forked from OSchip/llvm-project
2661 lines
82 KiB
C++
2661 lines
82 KiB
C++
//===-- tsan_interceptors.cc ----------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
// FIXME: move as many interceptors as possible into
|
|
// sanitizer_common/sanitizer_common_interceptors.inc
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "sanitizer_common/sanitizer_atomic.h"
|
|
#include "sanitizer_common/sanitizer_libc.h"
|
|
#include "sanitizer_common/sanitizer_linux.h"
|
|
#include "sanitizer_common/sanitizer_platform_limits_posix.h"
|
|
#include "sanitizer_common/sanitizer_placement_new.h"
|
|
#include "sanitizer_common/sanitizer_stacktrace.h"
|
|
#include "sanitizer_common/sanitizer_tls_get_addr.h"
|
|
#include "interception/interception.h"
|
|
#include "tsan_interceptors.h"
|
|
#include "tsan_interface.h"
|
|
#include "tsan_platform.h"
|
|
#include "tsan_suppressions.h"
|
|
#include "tsan_rtl.h"
|
|
#include "tsan_mman.h"
|
|
#include "tsan_fd.h"
|
|
|
|
#if SANITIZER_POSIX
|
|
#include "sanitizer_common/sanitizer_posix.h"
|
|
#endif
|
|
|
|
using namespace __tsan; // NOLINT
|
|
|
|
#if SANITIZER_FREEBSD || SANITIZER_MAC
|
|
#define __errno_location __error
|
|
#define stdout __stdoutp
|
|
#define stderr __stderrp
|
|
#endif
|
|
|
|
#if SANITIZER_ANDROID
|
|
#define __errno_location __errno
|
|
#define mallopt(a, b)
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX || SANITIZER_FREEBSD
|
|
#define PTHREAD_CREATE_DETACHED 1
|
|
#elif SANITIZER_MAC
|
|
#define PTHREAD_CREATE_DETACHED 2
|
|
#endif
|
|
|
|
|
|
#ifdef __mips__
|
|
const int kSigCount = 129;
|
|
#else
|
|
const int kSigCount = 65;
|
|
#endif
|
|
|
|
struct my_siginfo_t {
|
|
// The size is determined by looking at sizeof of real siginfo_t on linux.
|
|
u64 opaque[128 / sizeof(u64)];
|
|
};
|
|
|
|
#ifdef __mips__
|
|
struct ucontext_t {
|
|
u64 opaque[768 / sizeof(u64) + 1];
|
|
};
|
|
#else
|
|
struct ucontext_t {
|
|
// The size is determined by looking at sizeof of real ucontext_t on linux.
|
|
u64 opaque[936 / sizeof(u64) + 1];
|
|
};
|
|
#endif
|
|
|
|
#if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
|
|
#define PTHREAD_ABI_BASE "GLIBC_2.3.2"
|
|
#elif defined(__aarch64__) || SANITIZER_PPC64V2
|
|
#define PTHREAD_ABI_BASE "GLIBC_2.17"
|
|
#endif
|
|
|
|
extern "C" int pthread_attr_init(void *attr);
|
|
extern "C" int pthread_attr_destroy(void *attr);
|
|
DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
|
|
extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
|
|
extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
|
|
extern "C" int pthread_setspecific(unsigned key, const void *v);
|
|
DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
|
|
DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
|
|
DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
|
|
DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
|
|
extern "C" void *pthread_self();
|
|
extern "C" void _exit(int status);
|
|
extern "C" int *__errno_location();
|
|
extern "C" int fileno_unlocked(void *stream);
|
|
extern "C" int dirfd(void *dirp);
|
|
#if !SANITIZER_FREEBSD && !SANITIZER_ANDROID
|
|
extern "C" int mallopt(int param, int value);
|
|
#endif
|
|
extern __sanitizer_FILE *stdout, *stderr;
|
|
#if !SANITIZER_FREEBSD && !SANITIZER_MAC
|
|
const int PTHREAD_MUTEX_RECURSIVE = 1;
|
|
const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
|
|
#else
|
|
const int PTHREAD_MUTEX_RECURSIVE = 2;
|
|
const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
|
|
#endif
|
|
const int EINVAL = 22;
|
|
const int EBUSY = 16;
|
|
const int EOWNERDEAD = 130;
|
|
#if !SANITIZER_FREEBSD && !SANITIZER_MAC
|
|
const int EPOLL_CTL_ADD = 1;
|
|
#endif
|
|
const int SIGILL = 4;
|
|
const int SIGABRT = 6;
|
|
const int SIGFPE = 8;
|
|
const int SIGSEGV = 11;
|
|
const int SIGPIPE = 13;
|
|
const int SIGTERM = 15;
|
|
#if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC
|
|
const int SIGBUS = 10;
|
|
const int SIGSYS = 12;
|
|
#else
|
|
const int SIGBUS = 7;
|
|
const int SIGSYS = 31;
|
|
#endif
|
|
void *const MAP_FAILED = (void*)-1;
|
|
#if !SANITIZER_MAC
|
|
const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
|
|
#endif
|
|
const int MAP_FIXED = 0x10;
|
|
typedef long long_t; // NOLINT
|
|
|
|
// From /usr/include/unistd.h
|
|
# define F_ULOCK 0 /* Unlock a previously locked region. */
|
|
# define F_LOCK 1 /* Lock a region for exclusive use. */
|
|
# define F_TLOCK 2 /* Test and lock a region for exclusive use. */
|
|
# define F_TEST 3 /* Test a region for other processes locks. */
|
|
|
|
#define errno (*__errno_location())
|
|
|
|
typedef void (*sighandler_t)(int sig);
|
|
typedef void (*sigactionhandler_t)(int sig, my_siginfo_t *siginfo, void *uctx);
|
|
|
|
#if SANITIZER_ANDROID
|
|
struct sigaction_t {
|
|
u32 sa_flags;
|
|
union {
|
|
sighandler_t sa_handler;
|
|
sigactionhandler_t sa_sigaction;
|
|
};
|
|
__sanitizer_sigset_t sa_mask;
|
|
void (*sa_restorer)();
|
|
};
|
|
#else
|
|
struct sigaction_t {
|
|
#ifdef __mips__
|
|
u32 sa_flags;
|
|
#endif
|
|
union {
|
|
sighandler_t sa_handler;
|
|
sigactionhandler_t sa_sigaction;
|
|
};
|
|
#if SANITIZER_FREEBSD
|
|
int sa_flags;
|
|
__sanitizer_sigset_t sa_mask;
|
|
#elif SANITIZER_MAC
|
|
__sanitizer_sigset_t sa_mask;
|
|
int sa_flags;
|
|
#else
|
|
__sanitizer_sigset_t sa_mask;
|
|
#ifndef __mips__
|
|
int sa_flags;
|
|
#endif
|
|
void (*sa_restorer)();
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
const sighandler_t SIG_DFL = (sighandler_t)0;
|
|
const sighandler_t SIG_IGN = (sighandler_t)1;
|
|
const sighandler_t SIG_ERR = (sighandler_t)-1;
|
|
#if SANITIZER_FREEBSD || SANITIZER_MAC
|
|
const int SA_SIGINFO = 0x40;
|
|
const int SIG_SETMASK = 3;
|
|
#elif defined(__mips__)
|
|
const int SA_SIGINFO = 8;
|
|
const int SIG_SETMASK = 3;
|
|
#else
|
|
const int SA_SIGINFO = 4;
|
|
const int SIG_SETMASK = 2;
|
|
#endif
|
|
|
|
#define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
|
|
(!cur_thread()->is_inited)
|
|
|
|
static sigaction_t sigactions[kSigCount];
|
|
|
|
namespace __tsan {
|
|
struct SignalDesc {
|
|
bool armed;
|
|
bool sigaction;
|
|
my_siginfo_t siginfo;
|
|
ucontext_t ctx;
|
|
};
|
|
|
|
struct ThreadSignalContext {
|
|
int int_signal_send;
|
|
atomic_uintptr_t in_blocking_func;
|
|
atomic_uintptr_t have_pending_signals;
|
|
SignalDesc pending_signals[kSigCount];
|
|
// emptyset and oldset are too big for stack.
