llvm-project/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp

1878 lines
61 KiB
C++

//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Hexagon implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "HexagonInstrInfo.h"
#include "Hexagon.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "hexagon-instrinfo"
#define GET_INSTRINFO_CTOR_DTOR
#define GET_INSTRMAP_INFO
#include "HexagonGenInstrInfo.inc"
#include "HexagonGenDFAPacketizer.inc"
///
/// Constants for Hexagon instructions.
///
const int Hexagon_MEMW_OFFSET_MAX = 4095;
const int Hexagon_MEMW_OFFSET_MIN = -4096;
const int Hexagon_MEMD_OFFSET_MAX = 8191;
const int Hexagon_MEMD_OFFSET_MIN = -8192;
const int Hexagon_MEMH_OFFSET_MAX = 2047;
const int Hexagon_MEMH_OFFSET_MIN = -2048;
const int Hexagon_MEMB_OFFSET_MAX = 1023;
const int Hexagon_MEMB_OFFSET_MIN = -1024;
const int Hexagon_ADDI_OFFSET_MAX = 32767;
const int Hexagon_ADDI_OFFSET_MIN = -32768;
const int Hexagon_MEMD_AUTOINC_MAX = 56;
const int Hexagon_MEMD_AUTOINC_MIN = -64;
const int Hexagon_MEMW_AUTOINC_MAX = 28;
const int Hexagon_MEMW_AUTOINC_MIN = -32;
const int Hexagon_MEMH_AUTOINC_MAX = 14;
const int Hexagon_MEMH_AUTOINC_MIN = -16;
const int Hexagon_MEMB_AUTOINC_MAX = 7;
const int Hexagon_MEMB_AUTOINC_MIN = -8;
// Pin the vtable to this file.
void HexagonInstrInfo::anchor() {}
HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
: HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
RI(ST), Subtarget(ST) {
}
/// isLoadFromStackSlot - If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case Hexagon::LDriw:
case Hexagon::LDrid:
case Hexagon::LDrih:
case Hexagon::LDrib:
case Hexagon::LDriub:
if (MI->getOperand(2).isFI() &&
MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
FrameIndex = MI->getOperand(2).getIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
/// isStoreToStackSlot - If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case Hexagon::STriw:
case Hexagon::STrid:
case Hexagon::STrih:
case Hexagon::STrib:
if (MI->getOperand(2).isFI() &&
MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
FrameIndex = MI->getOperand(0).getIndex();
return MI->getOperand(2).getReg();
}
break;
}
return 0;
}
unsigned
HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const{
int BOpc = Hexagon::JMP;
int BccOpc = Hexagon::JMP_t;
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
int regPos = 0;
// Check if ReverseBranchCondition has asked to reverse this branch
// If we want to reverse the branch an odd number of times, we want
// JMP_f.
if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
BccOpc = Hexagon::JMP_f;
regPos = 1;
}
if (!FBB) {
if (Cond.empty()) {
// Due to a bug in TailMerging/CFG Optimization, we need to add a
// special case handling of a predicated jump followed by an
// unconditional jump. If not, Tail Merging and CFG Optimization go
// into an infinite loop.
MachineBasicBlock *NewTBB, *NewFBB;
SmallVector<MachineOperand, 4> Cond;
MachineInstr *Term = MBB.getFirstTerminator();
if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
false)) {
MachineBasicBlock *NextBB =
std::next(MachineFunction::iterator(&MBB));
if (NewTBB == NextBB) {
ReverseBranchCondition(Cond);
RemoveBranch(MBB);
return InsertBranch(MBB, TBB, nullptr, Cond, DL);
}
}
BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
} else {
BuildMI(&MBB, DL,
get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
}
return 1;
}
BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
return 2;
}
bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
TBB = nullptr;
FBB = nullptr;
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::instr_iterator I = MBB.instr_end();
if (I == MBB.instr_begin())
return false;
// A basic block may looks like this:
//
// [ insn
// EH_LABEL
// insn
// insn
// insn
// EH_LABEL
// insn ]
//
// It has two succs but does not have a terminator
// Don't know how to handle it.
do {
--I;
if (I->isEHLabel())
return true;
} while (I != MBB.instr_begin());
I = MBB.instr_end();
--I;
while (I->isDebugValue()) {
if (I == MBB.instr_begin())
return false;
--I;
}
// Delete the JMP if it's equivalent to a fall-through.
if (AllowModify && I->getOpcode() == Hexagon::JMP &&
MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
I->eraseFromParent();
I = MBB.instr_end();
if (I == MBB.instr_begin())
return false;
--I;
}
if (!isUnpredicatedTerminator(I))
return false;
// Get the last instruction in the block.
MachineInstr *LastInst = I;
MachineInstr *SecondLastInst = nullptr;
// Find one more terminator if present.
do {
if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
if (!SecondLastInst)
SecondLastInst = I;
else
// This is a third branch.
return true;
}
if (I == MBB.instr_begin())
break;
--I;
} while(I);
int LastOpcode = LastInst->getOpcode();
bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
// If there is only one terminator instruction, process it.
if (LastInst && !SecondLastInst) {
if (LastOpcode == Hexagon::JMP) {
TBB = LastInst->getOperand(0).getMBB();
return false;
}
if (LastOpcode == Hexagon::ENDLOOP0) {
TBB = LastInst->getOperand(0).getMBB();
Cond.push_back(LastInst->getOperand(0));
return false;
}
if (LastOpcodeHasJMP_c) {
TBB = LastInst->getOperand(1).getMBB();
if (LastOpcodeHasNot) {
Cond.push_back(MachineOperand::CreateImm(0));
}
Cond.push_back(LastInst->getOperand(0));
return false;
}
// Otherwise, don't know what this is.
return true;
}
int SecLastOpcode = SecondLastInst->getOpcode();
bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) {
TBB = SecondLastInst->getOperand(1).getMBB();
if (SecLastOpcodeHasNot)
Cond.push_back(MachineOperand::CreateImm(0));
Cond.push_back(SecondLastInst->getOperand(0));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// If the block ends with two Hexagon:JMPs, handle it. The second one is not
// executed, so remove it.
if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) {
TBB = SecondLastInst->getOperand(0).getMBB();
I = LastInst;
if (AllowModify)
I->eraseFromParent();
return false;
}
// If the block ends with an ENDLOOP, and JMP, handle it.
if (SecLastOpcode == Hexagon::ENDLOOP0 &&
LastOpcode == Hexagon::JMP) {
TBB = SecondLastInst->getOperand(0).getMBB();
Cond.push_back(SecondLastInst->getOperand(0));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// Otherwise, can't handle this.
return true;
}
unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
int BOpc = Hexagon::JMP;
int BccOpc = Hexagon::JMP_t;
int BccOpcNot = Hexagon::JMP_f;
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin()) return 0;
--I;
if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
I->getOpcode() != BccOpcNot)
return 0;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
if (I == MBB.begin()) return 1;
--I;
if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
return 1;
// Remove the branch.
