(isl_map_copy(Schedule), -1))
|
|
NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, true);
|
|
else
|
|
NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps);
|
|
|
|
VectorMap[Load] = NewLoad;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt,
|
|
const UnaryInstruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
int VectorWidth = getVectorWidth();
|
|
Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
|
|
ScalarMaps, getLoopForInst(Inst));
|
|
|
|
assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
|
|
|
|
const CastInst *Cast = dyn_cast<CastInst>(Inst);
|
|
VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
|
|
VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
|
|
}
|
|
|
|
void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt,
|
|
const BinaryOperator *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
Loop *L = getLoopForInst(Inst);
|
|
Value *OpZero = Inst->getOperand(0);
|
|
Value *OpOne = Inst->getOperand(1);
|
|
|
|
Value *NewOpZero, *NewOpOne;
|
|
NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
|
|
NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
|
|
|
|
Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
|
|
Inst->getName() + "p_vec");
|
|
VectorMap[Inst] = NewInst;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyStore(ScopStmt &Stmt, const StoreInst *Store,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
const MemoryAccess &Access = Stmt.getAccessFor(Store);
|
|
|
|
const Value *Pointer = Store->getPointerOperand();
|
|
Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
|
|
ScalarMaps, getLoopForInst(Store));
|
|
|
|
// Make sure we have scalar values available to access the pointer to
|
|
// the data location.
|
|
extractScalarValues(Store, VectorMap, ScalarMaps);
|
|
|
|
if (Access.isStrideOne(isl_map_copy(Schedule))) {
|
|
Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
|
|
Value *NewPointer = generateLocationAccessed(
|
|
Stmt, Store, Pointer, ScalarMaps[0], GlobalMaps[0], VLTS[0]);
|
|
|
|
Value *VectorPtr =
|
|
Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
|
|
StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
|
|
|
|
if (!Aligned)
|
|
Store->setAlignment(8);
|
|
} else {
|
|
for (unsigned i = 0; i < ScalarMaps.size(); i++) {
|
|
Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
|
|
Value *NewPointer = generateLocationAccessed(
|
|
Stmt, Store, Pointer, ScalarMaps[i], GlobalMaps[i], VLTS[i]);
|
|
Builder.CreateStore(Scalar, NewPointer);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
|
|
ValueMapT &VectorMap) {
|
|
for (Value *Operand : Inst->operands())
|
|
if (VectorMap.count(Operand))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
bool HasVectorOperand = false;
|
|
int VectorWidth = getVectorWidth();
|
|
|
|
for (Value *Operand : Inst->operands()) {
|
|
ValueMapT::iterator VecOp = VectorMap.find(Operand);
|
|
|
|
if (VecOp == VectorMap.end())
|
|
continue;
|
|
|
|
HasVectorOperand = true;
|
|
Value *NewVector = VecOp->second;
|
|
|
|
for (int i = 0; i < VectorWidth; ++i) {
|
|
ValueMapT &SM = ScalarMaps[i];
|
|
|
|
// If there is one scalar extracted, all scalar elements should have
|
|
// already been extracted by the code here. So no need to check for the
|
|
// existance of all of them.
|
|
if (SM.count(Operand))
|
|
break;
|
|
|
|
SM[Operand] =
|
|
Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
|
|
}
|
|
}
|
|
|
|
return HasVectorOperand;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyInstScalarized(ScopStmt &Stmt,
|
|
const Instruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
bool HasVectorOperand;
|
|
int VectorWidth = getVectorWidth();
|
|
|
|
HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
|
|
|
|
for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
|
|
BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
|
|
GlobalMaps[VectorLane], VLTS[VectorLane]);
|
|
|
|
if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
|
|
return;
|
|
|
|
// Make the result available as vector value.
|
|
VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
|
|
Value *Vector = UndefValue::get(VectorType);
|
|
|
|
for (int i = 0; i < VectorWidth; i++)
|
|
Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
|
|
Builder.getInt32(i));
|
|
|
|
VectorMap[Inst] = Vector;
|
|
}
|
|
|
|
int VectorBlockGenerator::getVectorWidth() { return GlobalMaps.size(); }
|
|
|
|
void VectorBlockGenerator::copyInstruction(ScopStmt &Stmt,
|
|
const Instruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
// Terminator instructions control the control flow. They are explicitly
|
|
// expressed in the clast and do not need to be copied.