|
|
__sanitizer_sigset_t emptyset;
|
|
__sanitizer_sigset_t oldset;
|
|
};
|
|
|
|
// The object is 64-byte aligned, because we want hot data to be located in
|
|
// a single cache line if possible (it's accessed in every interceptor).
|
|
static ALIGNED(64) char libignore_placeholder[sizeof(LibIgnore)];
|
|
static LibIgnore *libignore() {
|
|
return reinterpret_cast<LibIgnore*>(&libignore_placeholder[0]);
|
|
}
|
|
|
|
void InitializeLibIgnore() {
|
|
const SuppressionContext &supp = *Suppressions();
|
|
const uptr n = supp.SuppressionCount();
|
|
for (uptr i = 0; i < n; i++) {
|
|
const Suppression *s = supp.SuppressionAt(i);
|
|
if (0 == internal_strcmp(s->type, kSuppressionLib))
|
|
libignore()->AddIgnoredLibrary(s->templ);
|
|
}
|
|
libignore()->OnLibraryLoaded(0);
|
|
}
|
|
|
|
} // namespace __tsan
|
|
|
|
static ThreadSignalContext *SigCtx(ThreadState *thr) {
|
|
ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
|
|
if (ctx == 0 && !thr->is_dead) {
|
|
ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
|
|
MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
|
|
thr->signal_ctx = ctx;
|
|
}
|
|
return ctx;
|
|
}
|
|
|
|
#if !SANITIZER_MAC
|
|
static unsigned g_thread_finalize_key;
|
|
#endif
|
|
|
|
ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
|
|
uptr pc)
|
|
: thr_(thr)
|
|
, pc_(pc)
|
|
, in_ignored_lib_(false) {
|
|
Initialize(thr);
|
|
if (!thr_->is_inited)
|
|
return;
|
|
if (!thr_->ignore_interceptors)
|
|
FuncEntry(thr, pc);
|
|
DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
|
|
if (!thr_->in_ignored_lib && libignore()->IsIgnored(pc)) {
|
|
in_ignored_lib_ = true;
|
|
thr_->in_ignored_lib = true;
|
|
ThreadIgnoreBegin(thr_, pc_);
|
|
}
|
|
if (flags()->ignore_interceptors_accesses) ThreadIgnoreBegin(thr_, pc_);
|
|
}
|
|
|
|
ScopedInterceptor::~ScopedInterceptor() {
|
|
if (!thr_->is_inited)
|
|
return;
|
|
if (flags()->ignore_interceptors_accesses) ThreadIgnoreEnd(thr_, pc_);
|
|
if (in_ignored_lib_) {
|
|
thr_->in_ignored_lib = false;
|
|
ThreadIgnoreEnd(thr_, pc_);
|
|
}
|
|
if (!thr_->ignore_interceptors) {
|
|
ProcessPendingSignals(thr_);
|
|
FuncExit(thr_);
|
|
CheckNoLocks(thr_);
|
|
}
|
|
}
|
|
|
|
void ScopedInterceptor::UserCallbackStart() {
|
|
if (flags()->ignore_interceptors_accesses) ThreadIgnoreEnd(thr_, pc_);
|
|
if (in_ignored_lib_) {
|
|
thr_->in_ignored_lib = false;
|
|
ThreadIgnoreEnd(thr_, pc_);
|
|
}
|
|
}
|
|
|
|
void ScopedInterceptor::UserCallbackEnd() {
|
|
if (in_ignored_lib_) {
|
|
thr_->in_ignored_lib = true;
|
|
ThreadIgnoreBegin(thr_, pc_);
|
|
}
|
|
if (flags()->ignore_interceptors_accesses) ThreadIgnoreBegin(thr_, pc_);
|
|
}
|
|
|
|
#define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
|
|
#if SANITIZER_FREEBSD
|
|
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
|
|
#else
|
|
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
|
|
#endif
|
|
|
|
#define READ_STRING_OF_LEN(thr, pc, s, len, n) \
|
|
MemoryAccessRange((thr), (pc), (uptr)(s), \
|
|
common_flags()->strict_string_checks ? (len) + 1 : (n), false)
|
|
|
|
#define READ_STRING(thr, pc, s, n) \
|
|
READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
|
|
|
|
#define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
|
|
|
|
struct BlockingCall {
|
|
explicit BlockingCall(ThreadState *thr)
|
|
: thr(thr)
|
|
, ctx(SigCtx(thr)) {
|
|
for (;;) {
|
|
atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
|
|
if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
|
|
break;
|
|
atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
|
|
ProcessPendingSignals(thr);
|
|
}
|
|
// When we are in a "blocking call", we process signals asynchronously
|
|
// (right when they arrive). In this context we do not expect to be
|
|
// executing any user/runtime code. The known interceptor sequence when
|
|
// this is not true is: pthread_join -> munmap(stack). It's fine
|
|
// to ignore munmap in this case -- we handle stack shadow separately.