I->eraseFromParent();
return 2;
}
/// \brief For a comparison instruction, return the source registers in
/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
/// compares against in CmpValue. Return true if the comparison instruction
/// can be analyzed.
bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
unsigned &SrcReg, unsigned &SrcReg2,
int &Mask, int &Value) const {
unsigned Opc = MI->getOpcode();
// Set mask and the first source register.
switch (Opc) {
case Hexagon::C2_cmpeqp:
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpgtp:
case Hexagon::C2_cmpgtup:
case Hexagon::C2_cmpgtui:
case Hexagon::C2_cmpgtu:
case Hexagon::C2_cmpgti:
case Hexagon::C2_cmpgt:
SrcReg = MI->getOperand(1).getReg();
Mask = ~0;
break;
case Hexagon::CMPbEQri_V4:
case Hexagon::CMPbEQrr_sbsb_V4:
case Hexagon::CMPbEQrr_ubub_V4:
case Hexagon::CMPbGTUri_V4:
case Hexagon::CMPbGTUrr_V4:
case Hexagon::CMPbGTrr_V4:
SrcReg = MI->getOperand(1).getReg();
Mask = 0xFF;
break;
case Hexagon::CMPhEQri_V4:
case Hexagon::CMPhEQrr_shl_V4:
case Hexagon::CMPhEQrr_xor_V4:
case Hexagon::CMPhGTUri_V4:
case Hexagon::CMPhGTUrr_V4:
case Hexagon::CMPhGTrr_shl_V4:
SrcReg = MI->getOperand(1).getReg();
Mask = 0xFFFF;
break;
}
// Set the value/second source register.
switch (Opc) {
case Hexagon::C2_cmpeqp:
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpgtp:
case Hexagon::C2_cmpgtup:
case Hexagon::C2_cmpgtu:
case Hexagon::C2_cmpgt:
case Hexagon::CMPbEQrr_sbsb_V4:
case Hexagon::CMPbEQrr_ubub_V4:
case Hexagon::CMPbGTUrr_V4:
case Hexagon::CMPbGTrr_V4:
case Hexagon::CMPhEQrr_shl_V4:
case Hexagon::CMPhEQrr_xor_V4:
case Hexagon::CMPhGTUrr_V4:
case Hexagon::CMPhGTrr_shl_V4:
SrcReg2 = MI->getOperand(2).getReg();
return true;
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgtui:
case Hexagon::C2_cmpgti:
case Hexagon::CMPbEQri_V4:
case Hexagon::CMPbGTUri_V4:
case Hexagon::CMPhEQri_V4:
case Hexagon::CMPhGTUri_V4:
SrcReg2 = 0;
Value = MI->getOperand(2).getImm();
return true;
}
return false;
}
void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
return;
}
if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
return;
}
if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
// Map Pd = Ps to Pd = or(Ps, Ps).
BuildMI(MBB, I, DL, get(Hexagon::C2_or),
DestReg).addReg(SrcReg).addReg(SrcReg);
return;
}
if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
Hexagon::IntRegsRegClass.contains(SrcReg)) {
// We can have an overlap between single and double reg: r1:0 = r0.
if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
// r1:0 = r0
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Hexagon::subreg_hireg))).addImm(0);
} else {
// r1:0 = r1 or no overlap.
BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
Hexagon::subreg_loreg))).addReg(SrcReg);
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Hexagon::subreg_hireg))).addImm(0);
}
return;
}
if (Hexagon::CRRegsRegClass.contains(DestReg) &&
Hexagon::IntRegsRegClass.contains(SrcReg)) {
BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
return;
}
if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
Hexagon::IntRegsRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
Hexagon::PredRegsRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
addReg(SrcReg, getKillRegState(KillSrc));
return;
}
llvm_unreachable("Unimplemented");
}
void HexagonInstrInfo::
storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned SrcReg, bool isKill, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBB.findDebugLoc(I);
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FI);
MachineMemOperand *MMO =
MF.getMachineMemOperand(
MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
MachineMemOperand::MOStore,
MFI.getObjectSize(FI),
Align);
if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::STriw))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
} else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::STrid))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
} else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
.addFrameIndex(FI).addImm(0)
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
} else {
llvm_unreachable("Unimplemented");
}
}
void HexagonInstrInfo::storeRegToAddr(
MachineFunction &MF, unsigned SrcReg,
bool isKill,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const
{
llvm_unreachable("Unimplemented");
}
void HexagonInstrInfo::
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned DestReg, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBB.findDebugLoc(I);
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FI);
MachineMemOperand *MMO =
MF.getMachineMemOperand(
MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
MachineMemOperand::MOLoad,
MFI.getObjectSize(FI),
Align);
if (RC == &Hexagon::IntRegsRegClass) {
BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (RC == &Hexagon::DoubleRegsRegClass) {
BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else if (RC == &Hexagon::PredRegsRegClass) {
BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
} else {
llvm_unreachable("Can't store this register to stack slot");
}
}
void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
llvm_unreachable("Unimplemented");
}
MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
int FI) const {
// Hexagon_TODO: Implement.
return nullptr;
}
unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *TRC;
if (VT == MVT::i1) {
TRC = &Hexagon::PredRegsRegClass;
} else if (VT == MVT::i32 || VT == MVT::f32) {
TRC = &Hexagon::IntRegsRegClass;
} else if (VT == MVT::i64 || VT == MVT::f64) {
TRC = &Hexagon::DoubleRegsRegClass;
} else {
llvm_unreachable("Cannot handle this register class");
}
unsigned NewReg = RegInfo.createVirtualRegister(TRC);
return NewReg;
}
bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
// Constant extenders are allowed only for V4 and above.
if (!Subtarget.hasV4TOps())
return false;
const MCInstrDesc &MID = MI->getDesc();
const uint64_t F = MID.TSFlags;
if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
return true;
// TODO: This is largely obsolete now. Will need to be removed
// in consecutive patches.
switch(MI->getOpcode()) {
// TFR_FI Remains a special case.
case Hexagon::TFR_FI:
return true;
default:
return false;
}
return false;
}
// This returns true in two cases:
// - The OP code itself indicates that this is an extended instruction.
