llvm-project/llvm/test/Transforms/SCCP/undef-resolve.ll

191 lines
5.9 KiB
LLVM

; RUN: opt -sccp -S < %s | FileCheck %s
; PR6940
define double @test1() {
%t = sitofp i32 undef to double
ret double %t
; CHECK-LABEL: @test1(
; CHECK: ret double 0.0
}
; rdar://7832370
; Check that lots of stuff doesn't get turned into undef.
define i32 @test2() nounwind readnone ssp {
; CHECK-LABEL: @test2(
init:
br label %control.outer.outer
control.outer.loopexit.us-lcssa: ; preds = %control
br label %control.outer.loopexit
control.outer.loopexit: ; preds = %control.outer.loopexit.us-lcssa.us, %control.outer.loopexit.us-lcssa
br label %control.outer.outer.backedge
control.outer.outer: ; preds = %control.outer.outer.backedge, %init
%switchCond.0.ph.ph = phi i32 [ 2, %init ], [ 3, %control.outer.outer.backedge ] ; <i32> [#uses=2]
%i.0.ph.ph = phi i32 [ undef, %init ], [ %i.0.ph.ph.be, %control.outer.outer.backedge ] ; <i32> [#uses=1]
%tmp4 = icmp eq i32 %i.0.ph.ph, 0 ; <i1> [#uses=1]
br i1 %tmp4, label %control.outer.outer.split.us, label %control.outer.outer.control.outer.outer.split_crit_edge
control.outer.outer.control.outer.outer.split_crit_edge: ; preds = %control.outer.outer
br label %control.outer
control.outer.outer.split.us: ; preds = %control.outer.outer
br label %control.outer.us
control.outer.us: ; preds = %bb3.us, %control.outer.outer.split.us
%A.0.ph.us = phi i32 [ %switchCond.0.us, %bb3.us ], [ 4, %control.outer.outer.split.us ] ; <i32> [#uses=2]
%switchCond.0.ph.us = phi i32 [ %A.0.ph.us, %bb3.us ], [ %switchCond.0.ph.ph, %control.outer.outer.split.us ] ; <i32> [#uses=1]
br label %control.us
bb3.us: ; preds = %control.us
br label %control.outer.us
bb0.us: ; preds = %control.us
br label %control.us
; CHECK: control.us: ; preds = %bb0.us, %control.outer.us
; CHECK-NEXT: %switchCond.0.us = phi i32
; CHECK-NEXT: switch i32 %switchCond.0.us
control.us: ; preds = %bb0.us, %control.outer.us
%switchCond.0.us = phi i32 [ %A.0.ph.us, %bb0.us ], [ %switchCond.0.ph.us, %control.outer.us ] ; <i32> [#uses=2]
switch i32 %switchCond.0.us, label %control.outer.loopexit.us-lcssa.us [
i32 0, label %bb0.us
i32 1, label %bb1.us-lcssa.us
i32 3, label %bb3.us
i32 4, label %bb4.us-lcssa.us
]
control.outer.loopexit.us-lcssa.us: ; preds = %control.us
br label %control.outer.loopexit
bb1.us-lcssa.us: ; preds = %control.us
br label %bb1
bb4.us-lcssa.us: ; preds = %control.us
br label %bb4
control.outer: ; preds = %bb3, %control.outer.outer.control.outer.outer.split_crit_edge
%A.0.ph = phi i32 [ %nextId17, %bb3 ], [ 4, %control.outer.outer.control.outer.outer.split_crit_edge ] ; <i32> [#uses=1]
%switchCond.0.ph = phi i32 [ 0, %bb3 ], [ %switchCond.0.ph.ph, %control.outer.outer.control.outer.outer.split_crit_edge ] ; <i32> [#uses=1]
br label %control
control: ; preds = %bb0, %control.outer
%switchCond.0 = phi i32 [ %A.0.ph, %bb0 ], [ %switchCond.0.ph, %control.outer ] ; <i32> [#uses=2]
switch i32 %switchCond.0, label %control.outer.loopexit.us-lcssa [
i32 0, label %bb0
i32 1, label %bb1.us-lcssa
i32 3, label %bb3
i32 4, label %bb4.us-lcssa
]
bb4.us-lcssa: ; preds = %control
br label %bb4
bb4: ; preds = %bb4.us-lcssa, %bb4.us-lcssa.us
br label %control.outer.outer.backedge
control.outer.outer.backedge: ; preds = %bb4, %control.outer.loopexit
%i.0.ph.ph.be = phi i32 [ 1, %bb4 ], [ 0, %control.outer.loopexit ] ; <i32> [#uses=1]
br label %control.outer.outer
bb3: ; preds = %control
%nextId17 = add i32 %switchCond.0, -2 ; <i32> [#uses=1]
br label %control.outer
bb0: ; preds = %control
br label %control
bb1.us-lcssa: ; preds = %control
br label %bb1
bb1: ; preds = %bb1.us-lcssa, %bb1.us-lcssa.us
ret i32 0
}
; Make sure SCCP honors the xor "idiom"
; rdar://9956541
define i32 @test3() {
%t = xor i32 undef, undef
ret i32 %t
; CHECK-LABEL: @test3(
; CHECK: ret i32 0
}
; Be conservative with FP ops
define double @test4(double %x) {
%t = fadd double %x, undef
ret double %t
; CHECK-LABEL: @test4(
; CHECK: fadd double %x, undef
}
; Make sure casts produce a possible value
define i32 @test5() {
%t = sext i8 undef to i32
ret i32 %t
; CHECK-LABEL: @test5(
; CHECK: ret i32 0
}
; Make sure ashr produces a possible value
define i32 @test6() {
%t = ashr i32 undef, 31
ret i32 %t
; CHECK-LABEL: @test6(
; CHECK: ret i32 0
}
; Make sure lshr produces a possible value
define i32 @test7() {
%t = lshr i32 undef, 31
ret i32 %t
; CHECK-LABEL: @test7(
; CHECK: ret i32 0
}
; icmp eq with undef simplifies to undef
define i1 @test8() {
%t = icmp eq i32 undef, -1
ret i1 %t
; CHECK-LABEL: @test8(
; CHECK: ret i1 undef
}
; Make sure we don't conclude that relational comparisons simplify to undef
define i1 @test9() {
%t = icmp ugt i32 undef, -1
ret i1 %t
; CHECK-LABEL: @test9(
; CHECK: icmp ugt
}
; Make sure we handle extractvalue
define i64 @test10() {
entry:
%e = extractvalue { i64, i64 } undef, 1
ret i64 %e
; CHECK-LABEL: @test10(
; CHECK: ret i64 undef
}
@GV = external global i32
define i32 @test11(i1 %tobool) {
entry:
%shr4 = ashr i32 undef, zext (i1 icmp eq (i32* bitcast (i32 (i1)* @test11 to i32*), i32* @GV) to i32)
ret i32 %shr4
; CHECK-LABEL: @test11(
; CHECK: ret i32 0
}
; Test unary ops
define double @test12(double %x) {
%t = fneg double undef
ret double %t
; CHECK-LABEL: @test12(
; CHECK: double undef
}