|
|
thr->ignore_interceptors++;
|
|
}
|
|
|
|
~BlockingCall() {
|
|
thr->ignore_interceptors--;
|
|
atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
|
|
}
|
|
|
|
ThreadState *thr;
|
|
ThreadSignalContext *ctx;
|
|
};
|
|
|
|
TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
|
|
SCOPED_TSAN_INTERCEPTOR(sleep, sec);
|
|
unsigned res = BLOCK_REAL(sleep)(sec);
|
|
AfterSleep(thr, pc);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, usleep, long_t usec) {
|
|
SCOPED_TSAN_INTERCEPTOR(usleep, usec);
|
|
int res = BLOCK_REAL(usleep)(usec);
|
|
AfterSleep(thr, pc);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
|
|
SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
|
|
int res = BLOCK_REAL(nanosleep)(req, rem);
|
|
AfterSleep(thr, pc);
|
|
return res;
|
|
}
|
|
|
|
// The sole reason tsan wraps atexit callbacks is to establish synchronization
|
|
// between callback setup and callback execution.
|
|
struct AtExitCtx {
|
|
void (*f)();
|
|
void *arg;
|
|
};
|
|
|
|
static void at_exit_wrapper(void *arg) {
|
|
ThreadState *thr = cur_thread();
|
|
uptr pc = 0;
|
|
Acquire(thr, pc, (uptr)arg);
|
|
AtExitCtx *ctx = (AtExitCtx*)arg;
|
|
((void(*)(void *arg))ctx->f)(ctx->arg);
|
|
InternalFree(ctx);
|
|
}
|
|
|
|
static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
|
|
void *arg, void *dso);
|
|
|
|
#if !SANITIZER_ANDROID
|
|
TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
|
|
if (cur_thread()->in_symbolizer)
|
|
return 0;
|
|
// We want to setup the atexit callback even if we are in ignored lib
|
|
// or after fork.
|
|
SCOPED_INTERCEPTOR_RAW(atexit, f);
|
|
return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
|
|
if (cur_thread()->in_symbolizer)
|
|
return 0;
|
|
SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
|
|
return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
|
|
}
|
|
|
|
static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
|
|
void *arg, void *dso) {
|
|
AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
|
|
ctx->f = f;
|
|
ctx->arg = arg;
|
|
Release(thr, pc, (uptr)ctx);
|
|
// Memory allocation in __cxa_atexit will race with free during exit,
|
|
// because we do not see synchronization around atexit callback list.
|
|
ThreadIgnoreBegin(thr, pc);
|
|
int res = REAL(__cxa_atexit)(at_exit_wrapper, ctx, dso);
|
|
ThreadIgnoreEnd(thr, pc);
|
|
return res;
|
|
}
|
|
|
|
#if !SANITIZER_MAC
|
|
static void on_exit_wrapper(int status, void *arg) {
|
|
ThreadState *thr = cur_thread();
|
|
uptr pc = 0;
|
|
Acquire(thr, pc, (uptr)arg);
|
|
AtExitCtx *ctx = (AtExitCtx*)arg;
|
|
((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
|
|
InternalFree(ctx);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
|
|
if (cur_thread()->in_symbolizer)
|
|
return 0;
|
|
SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
|
|
AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
|
|
ctx->f = (void(*)())f;
|
|
ctx->arg = arg;
|
|
Release(thr, pc, (uptr)ctx);
|
|
// Memory allocation in __cxa_atexit will race with free during exit,
|
|
// because we do not see synchronization around atexit callback list.
|
|
ThreadIgnoreBegin(thr, pc);
|
|
int res = REAL(on_exit)(on_exit_wrapper, ctx);
|
|
ThreadIgnoreEnd(thr, pc);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
// Cleanup old bufs.
|
|
static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
|
|
for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
|
|
JmpBuf *buf = &thr->jmp_bufs[i];
|
|
if (buf->sp <= sp) {
|
|
uptr sz = thr->jmp_bufs.Size();
|
|
internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
|
|
thr->jmp_bufs.PopBack();
|
|
i--;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
|
|
if (!thr->is_inited) // called from libc guts during bootstrap
|
|
return;
|
|
// Cleanup old bufs.
|
|
JmpBufGarbageCollect(thr, sp);
|
|
// Remember the buf.
|
|
JmpBuf *buf = thr->jmp_bufs.PushBack();
|
|
buf->sp = sp;
|
|
buf->mangled_sp = mangled_sp;
|
|
buf->shadow_stack_pos = thr->shadow_stack_pos;
|
|
ThreadSignalContext *sctx = SigCtx(thr);
|
|
buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
|
|
buf->in_blocking_func = sctx ?
|
|
atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
|
|
false;
|
|
buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
|
|
memory_order_relaxed);
|
|
}
|
|
|
|
static void LongJmp(ThreadState *thr, uptr *env) {
|
|
#ifdef __powerpc__
|
|
uptr mangled_sp = env[0];
|
|
#elif SANITIZER_FREEBSD || SANITIZER_MAC
|
|
uptr mangled_sp = env[2];
|
|
#elif defined(SANITIZER_LINUX)
|
|
# ifdef __aarch64__
|
|
uptr mangled_sp = env[13];
|
|
# elif defined(__mips64)
|
|
uptr mangled_sp = env[1];
|
|
# else
|
|
uptr mangled_sp = env[6];
|
|
# endif
|
|
#endif
|
|
// Find the saved buf by mangled_sp.
|
|
for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
|
|
JmpBuf *buf = &thr->jmp_bufs[i];
|
|
if (buf->mangled_sp == mangled_sp) {
|
|
CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
|
|
// Unwind the stack.
|
|
while (thr->shadow_stack_pos > buf->shadow_stack_pos)
|
|
FuncExit(thr);
|
|
ThreadSignalContext *sctx = SigCtx(thr);
|
|
if (sctx) {
|
|
sctx->int_signal_send = buf->int_signal_send;
|
|
atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
|
|
memory_order_relaxed);
|
|
}
|
|
atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
|
|
memory_order_relaxed);
|
|
JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp
|
|
return;
|
|
}
|
|
}
|
|
Printf("ThreadSanitizer: can't find longjmp buf\n");
|
|
CHECK(0);
|
|
}
|
|
|
|
// FIXME: put everything below into a common extern "C" block?
|
|
extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
|
|
SetJmp(cur_thread(), sp, mangled_sp);
|
|
}
|
|
|
|
#if SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(int, setjmp, void *env);
|
|
TSAN_INTERCEPTOR(int, _setjmp, void *env);
|
|
TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
|
|
#else // SANITIZER_MAC
|
|
// Not called. Merely to satisfy TSAN_INTERCEPT().
|
|
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
|
|
int __interceptor_setjmp(void *env);
|
|
extern "C" int __interceptor_setjmp(void *env) {
|
|
CHECK(0);
|
|
return 0;
|
|
}
|
|
|
|
// FIXME: any reason to have a separate declaration?