// - One of MOs has been marked with HMOTF_ConstExtended flag.
bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
// First check if this is permanently extended op code.
const uint64_t F = MI->getDesc().TSFlags;
if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
return true;
// Use MO operand flags to determine if one of MI's operands
// has HMOTF_ConstExtended flag set.
for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
E = MI->operands_end(); I != E; ++I) {
if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
return true;
}
return false;
}
bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
return MI->getDesc().isBranch();
}
bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
if (isNewValueJump(MI))
return true;
if (isNewValueStore(MI))
return true;
return false;
}
bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
}
bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
bool isPred = MI->getDesc().isPredicable();
if (!isPred)
return false;
const int Opc = MI->getOpcode();
switch(Opc) {
case Hexagon::A2_tfrsi:
return isInt<12>(MI->getOperand(1).getImm());
case Hexagon::STrid:
case Hexagon::STrid_indexed:
return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
case Hexagon::STriw:
case Hexagon::STriw_indexed:
case Hexagon::STriw_nv_V4:
return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
case Hexagon::STrih:
case Hexagon::STrih_indexed:
case Hexagon::STrih_nv_V4:
return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
case Hexagon::STrib:
case Hexagon::STrib_indexed:
case Hexagon::STrib_nv_V4:
return isUInt<6>(MI->getOperand(1).getImm());
case Hexagon::LDrid:
case Hexagon::LDrid_indexed:
return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
case Hexagon::LDriw:
case Hexagon::LDriw_indexed:
return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
case Hexagon::LDrih:
case Hexagon::LDriuh:
case Hexagon::LDrih_indexed:
case Hexagon::LDriuh_indexed:
return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
case Hexagon::LDrib:
case Hexagon::LDriub:
case Hexagon::LDrib_indexed:
case Hexagon::LDriub_indexed:
return isUInt<6>(MI->getOperand(2).getImm());
case Hexagon::POST_LDrid:
return isShiftedInt<4,3>(MI->getOperand(3).getImm());
case Hexagon::POST_LDriw:
return isShiftedInt<4,2>(MI->getOperand(3).getImm());
case Hexagon::POST_LDrih:
case Hexagon::POST_LDriuh:
return isShiftedInt<4,1>(MI->getOperand(3).getImm());
case Hexagon::POST_LDrib:
case Hexagon::POST_LDriub:
return isInt<4>(MI->getOperand(3).getImm());
case Hexagon::STrib_imm_V4:
case Hexagon::STrih_imm_V4:
case Hexagon::STriw_imm_V4:
return (isUInt<6>(MI->getOperand(1).getImm()) &&
isInt<6>(MI->getOperand(2).getImm()));
case Hexagon::ADD_ri:
return isInt<8>(MI->getOperand(2).getImm());
case Hexagon::A2_aslh:
case Hexagon::A2_asrh:
case Hexagon::A2_sxtb:
case Hexagon::A2_sxth:
case Hexagon::A2_zxtb:
case Hexagon::A2_zxth:
return Subtarget.hasV4TOps();
}
return true;
}
// This function performs the following inversiones:
//
// cPt ---> cNotPt
// cNotPt ---> cPt
//
unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
int InvPredOpcode;
InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
: Hexagon::getTruePredOpcode(Opc);
if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
return InvPredOpcode;
switch(Opc) {
default: llvm_unreachable("Unexpected predicated instruction");
case Hexagon::C2_ccombinewt:
return Hexagon::C2_ccombinewf;
case Hexagon::C2_ccombinewf:
return Hexagon::C2_ccombinewt;
// Dealloc_return.
case Hexagon::DEALLOC_RET_cPt_V4:
return Hexagon::DEALLOC_RET_cNotPt_V4;
case Hexagon::DEALLOC_RET_cNotPt_V4:
return Hexagon::DEALLOC_RET_cPt_V4;
}
}
// New Value Store instructions.
bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
}
bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
}
int HexagonInstrInfo::
getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
enum Hexagon::PredSense inPredSense;
inPredSense = invertPredicate ? Hexagon::PredSense_false :
Hexagon::PredSense_true;
int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
if (CondOpcode >= 0) // Valid Conditional opcode/instruction
return CondOpcode;
// This switch case will be removed once all the instructions have been
// modified to use relation maps.
switch(Opc) {
case Hexagon::TFRI_f:
return !invertPredicate ? Hexagon::TFRI_cPt_f :
Hexagon::TFRI_cNotPt_f;
case Hexagon::A2_combinew:
return !invertPredicate ? Hexagon::C2_ccombinewt :
Hexagon::C2_ccombinewf;
// Word.
case Hexagon::STriw_f:
return !invertPredicate ? Hexagon::STriw_cPt :
Hexagon::STriw_cNotPt;
case Hexagon::STriw_indexed_f:
return !invertPredicate ? Hexagon::STriw_indexed_cPt :
Hexagon::STriw_indexed_cNotPt;
// DEALLOC_RETURN.
case Hexagon::DEALLOC_RET_V4:
return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
Hexagon::DEALLOC_RET_cNotPt_V4;
}
llvm_unreachable("Unexpected predicable instruction");
}
bool HexagonInstrInfo::
PredicateInstruction(MachineInstr *MI,
const SmallVectorImpl<MachineOperand> &Cond) const {
int Opc = MI->getOpcode();
assert (isPredicable(MI) && "Expected predicable instruction");
bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
(Cond[0].getImm() == 0));
// This will change MI's opcode to its predicate version.