|
|
if (Inst->isTerminator())
|
|
return;
|
|
|
|
if (canSynthesize(Inst, &LI, &SE, &Stmt.getParent()->getRegion()))
|
|
return;
|
|
|
|
if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
|
|
generateLoad(Stmt, Load, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
if (hasVectorOperands(Inst, VectorMap)) {
|
|
if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
|
|
copyStore(Stmt, Store, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) {
|
|
copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) {
|
|
copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
// Falltrough: We generate scalar instructions, if we don't know how to
|
|
// generate vector code.
|
|
}
|
|
|
|
copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps);
|
|
}
|
|
|
|
void VectorBlockGenerator::copyStmt(ScopStmt &Stmt) {
|
|
assert(Stmt.isBlockStmt() && "TODO: Only block statements can be copied by "
|
|
"the vector block generator");
|
|
|
|
BasicBlock *BB = Stmt.getBasicBlock();
|
|
BasicBlock *CopyBB =
|
|
SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
|
|
CopyBB->setName("polly.stmt." + BB->getName());
|
|
Builder.SetInsertPoint(CopyBB->begin());
|
|
|
|
// Create two maps that store the mapping from the original instructions of
|
|
// the old basic block to their copies in the new basic block. Those maps
|
|
// are basic block local.
|
|
//
|
|
// As vector code generation is supported there is one map for scalar values
|
|
// and one for vector values.
|
|
//
|
|
// In case we just do scalar code generation, the vectorMap is not used and
|
|
// the scalarMap has just one dimension, which contains the mapping.
|
|
//
|
|
// In case vector code generation is done, an instruction may either appear
|
|
// in the vector map once (as it is calculating >vectorwidth< values at a
|
|
// time. Or (if the values are calculated using scalar operations), it
|
|
// appears once in every dimension of the scalarMap.
|
|
VectorValueMapT ScalarBlockMap(getVectorWidth());
|
|
ValueMapT VectorBlockMap;
|
|
|
|
for (Instruction &Inst : *BB)
|
|
copyInstruction(Stmt, &Inst, VectorBlockMap, ScalarBlockMap);
|
|
}
|
|
|
|
void RegionGenerator::copyStmt(ScopStmt &Stmt, ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
assert(Stmt.isRegionStmt() &&
|
|
"Only region statements can be copied by the block generator");
|
|
|
|
// The region represented by the statement.
|
|
Region *R = Stmt.getRegion();
|
|
|
|
// The "BBMap" for the whole region.
|
|
ValueMapT RegionMap;
|
|
|
|
// Iterate over all blocks in the region in a breadth-first search.
|
|
std::deque<BasicBlock *> Blocks;
|
|
SmallPtrSet<BasicBlock *, 8> SeenBlocks;
|
|
Blocks.push_back(R->getEntry());
|
|
SeenBlocks.insert(R->getEntry());
|
|
|
|
while (!Blocks.empty()) {
|
|
BasicBlock *BB = Blocks.front();
|
|
Blocks.pop_front();
|
|
|
|
// Copy the block with the BlockGenerator.
|
|
BasicBlock *BBCopy = copyBB(Stmt, BB, RegionMap, GlobalMap, LTS);
|
|
|
|
// And continue with new successors inside the region.
|
|
for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
|
|
if (R->contains(*SI) && SeenBlocks.insert(*SI).second)
|
|
Blocks.push_back(*SI);
|
|
|
|
// In order to remap PHI nodes we store also basic block mappings.
|
|
RegionMap[BB] = BBCopy;
|
|
}
|
|
|
|
// Now create a new dedicated region exit block and add it to the region map.
|
|
BasicBlock *RegionExit =
|
|
SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), &DT, &LI);
|
|
RegionExit->setName("polly.stmt." + R->getExit()->getName() + ".pre");
|
|
RegionMap[R->getExit()] = RegionExit;
|
|
|
|
// As the block generator doesn't handle control flow we need to add the
|
|
// region control flow by hand after all blocks have been copied.
|
|
for (BasicBlock *BB : SeenBlocks) {
|
|
|
|
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
|
|
|
|
BasicBlock *BBCopy = cast<BasicBlock>(RegionMap[BB]);
|
|
Instruction *BICopy = BBCopy->getTerminator();
|
|
|
|
Builder.SetInsertPoint(BBCopy);
|
|
copyInstScalar(Stmt, BI, RegionMap, GlobalMap, LTS);
|
|
BICopy->eraseFromParent();
|
|
}
|
|
|
|
// Reset the old insert point for the build.
|
|
Builder.SetInsertPoint(RegionExit->begin());
|
|
}
|