|
|
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
|
|
int __interceptor__setjmp(void *env);
|
|
extern "C" int __interceptor__setjmp(void *env) {
|
|
CHECK(0);
|
|
return 0;
|
|
}
|
|
|
|
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
|
|
int __interceptor_sigsetjmp(void *env);
|
|
extern "C" int __interceptor_sigsetjmp(void *env) {
|
|
CHECK(0);
|
|
return 0;
|
|
}
|
|
|
|
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
|
|
int __interceptor___sigsetjmp(void *env);
|
|
extern "C" int __interceptor___sigsetjmp(void *env) {
|
|
CHECK(0);
|
|
return 0;
|
|
}
|
|
|
|
extern "C" int setjmp(void *env);
|
|
extern "C" int _setjmp(void *env);
|
|
extern "C" int sigsetjmp(void *env);
|
|
extern "C" int __sigsetjmp(void *env);
|
|
DEFINE_REAL(int, setjmp, void *env)
|
|
DEFINE_REAL(int, _setjmp, void *env)
|
|
DEFINE_REAL(int, sigsetjmp, void *env)
|
|
DEFINE_REAL(int, __sigsetjmp, void *env)
|
|
#endif // SANITIZER_MAC
|
|
|
|
TSAN_INTERCEPTOR(void, longjmp, uptr *env, int val) {
|
|
// Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
|
|
// bad things will happen. We will jump over ScopedInterceptor dtor and can
|
|
// leave thr->in_ignored_lib set.
|
|
{
|
|
SCOPED_INTERCEPTOR_RAW(longjmp, env, val);
|
|
}
|
|
LongJmp(cur_thread(), env);
|
|
REAL(longjmp)(env, val);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void, siglongjmp, uptr *env, int val) {
|
|
{
|
|
SCOPED_INTERCEPTOR_RAW(siglongjmp, env, val);
|
|
}
|
|
LongJmp(cur_thread(), env);
|
|
REAL(siglongjmp)(env, val);
|
|
}
|
|
|
|
#if !SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(void*, malloc, uptr size) {
|
|
if (cur_thread()->in_symbolizer)
|
|
return InternalAlloc(size);
|
|
void *p = 0;
|
|
{
|
|
SCOPED_INTERCEPTOR_RAW(malloc, size);
|
|
p = user_alloc(thr, pc, size);
|
|
}
|
|
invoke_malloc_hook(p, size);
|
|
return p;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
|
|
SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
|
|
return user_alloc(thr, pc, sz, align);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
|
|
if (cur_thread()->in_symbolizer)
|
|
return InternalCalloc(size, n);
|
|
void *p = 0;
|
|
{
|
|
SCOPED_INTERCEPTOR_RAW(calloc, size, n);
|
|
p = user_calloc(thr, pc, size, n);
|
|
}
|
|
invoke_malloc_hook(p, n * size);
|
|
return p;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
|
|
if (cur_thread()->in_symbolizer)
|
|
return InternalRealloc(p, size);
|
|
if (p)
|
|
invoke_free_hook(p);
|
|
{
|
|
SCOPED_INTERCEPTOR_RAW(realloc, p, size);
|
|
p = user_realloc(thr, pc, p, size);
|
|
}
|
|
invoke_malloc_hook(p, size);
|
|
return p;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void, free, void *p) {
|
|
if (p == 0)
|
|
return;
|
|
if (cur_thread()->in_symbolizer)
|
|
return InternalFree(p);
|
|
invoke_free_hook(p);
|
|
SCOPED_INTERCEPTOR_RAW(free, p);
|
|
user_free(thr, pc, p);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void, cfree, void *p) {
|
|
if (p == 0)
|
|
return;
|
|
if (cur_thread()->in_symbolizer)
|
|
return InternalFree(p);
|
|
invoke_free_hook(p);
|
|
SCOPED_INTERCEPTOR_RAW(cfree, p);
|
|
user_free(thr, pc, p);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
|
|
SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
|
|
return user_alloc_usable_size(p);
|
|
}
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) { // NOLINT
|
|
SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); // NOLINT
|
|
uptr srclen = internal_strlen(src);
|
|
MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
|
|
MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
|
|
return REAL(strcpy)(dst, src); // NOLINT
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
|
|
SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
|
|
uptr srclen = internal_strnlen(src, n);
|
|
MemoryAccessRange(thr, pc, (uptr)dst, n, true);
|
|
MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
|
|
return REAL(strncpy)(dst, src, n);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(char*, strdup, const char *str) {
|
|
SCOPED_TSAN_INTERCEPTOR(strdup, str);
|
|
// strdup will call malloc, so no instrumentation is required here.
|
|
return REAL(strdup)(str);
|
|
}
|
|
|
|
static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
|
|
if (*addr) {
|
|
if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
|
|
if (flags & MAP_FIXED) {
|
|
errno = EINVAL;
|
|
return false;
|
|
} else {
|
|
*addr = 0;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void *, mmap, void *addr, SIZE_T sz, int prot, int flags,
|
|
int fd, OFF_T off) {
|
|
SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off);
|
|
if (!fix_mmap_addr(&addr, sz, flags))
|
|
return MAP_FAILED;
|
|
void *res = REAL(mmap)(addr, sz, prot, flags, fd, off);
|
|
if (res != MAP_FAILED) {
|
|
if (fd > 0)
|
|
FdAccess(thr, pc, fd);
|
|
|
|
if (thr->ignore_reads_and_writes == 0)
|
|
MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
|
|
else
|
|
MemoryResetRange(thr, pc, (uptr)res, sz);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(void *, mmap64, void *addr, SIZE_T sz, int prot, int flags,
|
|
int fd, OFF64_T off) {
|
|
SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off);
|
|
if (!fix_mmap_addr(&addr, sz, flags))
|
|
return MAP_FAILED;
|
|
void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off);
|
|
if (res != MAP_FAILED) {
|
|
if (fd > 0)
|
|
FdAccess(thr, pc, fd);
|
|
|
|
if (thr->ignore_reads_and_writes == 0)
|
|
MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
|
|
else
|
|
MemoryResetRange(thr, pc, (uptr)res, sz);
|
|
}
|
|
return res;
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_MMAP64 TSAN_INTERCEPT(mmap64)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_MMAP64
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
|
|
SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
|
|
if (sz != 0) {
|
|
// If sz == 0, munmap will return EINVAL and don't unmap any memory.