// However, its operand list is still the old one, i.e. the
// non-predicate one.
MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
int oper = -1;
unsigned int GAIdx = 0;
// Indicates whether the current MI has a GlobalAddress operand
bool hasGAOpnd = false;
std::vector<MachineOperand> tmpOpnds;
// Indicates whether we need to shift operands to right.
bool needShift = true;
// The predicate is ALWAYS the FIRST input operand !!!
if (MI->getNumOperands() == 0) {
// The non-predicate version of MI does not take any operands,
// i.e. no outs and no ins. In this condition, the predicate
// operand will be directly placed at Operands[0]. No operand
// shift is needed.
// Example: BARRIER
needShift = false;
oper = -1;
}
else if ( MI->getOperand(MI->getNumOperands()-1).isReg()
&& MI->getOperand(MI->getNumOperands()-1).isDef()
&& !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
// The non-predicate version of MI does not have any input operands.
// In this condition, we extend the length of Operands[] by one and
// copy the original last operand to the newly allocated slot.
// At this moment, it is just a place holder. Later, we will put
// predicate operand directly into it. No operand shift is needed.
// Example: r0=BARRIER (this is a faked insn used here for illustration)
MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
needShift = false;
oper = MI->getNumOperands() - 2;
}
else {
// We need to right shift all input operands by one. Duplicate the
// last operand into the newly allocated slot.
MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
}
if (needShift)
{
// Operands[ MI->getNumOperands() - 2 ] has been copied into
// Operands[ MI->getNumOperands() - 1 ], so we start from
// Operands[ MI->getNumOperands() - 3 ].
// oper is a signed int.
// It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
{
MachineOperand &MO = MI->getOperand(oper);
// Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7]
// <Def0> <Def1> <Use0> <Use1> <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
// /\~
// /||\~
// ||
// Predicate Operand here
if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
break;
}
if (MO.isReg()) {
MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
MO.isImplicit(), MO.isKill(),
MO.isDead(), MO.isUndef(),
MO.isDebug());
}
else if (MO.isImm()) {
MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
}
else if (MO.isGlobal()) {
// MI can not have more than one GlobalAddress operand.
assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
// There is no member function called "ChangeToGlobalAddress" in the
// MachineOperand class (not like "ChangeToRegister" and
// "ChangeToImmediate"). So we have to remove them from Operands[] list
// first, and then add them back after we have inserted the predicate
// operand. tmpOpnds[] is to remember these operands before we remove
// them.
tmpOpnds.push_back(MO);
// Operands[oper] is a GlobalAddress operand;
// Operands[oper+1] has been copied into Operands[oper+2];
hasGAOpnd = true;
GAIdx = oper;
continue;
}
else {
assert(false && "Unexpected operand type");
}
}
}
int regPos = invertJump ? 1 : 0;
MachineOperand PredMO = Cond[regPos];
// [oper] now points to the last explicit Def. Predicate operand must be
// located at [oper+1]. See diagram above.
// This assumes that the predicate is always the first operand,
// i.e. Operands[0+numResults], in the set of inputs
// It is better to have an assert here to check this. But I don't know how
// to write this assert because findFirstPredOperandIdx() would return -1
if (oper < -1) oper = -1;
MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
PredMO.isImplicit(), false,
PredMO.isDead(), PredMO.isUndef(),
PredMO.isDebug());
MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
RegInfo.clearKillFlags(PredMO.getReg());
if (hasGAOpnd)
{
unsigned int i;
// Operands[GAIdx] is the original GlobalAddress operand, which is
// already copied into tmpOpnds[0].
// Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
// Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
// so we start from [GAIdx+2]
for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
tmpOpnds.push_back(MI->getOperand(i));
// Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
// It is very important that we always remove from the end of Operands[]
// MI->getNumOperands() is at least 2 if program goes to here.
for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
MI->RemoveOperand(i);
for (i = 0; i < tmpOpnds.size(); ++i)
MI->addOperand(tmpOpnds[i]);
}
return true;
}
bool
HexagonInstrInfo::
isProfitableToIfCvt(MachineBasicBlock &MBB,
unsigned NumCycles,
unsigned ExtraPredCycles,
const BranchProbability &Probability) const {
return true;
}
bool
HexagonInstrInfo::
isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumTCycles,
unsigned ExtraTCycles,
MachineBasicBlock &FMBB,
unsigned NumFCycles,
unsigned ExtraFCycles,
const BranchProbability &Probability) const {
return true;
}
// Returns true if an instruction is predicated irrespective of the predicate
// sense. For example, all of the following will return true.
// if (p0) R1 = add(R2, R3)
// if (!p0) R1 = add(R2, R3)
// if (p0.new) R1 = add(R2, R3)
// if (!p0.new) R1 = add(R2, R3)
bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
}
bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
}
bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
assert(isPredicated(MI));
return (!((F >> HexagonII::PredicatedFalsePos) &
HexagonII::PredicatedFalseMask));
}
bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
// Make sure that the instruction is predicated.
assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
return (!((F >> HexagonII::PredicatedFalsePos) &
HexagonII::PredicatedFalseMask));
}
bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
assert(isPredicated(MI));
return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
}
bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
assert(isPredicated(Opcode));
return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
}
// Returns true, if a ST insn can be promoted to a new-value store.
bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
const HexagonRegisterInfo& QRI = getRegisterInfo();
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::mayNVStorePos) &
HexagonII::mayNVStoreMask &
QRI.Subtarget.hasV4TOps());
}
bool
HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
std::vector<MachineOperand> &Pred) const {
for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
MachineOperand MO = MI->getOperand(oper);
if (MO.isReg() && MO.isDef()) {
const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
if (RC == &Hexagon::PredRegsRegClass) {
Pred.push_back(MO);
return true;
}
}
}
return false;
}
bool
HexagonInstrInfo::
SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
const SmallVectorImpl<MachineOperand> &Pred2) const {
// TODO: Fix this
return false;
}
//
// We indicate that we want to reverse the branch by
// inserting a 0 at the beginning of the Cond vector.