|
|
DontNeedShadowFor((uptr)addr, sz);
|
|
ScopedGlobalProcessor sgp;
|
|
ctx->metamap.ResetRange(thr->proc(), (uptr)addr, (uptr)sz);
|
|
}
|
|
int res = REAL(munmap)(addr, sz);
|
|
return res;
|
|
}
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
|
|
SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
|
|
return user_alloc(thr, pc, sz, align);
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_MEMALIGN
|
|
#endif
|
|
|
|
#if !SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
|
|
SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
|
|
return user_alloc(thr, pc, sz, align);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
|
|
SCOPED_INTERCEPTOR_RAW(valloc, sz);
|
|
return user_alloc(thr, pc, sz, GetPageSizeCached());
|
|
}
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
|
|
SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
|
|
sz = RoundUp(sz, GetPageSizeCached());
|
|
return user_alloc(thr, pc, sz, GetPageSizeCached());
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_PVALLOC
|
|
#endif
|
|
|
|
#if !SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
|
|
SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
|
|
*memptr = user_alloc(thr, pc, sz, align);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
// __cxa_guard_acquire and friends need to be intercepted in a special way -
|
|
// regular interceptors will break statically-linked libstdc++. Linux
|
|
// interceptors are especially defined as weak functions (so that they don't
|
|
// cause link errors when user defines them as well). So they silently
|
|
// auto-disable themselves when such symbol is already present in the binary. If
|
|
// we link libstdc++ statically, it will bring own __cxa_guard_acquire which
|
|
// will silently replace our interceptor. That's why on Linux we simply export
|
|
// these interceptors with INTERFACE_ATTRIBUTE.
|
|
// On OS X, we don't support statically linking, so we just use a regular
|
|
// interceptor.
|
|
#if SANITIZER_MAC
|
|
#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
|
|
#else
|
|
#define STDCXX_INTERCEPTOR(rettype, name, ...) \
|
|
extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
|
|
#endif
|
|
|
|
// Used in thread-safe function static initialization.
|
|
STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
|
|
SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
|
|
for (;;) {
|
|
u32 cmp = atomic_load(g, memory_order_acquire);
|
|
if (cmp == 0) {
|
|
if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
|
|
return 1;
|
|
} else if (cmp == 1) {
|
|
Acquire(thr, pc, (uptr)g);
|
|
return 0;
|
|
} else {
|
|
internal_sched_yield();
|
|
}
|
|
}
|
|
}
|
|
|
|
STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
|
|
SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
|
|
Release(thr, pc, (uptr)g);
|
|
atomic_store(g, 1, memory_order_release);
|
|
}
|
|
|
|
STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
|
|
SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
|
|
atomic_store(g, 0, memory_order_relaxed);
|
|
}
|
|
|
|
namespace __tsan {
|
|
void DestroyThreadState() {
|
|
ThreadState *thr = cur_thread();
|
|
Processor *proc = thr->proc();
|
|
ThreadFinish(thr);
|
|
ProcUnwire(proc, thr);
|
|
ProcDestroy(proc);
|
|
ThreadSignalContext *sctx = thr->signal_ctx;
|
|
if (sctx) {
|
|
thr->signal_ctx = 0;
|
|
UnmapOrDie(sctx, sizeof(*sctx));
|
|
}
|
|
DTLS_Destroy();
|
|
cur_thread_finalize();
|
|
}
|
|
} // namespace __tsan
|
|
|
|
#if !SANITIZER_MAC
|
|
static void thread_finalize(void *v) {
|
|
uptr iter = (uptr)v;
|
|
if (iter > 1) {
|
|
if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
|
|
Printf("ThreadSanitizer: failed to set thread key\n");
|
|
Die();
|
|
}
|
|
return;
|
|
}
|
|
DestroyThreadState();
|
|
}
|
|
#endif
|
|
|
|
|
|
struct ThreadParam {
|
|
void* (*callback)(void *arg);
|
|
void *param;
|
|
atomic_uintptr_t tid;
|
|
};
|
|
|
|
extern "C" void *__tsan_thread_start_func(void *arg) {
|
|
ThreadParam *p = (ThreadParam*)arg;
|
|
void* (*callback)(void *arg) = p->callback;
|
|
void *param = p->param;
|
|
int tid = 0;
|
|
{
|
|
ThreadState *thr = cur_thread();
|
|
// Thread-local state is not initialized yet.
|
|
ScopedIgnoreInterceptors ignore;
|
|
#if !SANITIZER_MAC
|
|
ThreadIgnoreBegin(thr, 0);
|
|
if (pthread_setspecific(g_thread_finalize_key,
|
|
(void *)GetPthreadDestructorIterations())) {
|
|
Printf("ThreadSanitizer: failed to set thread key\n");
|
|
Die();
|
|
}
|
|
ThreadIgnoreEnd(thr, 0);
|
|
#endif
|
|
while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
|
|
internal_sched_yield();
|
|
Processor *proc = ProcCreate();
|
|
ProcWire(proc, thr);
|
|
ThreadStart(thr, tid, GetTid());
|
|
atomic_store(&p->tid, 0, memory_order_release);
|
|
}
|
|
void *res = callback(param);
|
|
// Prevent the callback from being tail called,
|
|
// it mixes up stack traces.
|
|
volatile int foo = 42;
|
|
foo++;
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_create,
|
|
void *th, void *attr, void *(*callback)(void*), void * param) {
|
|
SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
|
|
if (ctx->after_multithreaded_fork) {
|
|
if (flags()->die_after_fork) {
|
|
Report("ThreadSanitizer: starting new threads after multi-threaded "
|
|
"fork is not supported. Dying (set die_after_fork=0 to override)\n");
|
|
Die();
|
|
} else {
|
|
VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
|
|
"fork is not supported (pid %d). Continuing because of "
|
|
"die_after_fork=0, but you are on your own\n", internal_getpid());
|
|
}
|
|
}
|
|
__sanitizer_pthread_attr_t myattr;
|
|
if (attr == 0) {
|
|
pthread_attr_init(&myattr);
|
|
attr = &myattr;
|
|
}
|
|
int detached = 0;
|
|
REAL(pthread_attr_getdetachstate)(attr, &detached);
|
|
AdjustStackSize(attr);
|
|
|
|
ThreadParam p;
|
|
p.callback = callback;
|
|
p.param = param;
|
|
atomic_store(&p.tid, 0, memory_order_relaxed);
|
|
int res = -1;
|
|
{
|
|
// Otherwise we see false positives in pthread stack manipulation.
|
|
ScopedIgnoreInterceptors ignore;
|
|
ThreadIgnoreBegin(thr, pc);
|
|
res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
|
|
ThreadIgnoreEnd(thr, pc);
|
|
}
|
|
if (res == 0) {
|
|
int tid = ThreadCreate(thr, pc, *(uptr*)th,
|
|
detached == PTHREAD_CREATE_DETACHED);
|
|
CHECK_NE(tid, 0);
|
|
// Synchronization on p.tid serves two purposes:
|
|
// 1. ThreadCreate must finish before the new thread starts.
|
|
// Otherwise the new thread can call pthread_detach, but the pthread_t
|
|
// identifier is not yet registered in ThreadRegistry by ThreadCreate.
|
|
// 2. ThreadStart must finish before this thread continues.
|
|
// Otherwise, this thread can call pthread_detach and reset thr->sync
|
|
// before the new thread got a chance to acquire from it in ThreadStart.
|
|
atomic_store(&p.tid, tid, memory_order_release);
|
|
while (atomic_load(&p.tid, memory_order_acquire) != 0)
|
|
internal_sched_yield();
|
|
}
|
|
if (attr == &myattr)
|
|
pthread_attr_destroy(&myattr);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
|
|
SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
|
|
int tid = ThreadTid(thr, pc, (uptr)th);
|
|
ThreadIgnoreBegin(thr, pc);
|
|
int res = BLOCK_REAL(pthread_join)(th, ret);
|
|
ThreadIgnoreEnd(thr, pc);
|
|
if (res == 0) {
|
|
ThreadJoin(thr, pc, tid);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
DEFINE_REAL_PTHREAD_FUNCTIONS
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
|
|
int tid = ThreadTid(thr, pc, (uptr)th);
|
|
int res = REAL(pthread_detach)(th);
|
|
if (res == 0) {
|
|
ThreadDetach(thr, pc, tid);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Problem:
|
|
// NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
|
|
// pthread_cond_t has different size in the different versions.
|
|
// If call new REAL functions for old pthread_cond_t, they will corrupt memory
|
|
// after pthread_cond_t (old cond is smaller).
|
|
// If we call old REAL functions for new pthread_cond_t, we will lose some
|
|
// functionality (e.g. old functions do not support waiting against
|
|
// CLOCK_REALTIME).
|
|
// Proper handling would require to have 2 versions of interceptors as well.
|
|
// But this is messy, in particular requires linker scripts when sanitizer
|
|
// runtime is linked into a shared library.
|
|
// Instead we assume we don't have dynamic libraries built against old
|
|
// pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
|
|
// that allows to work with old libraries (but this mode does not support
|
|
// some features, e.g. pthread_condattr_getpshared).
|
|
static void *init_cond(void *c, bool force = false) {
|
|
// sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
|
|
// So we allocate additional memory on the side large enough to hold
|
|
// any pthread_cond_t object. Always call new REAL functions, but pass
|
|
// the aux object to them.
|
|
// Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
|
|
// first word of pthread_cond_t to zero.
|
|
// It's all relevant only for linux.
|
|
if (!common_flags()->legacy_pthread_cond)
|
|
return c;
|
|
atomic_uintptr_t *p = (atomic_uintptr_t*)c;
|
|
uptr cond = atomic_load(p, memory_order_acquire);
|
|
if (!force && cond != 0)
|
|
return (void*)cond;
|
|
void *newcond = WRAP(malloc)(pthread_cond_t_sz);
|
|
internal_memset(newcond, 0, pthread_cond_t_sz);
|
|
if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
|
|
memory_order_acq_rel))
|
|
return newcond;
|
|
WRAP(free)(newcond);
|
|
return (void*)cond;
|
|
}
|
|
|
|
struct CondMutexUnlockCtx {
|
|
ScopedInterceptor *si;
|
|
ThreadState *thr;
|
|
uptr pc;
|
|
void *m;
|
|
};
|
|
|
|
static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
|
|
// pthread_cond_wait interceptor has enabled async signal delivery
|
|
// (see BlockingCall below). Disable async signals since we are running
|
|
// tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
|
|
// since the thread is cancelled, so we have to manually execute them
|
|
// (the thread still can run some user code due to pthread_cleanup_push).
|
|
ThreadSignalContext *ctx = SigCtx(arg->thr);
|
|
CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
|
|
atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
|
|
MutexLock(arg->thr, arg->pc, (uptr)arg->m);
|
|
// Undo BlockingCall ctor effects.
|
|
arg->thr->ignore_interceptors--;
|
|
arg->si->~ScopedInterceptor();
|
|
}
|
|
|
|
INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
|
|
void *cond = init_cond(c, true);
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
|
|
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
|
|
return REAL(pthread_cond_init)(cond, a);
|
|
}
|
|
|
|
static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
|
|
int (*fn)(void *c, void *m, void *abstime), void *c,
|
|
void *m, void *t) {
|
|
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
|
|
MutexUnlock(thr, pc, (uptr)m);
|
|
CondMutexUnlockCtx arg = {si, thr, pc, m};
|
|
int res = 0;
|
|
// This ensures that we handle mutex lock even in case of pthread_cancel.
|
|
// See test/tsan/cond_cancel.cc.
|
|
{
|
|
// Enable signal delivery while the thread is blocked.
|
|
BlockingCall bc(thr);
|
|
res = call_pthread_cancel_with_cleanup(
|
|
fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
|
|
}
|
|
if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
|
|
MutexLock(thr, pc, (uptr)m);
|
|
return res;
|
|
}
|
|
|
|
INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
|
|
void *cond = init_cond(c);
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
|
|
return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
|
|
pthread_cond_wait),
|
|
cond, m, 0);
|
|
}
|
|
|
|
INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
|
|
void *cond = init_cond(c);
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
|
|
return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
|
|
abstime);
|
|
}
|
|
|
|
#if SANITIZER_MAC
|
|
INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
|
|
void *reltime) {
|
|
void *cond = init_cond(c);
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
|
|
return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
|
|
m, reltime);
|
|
}
|
|
#endif
|
|
|
|
INTERCEPTOR(int, pthread_cond_signal, void *c) {
|
|
void *cond = init_cond(c);
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
|
|
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
|
|
return REAL(pthread_cond_signal)(cond);
|
|
}
|
|
|
|
INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
|
|
void *cond = init_cond(c);
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
|
|
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
|
|
return REAL(pthread_cond_broadcast)(cond);
|
|
}
|
|
|
|
INTERCEPTOR(int, pthread_cond_destroy, void *c) {
|
|
void *cond = init_cond(c);
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
|
|
MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
|
|
int res = REAL(pthread_cond_destroy)(cond);
|
|
if (common_flags()->legacy_pthread_cond) {
|
|
// Free our aux cond and zero the pointer to not leave dangling pointers.