//
bool HexagonInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
Cond.erase(Cond.begin());
} else {
Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
}
return false;
}
bool HexagonInstrInfo::
isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
const BranchProbability &Probability) const {
return (NumInstrs <= 4);
}
bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
case Hexagon::DEALLOC_RET_V4 :
case Hexagon::DEALLOC_RET_cPt_V4 :
case Hexagon::DEALLOC_RET_cNotPt_V4 :
case Hexagon::DEALLOC_RET_cdnPnt_V4 :
case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
case Hexagon::DEALLOC_RET_cdnPt_V4 :
case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
return true;
}
}
bool HexagonInstrInfo::
isValidOffset(const int Opcode, const int Offset) const {
// This function is to check whether the "Offset" is in the correct range of
// the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
// inserted to calculate the final address. Due to this reason, the function
// assumes that the "Offset" has correct alignment.
// We used to assert if the offset was not properly aligned, however,
// there are cases where a misaligned pointer recast can cause this
// problem, and we need to allow for it. The front end warns of such
// misaligns with respect to load size.
switch(Opcode) {
case Hexagon::LDriw:
case Hexagon::LDriw_indexed:
case Hexagon::LDriw_f:
case Hexagon::STriw_indexed:
case Hexagon::STriw:
case Hexagon::STriw_f:
return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
(Offset <= Hexagon_MEMW_OFFSET_MAX);
case Hexagon::LDrid:
case Hexagon::LDrid_indexed:
case Hexagon::LDrid_f:
case Hexagon::STrid:
case Hexagon::STrid_indexed:
case Hexagon::STrid_f:
return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
(Offset <= Hexagon_MEMD_OFFSET_MAX);
case Hexagon::LDrih:
case Hexagon::LDriuh:
case Hexagon::STrih:
return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
(Offset <= Hexagon_MEMH_OFFSET_MAX);
case Hexagon::LDrib:
case Hexagon::STrib:
case Hexagon::LDriub:
return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
(Offset <= Hexagon_MEMB_OFFSET_MAX);
case Hexagon::ADD_ri:
case Hexagon::TFR_FI:
return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
(Offset <= Hexagon_ADDI_OFFSET_MAX);
case Hexagon::MemOPw_ADDi_V4 :
case Hexagon::MemOPw_SUBi_V4 :
case Hexagon::MemOPw_ADDr_V4 :
case Hexagon::MemOPw_SUBr_V4 :
case Hexagon::MemOPw_ANDr_V4 :
case Hexagon::MemOPw_ORr_V4 :
return (0 <= Offset && Offset <= 255);
case Hexagon::MemOPh_ADDi_V4 :
case Hexagon::MemOPh_SUBi_V4 :
case Hexagon::MemOPh_ADDr_V4 :
case Hexagon::MemOPh_SUBr_V4 :
case Hexagon::MemOPh_ANDr_V4 :
case Hexagon::MemOPh_ORr_V4 :
return (0 <= Offset && Offset <= 127);
case Hexagon::MemOPb_ADDi_V4 :
case Hexagon::MemOPb_SUBi_V4 :
case Hexagon::MemOPb_ADDr_V4 :
case Hexagon::MemOPb_SUBr_V4 :
case Hexagon::MemOPb_ANDr_V4 :
case Hexagon::MemOPb_ORr_V4 :
return (0 <= Offset && Offset <= 63);
// LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
// any size. Later pass knows how to handle it.
case Hexagon::STriw_pred:
case Hexagon::LDriw_pred:
return true;
case Hexagon::LOOP0_i:
return isUInt<10>(Offset);
// INLINEASM is very special.
case Hexagon::INLINEASM:
return true;
}
llvm_unreachable("No offset range is defined for this opcode. "
"Please define it in the above switch statement!");
}
//
// Check if the Offset is a valid auto-inc imm by Load/Store Type.
//
bool HexagonInstrInfo::
isValidAutoIncImm(const EVT VT, const int Offset) const {
if (VT == MVT::i64) {
return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
Offset <= Hexagon_MEMD_AUTOINC_MAX &&
(Offset & 0x7) == 0);
}
if (VT == MVT::i32) {
return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
Offset <= Hexagon_MEMW_AUTOINC_MAX &&
(Offset & 0x3) == 0);
}
if (VT == MVT::i16) {
return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
Offset <= Hexagon_MEMH_AUTOINC_MAX &&
(Offset & 0x1) == 0);
}
if (VT == MVT::i8) {
return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
Offset <= Hexagon_MEMB_AUTOINC_MAX);
}
llvm_unreachable("Not an auto-inc opc!");
}
bool HexagonInstrInfo::
isMemOp(const MachineInstr *MI) const {
// return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
switch (MI->getOpcode())
{
default: return false;
case Hexagon::MemOPw_ADDi_V4 :
case Hexagon::MemOPw_SUBi_V4 :
case Hexagon::MemOPw_ADDr_V4 :
case Hexagon::MemOPw_SUBr_V4 :
case Hexagon::MemOPw_ANDr_V4 :
case Hexagon::MemOPw_ORr_V4 :
case Hexagon::MemOPh_ADDi_V4 :
case Hexagon::MemOPh_SUBi_V4 :
case Hexagon::MemOPh_ADDr_V4 :
case Hexagon::MemOPh_SUBr_V4 :
case Hexagon::MemOPh_ANDr_V4 :
case Hexagon::MemOPh_ORr_V4 :
case Hexagon::MemOPb_ADDi_V4 :
case Hexagon::MemOPb_SUBi_V4 :
case Hexagon::MemOPb_ADDr_V4 :
case Hexagon::MemOPb_SUBr_V4 :
case Hexagon::MemOPb_ANDr_V4 :
case Hexagon::MemOPb_ORr_V4 :
case Hexagon::MemOPb_SETBITi_V4:
case Hexagon::MemOPh_SETBITi_V4:
case Hexagon::MemOPw_SETBITi_V4:
case Hexagon::MemOPb_CLRBITi_V4:
case Hexagon::MemOPh_CLRBITi_V4:
case Hexagon::MemOPw_CLRBITi_V4:
return true;
}
return false;
}
bool HexagonInstrInfo::
isSpillPredRegOp(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
case Hexagon::STriw_pred :
case Hexagon::LDriw_pred :
return true;
}
}
bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
case Hexagon::C2_cmpeq:
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgti:
case Hexagon::C2_cmpgtu:
case Hexagon::C2_cmpgtui:
return true;
}
}
bool HexagonInstrInfo::
isConditionalTransfer (const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: return false;
case Hexagon::A2_tfrt:
case Hexagon::A2_tfrf:
case Hexagon::C2_cmoveit:
case Hexagon::C2_cmoveif:
case Hexagon::A2_tfrtnew:
case Hexagon::A2_tfrfnew:
case Hexagon::C2_cmovenewit:
case Hexagon::C2_cmovenewif:
return true;
}
}
bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
switch (MI->getOpcode())
{
default: return false;
case Hexagon::A2_paddf:
case Hexagon::A2_paddfnew:
case Hexagon::A2_paddt:
case Hexagon::A2_paddtnew:
case Hexagon::A2_pandf:
case Hexagon::A2_pandfnew:
case Hexagon::A2_pandt:
case Hexagon::A2_pandtnew:
case Hexagon::A4_paslhf:
case Hexagon::A4_paslhfnew:
case Hexagon::A4_paslht:
case Hexagon::A4_paslhtnew:
case Hexagon::A4_pasrhf:
case Hexagon::A4_pasrhfnew:
case Hexagon::A4_pasrht:
case Hexagon::A4_pasrhtnew:
case Hexagon::A2_porf:
case Hexagon::A2_porfnew:
case Hexagon::A2_port:
case Hexagon::A2_portnew:
case Hexagon::A2_psubf:
case Hexagon::A2_psubfnew:
case Hexagon::A2_psubt:
case Hexagon::A2_psubtnew:
case Hexagon::A2_pxorf:
case Hexagon::A2_pxorfnew:
case Hexagon::A2_pxort:
case Hexagon::A2_pxortnew:
case Hexagon::A4_psxthf:
case Hexagon::A4_psxthfnew:
case Hexagon::A4_psxtht:
case Hexagon::A4_psxthtnew:
case Hexagon::A4_psxtbf:
case Hexagon::A4_psxtbfnew:
case Hexagon::A4_psxtbt:
case Hexagon::A4_psxtbtnew:
case Hexagon::A4_pzxtbf:
case Hexagon::A4_pzxtbfnew:
case Hexagon::A4_pzxtbt:
case Hexagon::A4_pzxtbtnew:
case Hexagon::A4_pzxthf:
case Hexagon::A4_pzxthfnew:
case Hexagon::A4_pzxtht:
case Hexagon::A4_pzxthtnew:
case Hexagon::ADD_ri_cPt:
case Hexagon::ADD_ri_cNotPt:
case Hexagon::C2_ccombinewt:
case Hexagon::C2_ccombinewf:
return true;
}
}
bool HexagonInstrInfo::
isConditionalLoad (const MachineInstr* MI) const {
const HexagonRegisterInfo& QRI = getRegisterInfo();
switch (MI->getOpcode())
{
default: return false;
case Hexagon::LDrid_cPt :
case Hexagon::LDrid_cNotPt :
case Hexagon::LDrid_indexed_cPt :
case Hexagon::LDrid_indexed_cNotPt :
case Hexagon::LDriw_cPt :
case Hexagon::LDriw_cNotPt :
case Hexagon::LDriw_indexed_cPt :
case Hexagon::LDriw_indexed_cNotPt :
case Hexagon::LDrih_cPt :
case Hexagon::LDrih_cNotPt :
case Hexagon::LDrih_indexed_cPt :
case Hexagon::LDrih_indexed_cNotPt :
case Hexagon::LDrib_cPt :
case Hexagon::LDrib_cNotPt :
case Hexagon::LDrib_indexed_cPt :
case Hexagon::LDrib_indexed_cNotPt :
case Hexagon::LDriuh_cPt :
case Hexagon::LDriuh_cNotPt :
case Hexagon::LDriuh_indexed_cPt :
case Hexagon::LDriuh_indexed_cNotPt :
case Hexagon::LDriub_cPt :
case Hexagon::LDriub_cNotPt :
case Hexagon::LDriub_indexed_cPt :
case Hexagon::LDriub_indexed_cNotPt :
return true;
case Hexagon::POST_LDrid_cPt :
case Hexagon::POST_LDrid_cNotPt :
case Hexagon::POST_LDriw_cPt :
case Hexagon::POST_LDriw_cNotPt :
case Hexagon::POST_LDrih_cPt :
case Hexagon::POST_LDrih_cNotPt :
case Hexagon::POST_LDrib_cPt :
case Hexagon::POST_LDrib_cNotPt :
case Hexagon::POST_LDriuh_cPt :
case Hexagon::POST_LDriuh_cNotPt :
case Hexagon::POST_LDriub_cPt :
case Hexagon::POST_LDriub_cNotPt :
return QRI.Subtarget.hasV4TOps();
case Hexagon::LDrid_indexed_shl_cPt_V4 :
case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
case Hexagon::LDrib_indexed_shl_cPt_V4 :
case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
case Hexagon::LDriub_indexed_shl_cPt_V4 :
case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
case Hexagon::LDrih_indexed_shl_cPt_V4 :
case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
case Hexagon::LDriuh_indexed_shl_cPt_V4 :
case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
case Hexagon::LDriw_indexed_shl_cPt_V4 :
case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
return QRI.Subtarget.hasV4TOps();
}
}
// Returns true if an instruction is a conditional store.
//
// Note: It doesn't include conditional new-value stores as they can't be
// converted to .new predicate.
//
// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
// ^ ^
// / \ (not OK. it will cause new-value store to be
// / X conditional on p0.new while R2 producer is
// / \ on p0)
// / \.
// p.new store p.old NV store
// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
// ^ ^
// \ /
// \ /
// \ /
// p.old store
// [if (p0)memw(R0+#0)=R2]
//
// The above diagram shows the steps involoved in the conversion of a predicated
// store instruction to its .new predicated new-value form.