|
|
WRAP(free)(cond);
|
|
atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
|
|
int res = REAL(pthread_mutex_init)(m, a);
|
|
if (res == 0) {
|
|
bool recursive = false;
|
|
if (a) {
|
|
int type = 0;
|
|
if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
|
|
recursive = (type == PTHREAD_MUTEX_RECURSIVE
|
|
|| type == PTHREAD_MUTEX_RECURSIVE_NP);
|
|
}
|
|
MutexCreate(thr, pc, (uptr)m, false, recursive, false);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
|
|
int res = REAL(pthread_mutex_destroy)(m);
|
|
if (res == 0 || res == EBUSY) {
|
|
MutexDestroy(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
|
|
int res = REAL(pthread_mutex_trylock)(m);
|
|
if (res == EOWNERDEAD)
|
|
MutexRepair(thr, pc, (uptr)m);
|
|
if (res == 0 || res == EOWNERDEAD)
|
|
MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
|
|
return res;
|
|
}
|
|
|
|
#if !SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
|
|
int res = REAL(pthread_mutex_timedlock)(m, abstime);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
#if !SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
|
|
int res = REAL(pthread_spin_init)(m, pshared);
|
|
if (res == 0) {
|
|
MutexCreate(thr, pc, (uptr)m, false, false, false);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
|
|
int res = REAL(pthread_spin_destroy)(m);
|
|
if (res == 0) {
|
|
MutexDestroy(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
|
|
int res = REAL(pthread_spin_lock)(m);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
|
|
int res = REAL(pthread_spin_trylock)(m);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
|
|
MutexUnlock(thr, pc, (uptr)m);
|
|
int res = REAL(pthread_spin_unlock)(m);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
|
|
int res = REAL(pthread_rwlock_init)(m, a);
|
|
if (res == 0) {
|
|
MutexCreate(thr, pc, (uptr)m, true, false, false);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
|
|
int res = REAL(pthread_rwlock_destroy)(m);
|
|
if (res == 0) {
|
|
MutexDestroy(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
|
|
int res = REAL(pthread_rwlock_rdlock)(m);
|
|
if (res == 0) {
|
|
MutexReadLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
|
|
int res = REAL(pthread_rwlock_tryrdlock)(m);
|
|
if (res == 0) {
|
|
MutexReadLock(thr, pc, (uptr)m, /*try_lock=*/true);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#if !SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
|
|
int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
|
|
if (res == 0) {
|
|
MutexReadLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
|
|
int res = REAL(pthread_rwlock_wrlock)(m);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
|
|
int res = REAL(pthread_rwlock_trywrlock)(m);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#if !SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
|
|
int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
|
|
if (res == 0) {
|
|
MutexLock(thr, pc, (uptr)m);
|
|
}
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
|
|
MutexReadOrWriteUnlock(thr, pc, (uptr)m);
|
|
int res = REAL(pthread_rwlock_unlock)(m);
|
|
return res;
|
|
}
|
|
|
|
#if !SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
|
|
MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
|
|
int res = REAL(pthread_barrier_init)(b, a, count);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
|
|
MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
|
|
int res = REAL(pthread_barrier_destroy)(b);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
|
|
Release(thr, pc, (uptr)b);
|
|
MemoryRead(thr, pc, (uptr)b, kSizeLog1);
|
|
int res = REAL(pthread_barrier_wait)(b);
|
|
MemoryRead(thr, pc, (uptr)b, kSizeLog1);
|
|
if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
|
|
Acquire(thr, pc, (uptr)b);
|
|
}
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
|
|
SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
|
|
if (o == 0 || f == 0)
|
|
return EINVAL;
|
|
atomic_uint32_t *a;
|
|
if (!SANITIZER_MAC)
|
|
a = static_cast<atomic_uint32_t*>(o);
|
|
else // On OS X, pthread_once_t has a header with a long-sized signature.
|
|
a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
|
|
u32 v = atomic_load(a, memory_order_acquire);
|
|
if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
|
|
memory_order_relaxed)) {
|
|
(*f)();
|
|
if (!thr->in_ignored_lib)
|
|
Release(thr, pc, (uptr)o);
|
|
atomic_store(a, 2, memory_order_release);
|
|
} else {
|
|
while (v != 2) {
|
|
internal_sched_yield();
|
|
v = atomic_load(a, memory_order_acquire);
|
|
}
|
|
if (!thr->in_ignored_lib)
|
|
Acquire(thr, pc, (uptr)o);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if SANITIZER_LINUX && !SANITIZER_ANDROID
|
|
TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
|
|
SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
|
|
if (fd > 0)
|
|
FdAccess(thr, pc, fd);
|
|
return REAL(__fxstat)(version, fd, buf);
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT___FXSTAT
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
|
|
#if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID
|
|
SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
|
|
if (fd > 0)
|
|
FdAccess(thr, pc, fd);
|
|
return REAL(fstat)(fd, buf);
|
|
#else
|
|
SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
|
|
if (fd > 0)
|
|
FdAccess(thr, pc, fd);
|
|
return REAL(__fxstat)(0, fd, buf);
|
|
#endif
|
|
}
|
|
|
|
#if SANITIZER_LINUX && !SANITIZER_ANDROID
|
|
TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
|
|
SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
|
|
if (fd > 0)
|
|
FdAccess(thr, pc, fd);
|
|
return REAL(__fxstat64)(version, fd, buf);
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT___FXSTAT64
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX && !SANITIZER_ANDROID
|
|
TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
|
|
SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
|
|
if (fd > 0)
|
|
FdAccess(thr, pc, fd);
|
|
return REAL(__fxstat64)(0, fd, buf);
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_FSTAT64
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
|
|
SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
|
|
READ_STRING(thr, pc, name, 0);
|
|
int fd = REAL(open)(name, flags, mode);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
|
|
SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
|
|
READ_STRING(thr, pc, name, 0);
|
|
int fd = REAL(open64)(name, flags, mode);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_OPEN64
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
|
|
SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
|
|
READ_STRING(thr, pc, name, 0);
|
|
int fd = REAL(creat)(name, mode);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
|
|
SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
|
|
READ_STRING(thr, pc, name, 0);
|
|
int fd = REAL(creat64)(name, mode);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_CREAT64
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, dup, int oldfd) {
|
|
SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
|
|
int newfd = REAL(dup)(oldfd);
|
|
if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
|
|
FdDup(thr, pc, oldfd, newfd, true);
|
|
return newfd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
|
|
SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
|
|
int newfd2 = REAL(dup2)(oldfd, newfd);
|
|
if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
|
|
FdDup(thr, pc, oldfd, newfd2, false);
|
|
return newfd2;
|
|
}
|
|