//
// The following set of instructions further explains the scenario where
// conditional new-value store becomes invalid when promoted to .new predicate
// form.
//
// { 1) if (p0) r0 = add(r1, r2)
// 2) p0 = cmp.eq(r3, #0) }
//
// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
// the first two instructions because in instr 1, r0 is conditional on old value
// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
// is not valid for new-value stores.
bool HexagonInstrInfo::
isConditionalStore (const MachineInstr* MI) const {
const HexagonRegisterInfo& QRI = getRegisterInfo();
switch (MI->getOpcode())
{
default: return false;
case Hexagon::STrib_imm_cPt_V4 :
case Hexagon::STrib_imm_cNotPt_V4 :
case Hexagon::STrib_indexed_shl_cPt_V4 :
case Hexagon::STrib_indexed_shl_cNotPt_V4 :
case Hexagon::STrib_cPt :
case Hexagon::STrib_cNotPt :
case Hexagon::POST_STbri_cPt :
case Hexagon::POST_STbri_cNotPt :
case Hexagon::STrid_indexed_cPt :
case Hexagon::STrid_indexed_cNotPt :
case Hexagon::STrid_indexed_shl_cPt_V4 :
case Hexagon::POST_STdri_cPt :
case Hexagon::POST_STdri_cNotPt :
case Hexagon::STrih_cPt :
case Hexagon::STrih_cNotPt :
case Hexagon::STrih_indexed_cPt :
case Hexagon::STrih_indexed_cNotPt :
case Hexagon::STrih_imm_cPt_V4 :
case Hexagon::STrih_imm_cNotPt_V4 :
case Hexagon::STrih_indexed_shl_cPt_V4 :
case Hexagon::STrih_indexed_shl_cNotPt_V4 :
case Hexagon::POST_SThri_cPt :
case Hexagon::POST_SThri_cNotPt :
case Hexagon::STriw_cPt :
case Hexagon::STriw_cNotPt :
case Hexagon::STriw_indexed_cPt :
case Hexagon::STriw_indexed_cNotPt :
case Hexagon::STriw_imm_cPt_V4 :
case Hexagon::STriw_imm_cNotPt_V4 :
case Hexagon::STriw_indexed_shl_cPt_V4 :
case Hexagon::STriw_indexed_shl_cNotPt_V4 :
case Hexagon::POST_STwri_cPt :
case Hexagon::POST_STwri_cNotPt :
return QRI.Subtarget.hasV4TOps();
// V4 global address store before promoting to dot new.
case Hexagon::STd_GP_cPt_V4 :
case Hexagon::STd_GP_cNotPt_V4 :
case Hexagon::STb_GP_cPt_V4 :
case Hexagon::STb_GP_cNotPt_V4 :
case Hexagon::STh_GP_cPt_V4 :
case Hexagon::STh_GP_cNotPt_V4 :
case Hexagon::STw_GP_cPt_V4 :
case Hexagon::STw_GP_cNotPt_V4 :
return QRI.Subtarget.hasV4TOps();
// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
// from the "Conditional Store" list. Because a predicated new value store
// would NOT be promoted to a double dot new store. See diagram below:
// This function returns yes for those stores that are predicated but not
// yet promoted to predicate dot new instructions.
//
// +---------------------+
// /-----| if (p0) memw(..)=r0 |---------\~
// || +---------------------+ ||
// promote || /\ /\ || promote
// || /||\ /||\ ||
// \||/ demote || \||/
// \/ || || \/
// +-------------------------+ || +-------------------------+
// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
// +-------------------------+ || +-------------------------+
// || || ||
// || demote \||/
// promote || \/ NOT possible
// || || /\~
// \||/ || /||\~
// \/ || ||
// +-----------------------------+
// | if (p0.new) memw(..)=r0.new |
// +-----------------------------+
// Double Dot New Store
//
}
}
bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
if (isNewValue(MI) && isBranch(MI))
return true;
return false;
}
bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
return (getAddrMode(MI) == HexagonII::PostInc);
}
bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}
// Returns true, if any one of the operands is a dot new
// insn, whether it is predicated dot new or register dot new.
bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
return (isNewValueInst(MI) ||
(isPredicated(MI) && isPredicatedNew(MI)));
}
// Returns the most basic instruction for the .new predicated instructions and
// new-value stores.
// For example, all of the following instructions will be converted back to the
// same instruction:
// 1) if (p0.new) memw(R0+#0) = R1.new --->
// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
// 3) if (p0.new) memw(R0+#0) = R1 --->
//
int HexagonInstrInfo::GetDotOldOp(const int opc) const {
int NewOp = opc;
if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
NewOp = Hexagon::getPredOldOpcode(NewOp);
assert(NewOp >= 0 &&
"Couldn't change predicate new instruction to its old form.");
}
if (isNewValueStore(NewOp)) { // Convert into non-new-value format
NewOp = Hexagon::getNonNVStore(NewOp);
assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
}
return NewOp;
}
// Return the new value instruction for a given store.
int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
if (NVOpcode >= 0) // Valid new-value store instruction.
return NVOpcode;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown .new type");
// store new value byte
case Hexagon::STrib_shl_V4:
return Hexagon::STrib_shl_nv_V4;
case Hexagon::STrih_shl_V4:
return Hexagon::STrih_shl_nv_V4;
case Hexagon::STriw_f:
return Hexagon::STriw_nv_V4;
case Hexagon::STriw_indexed_f:
return Hexagon::STriw_indexed_nv_V4;
case Hexagon::STriw_shl_V4:
return Hexagon::STriw_shl_nv_V4;
}
return 0;
}
// Return .new predicate version for an instruction.
int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
const MachineBranchProbabilityInfo
*MBPI) const {
int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
if (NewOpcode >= 0) // Valid predicate new instruction
return NewOpcode;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown .new type");
// Condtional Jumps
case Hexagon::JMP_t:
case Hexagon::JMP_f:
return getDotNewPredJumpOp(MI, MBPI);
case Hexagon::JMPR_t:
return Hexagon::JMPR_tnew_tV3;
case Hexagon::JMPR_f:
return Hexagon::JMPR_fnew_tV3;
case Hexagon::JMPret_t:
return Hexagon::JMPret_tnew_tV3;
case Hexagon::JMPret_f:
return Hexagon::JMPret_fnew_tV3;
// Conditional combine
case Hexagon::C2_ccombinewt:
return Hexagon::C2_ccombinewnewt;
case Hexagon::C2_ccombinewf:
return Hexagon::C2_ccombinewnewf;
}
}
unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
}
/// immediateExtend - Changes the instruction in place to one using an immediate
/// extender.
void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
assert((isExtendable(MI)||isConstExtended(MI)) &&
"Instruction must be extendable");
// Find which operand is extendable.
short ExtOpNum = getCExtOpNum(MI);
MachineOperand &MO = MI->getOperand(ExtOpNum);
// This needs to be something we understand.
assert((MO.isMBB() || MO.isImm()) &&
"Branch with unknown extendable field type");
// Mark given operand as extended.
MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
}
DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
const TargetSubtargetInfo &STI) const {
const InstrItineraryData *II = STI.getInstrItineraryData();
return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II);
}
bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const {
// Debug info is never a scheduling boundary. It's necessary to be explicit
// due to the special treatment of IT instructions below, otherwise a
// dbg_value followed by an IT will result in the IT instruction being
// considered a scheduling hazard, which is wrong. It should be the actual
// instruction preceding the dbg_value instruction(s), just like it is
// when debug info is not present.
if (MI->isDebugValue())
return false;
// Terminators and labels can't be scheduled around.
if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
return true;
return false;
}
bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
// Constant extenders are allowed only for V4 and above.
if (!Subtarget.hasV4TOps())
return false;
const uint64_t F = MI->getDesc().TSFlags;
unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
if (isExtended) // Instruction must be extended.
return true;
unsigned isExtendable = (F >> HexagonII::ExtendablePos)
& HexagonII::ExtendableMask;
if (!isExtendable)
return false;
short ExtOpNum = getCExtOpNum(MI);
const MachineOperand &MO = MI->getOperand(ExtOpNum);
// Use MO operand flags to determine if MO
// has the HMOTF_ConstExtended flag set.
if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
return true;
// If this is a Machine BB address we are talking about, and it is
// not marked as extended, say so.
if (MO.isMBB())
return false;
// We could be using an instruction with an extendable immediate and shoehorn
// a global address into it. If it is a global address it will be constant
// extended. We do this for COMBINE.
// We currently only handle isGlobal() because it is the only kind of
// object we are going to end up with here for now.
// In the future we probably should add isSymbol(), etc.
if (MO.isGlobal() || MO.isSymbol())
return true;
// If the extendable operand is not 'Immediate' type, the instruction should
// have 'isExtended' flag set.
assert(MO.isImm() && "Extendable operand must be Immediate type");
int MinValue = getMinValue(MI);
int MaxValue = getMaxValue(MI);
int ImmValue = MO.getImm();
return (ImmValue < MinValue || ImmValue > MaxValue);
}
// Returns the opcode to use when converting MI, which is a conditional jump,
// into a conditional instruction which uses the .new value of the predicate.
// We also use branch probabilities to add a hint to the jump.
int
HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
const
MachineBranchProbabilityInfo *MBPI) const {
// We assume that block can have at most two successors.
bool taken = false;
MachineBasicBlock *Src = MI->getParent();
MachineOperand *BrTarget = &MI->getOperand(1);
MachineBasicBlock *Dst = BrTarget->getMBB();
const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
if (Prediction >= BranchProbability(1,2))
taken = true;
switch (MI->getOpcode()) {
case Hexagon::JMP_t:
return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt;
case Hexagon::JMP_f:
return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt;
default:
llvm_unreachable("Unexpected jump instruction.");
}
}
// Returns true if a particular operand is extendable for an instruction.
bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
unsigned short OperandNum) const {
// Constant extenders are allowed only for V4 and above.
if (!Subtarget.hasV4TOps())
return false;
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
== OperandNum;
}
// Returns Operand Index for the constant extended instruction.
unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}
// Returns the min value that doesn't need to be extended.
int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
& HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos)
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return -1U << (bits - 1);
else
return 0;
}
// Returns the max value that doesn't need to be extended.
int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
& HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos)
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return ~(-1U << (bits - 1));
else
return ~(-1U << bits);
}
// Returns true if an instruction can be converted into a non-extended
// equivalent instruction.
bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
short NonExtOpcode;
// Check if the instruction has a register form that uses register in place
// of the extended operand, if so return that as the non-extended form.
if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
return true;
if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
// Check addressing mode and retrieve non-ext equivalent instruction.
switch (getAddrMode(MI)) {
case HexagonII::Absolute :
// Load/store with absolute addressing mode can be converted into
// base+offset mode.
NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
break;
case HexagonII::BaseImmOffset :
// Load/store with base+offset addressing mode can be converted into
// base+register offset addressing mode. However left shift operand should
// be set to 0.
NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
break;
default:
return false;
}
if (NonExtOpcode < 0)
return false;
return true;
}
return false;
}
// Returns opcode of the non-extended equivalent instruction.
short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
// Check if the instruction has a register form that uses register in place
// of the extended operand, if so return that as the non-extended form.
short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
if (NonExtOpcode >= 0)
return NonExtOpcode;
if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
// Check addressing mode and retrieve non-ext equivalent instruction.
switch (getAddrMode(MI)) {
case HexagonII::Absolute :
return Hexagon::getBasedWithImmOffset(MI->getOpcode());
case HexagonII::BaseImmOffset :
return Hexagon::getBaseWithRegOffset(MI->getOpcode());
default:
return -1;
}
}
return -1;
}
bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
return (Opcode == Hexagon::JMP_t) ||
(Opcode == Hexagon::JMP_f) ||
(Opcode == Hexagon::JMP_tnew_t) ||
(Opcode == Hexagon::JMP_fnew_t) ||
(Opcode == Hexagon::JMP_tnew_nt) ||
(Opcode == Hexagon::JMP_fnew_nt);
}
bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
return (Opcode == Hexagon::JMP_f) ||
(Opcode == Hexagon::JMP_fnew_t) ||
(Opcode == Hexagon::JMP_fnew_nt);
}