|
|
#if !SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
|
|
int newfd2 = REAL(dup3)(oldfd, newfd, flags);
|
|
if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
|
|
FdDup(thr, pc, oldfd, newfd2, false);
|
|
return newfd2;
|
|
}
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
|
|
int fd = REAL(eventfd)(initval, flags);
|
|
if (fd >= 0)
|
|
FdEventCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_EVENTFD
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
|
|
if (fd >= 0)
|
|
FdClose(thr, pc, fd);
|
|
fd = REAL(signalfd)(fd, mask, flags);
|
|
if (fd >= 0)
|
|
FdSignalCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_SIGNALFD
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(int, inotify_init, int fake) {
|
|
SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
|
|
int fd = REAL(inotify_init)(fake);
|
|
if (fd >= 0)
|
|
FdInotifyCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
|
|
int fd = REAL(inotify_init1)(flags);
|
|
if (fd >= 0)
|
|
FdInotifyCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
|
|
SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
|
|
int fd = REAL(socket)(domain, type, protocol);
|
|
if (fd >= 0)
|
|
FdSocketCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
|
|
SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
|
|
int res = REAL(socketpair)(domain, type, protocol, fd);
|
|
if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
|
|
FdPipeCreate(thr, pc, fd[0], fd[1]);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
|
|
SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
|
|
FdSocketConnecting(thr, pc, fd);
|
|
int res = REAL(connect)(fd, addr, addrlen);
|
|
if (res == 0 && fd >= 0)
|
|
FdSocketConnect(thr, pc, fd);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
|
|
SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
|
|
int res = REAL(bind)(fd, addr, addrlen);
|
|
if (fd > 0 && res == 0)
|
|
FdAccess(thr, pc, fd);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
|
|
SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
|
|
int res = REAL(listen)(fd, backlog);
|
|
if (fd > 0 && res == 0)
|
|
FdAccess(thr, pc, fd);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, close, int fd) {
|
|
SCOPED_TSAN_INTERCEPTOR(close, fd);
|
|
if (fd >= 0)
|
|
FdClose(thr, pc, fd);
|
|
return REAL(close)(fd);
|
|
}
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(int, __close, int fd) {
|
|
SCOPED_TSAN_INTERCEPTOR(__close, fd);
|
|
if (fd >= 0)
|
|
FdClose(thr, pc, fd);
|
|
return REAL(__close)(fd);
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT___CLOSE
|
|
#endif
|
|
|
|
// glibc guts
|
|
#if SANITIZER_LINUX && !SANITIZER_ANDROID
|
|
TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
|
|
SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
|
|
int fds[64];
|
|
int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
|
|
for (int i = 0; i < cnt; i++) {
|
|
if (fds[i] > 0)
|
|
FdClose(thr, pc, fds[i]);
|
|
}
|
|
REAL(__res_iclose)(state, free_addr);
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
|
|
SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
|
|
int res = REAL(pipe)(pipefd);
|
|
if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
|
|
FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
|
|
return res;
|
|
}
|
|
|
|
#if !SANITIZER_MAC
|
|
TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
|
|
int res = REAL(pipe2)(pipefd, flags);
|
|
if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
|
|
FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(int, unlink, char *path) {
|
|
SCOPED_TSAN_INTERCEPTOR(unlink, path);
|
|
Release(thr, pc, File2addr(path));
|
|
int res = REAL(unlink)(path);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
|
|
SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
|
|
void *res = REAL(tmpfile)(fake);
|
|
if (res) {
|
|
int fd = fileno_unlocked(res);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
|
|
SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
|
|
void *res = REAL(tmpfile64)(fake);
|
|
if (res) {
|
|
int fd = fileno_unlocked(res);
|
|
if (fd >= 0)
|
|
FdFileCreate(thr, pc, fd);
|
|
}
|
|
return res;
|
|
}
|
|
#define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_TMPFILE64
|
|
#endif
|
|
|
|
TSAN_INTERCEPTOR(uptr, fread, void *ptr, uptr size, uptr nmemb, void *f) {
|
|
// libc file streams can call user-supplied functions, see fopencookie.
|
|
{
|
|
SCOPED_TSAN_INTERCEPTOR(fread, ptr, size, nmemb, f);
|
|
MemoryAccessRange(thr, pc, (uptr)ptr, size * nmemb, true);
|
|
}
|
|
return REAL(fread)(ptr, size, nmemb, f);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(uptr, fwrite, const void *p, uptr size, uptr nmemb, void *f) {
|
|
// libc file streams can call user-supplied functions, see fopencookie.
|
|
{
|
|
SCOPED_TSAN_INTERCEPTOR(fwrite, p, size, nmemb, f);
|
|
MemoryAccessRange(thr, pc, (uptr)p, size * nmemb, false);
|
|
}
|
|
return REAL(fwrite)(p, size, nmemb, f);
|
|
}
|
|
|
|
static void FlushStreams() {
|
|
// Flushing all the streams here may freeze the process if a child thread is
|
|
// performing file stream operations at the same time.
|
|
REAL(fflush)(stdout);
|
|
REAL(fflush)(stderr);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(void, abort, int fake) {
|
|
SCOPED_TSAN_INTERCEPTOR(abort, fake);
|
|
FlushStreams();
|
|
REAL(abort)(fake);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, puts, const char *s) {
|
|
SCOPED_TSAN_INTERCEPTOR(puts, s);
|
|
MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s), false);
|
|
return REAL(puts)(s);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, rmdir, char *path) {
|
|
SCOPED_TSAN_INTERCEPTOR(rmdir, path);
|
|
Release(thr, pc, Dir2addr(path));
|
|
int res = REAL(rmdir)(path);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, closedir, void *dirp) {
|
|
SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
|
|
if (dirp) {
|
|
int fd = dirfd(dirp);
|
|
FdClose(thr, pc, fd);
|
|
}
|
|
return REAL(closedir)(dirp);
|
|
}
|
|
|
|
#if SANITIZER_LINUX
|
|
TSAN_INTERCEPTOR(int, epoll_create, int size) {
|
|
SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
|
|
int fd = REAL(epoll_create)(size);
|
|
if (fd >= 0)
|
|
FdPollCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
|
|
SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
|
|
int fd = REAL(epoll_create1)(flags);
|
|
if (fd >= 0)
|
|
FdPollCreate(thr, pc, fd);
|
|
return fd;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
|
|
SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
|
|
if (epfd >= 0)
|
|
FdAccess(thr, pc, epfd);
|
|
if (epfd >= 0 && fd >= 0)
|
|
FdAccess(thr, pc, fd);
|
|
if (op == EPOLL_CTL_ADD && epfd >= 0)
|
|
FdRelease(thr, pc, epfd);
|
|
int res = REAL(epoll_ctl)(epfd, op, fd, ev);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
|
|
SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
|
|
if (epfd >= 0)
|
|
FdAccess(thr, pc, epfd);
|
|
int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
|
|
if (res > 0 && epfd >= 0)
|
|
FdAcquire(thr, pc, epfd);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
|
|
void *sigmask) {
|
|
SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
|
|
if (epfd >= 0)
|
|
FdAccess(thr, pc, epfd);
|
|
int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
|
|
if (res > 0 && epfd >= 0)
|
|
FdAcquire(thr, pc, epfd);
|
|
return res;
|
|
}
|
|
|
|
#define TSAN_MAYBE_INTERCEPT_EPOLL \
|
|
TSAN_INTERCEPT(epoll_create); \
|
|
TSAN_INTERCEPT(epoll_create1); \
|
|
TSAN_INTERCEPT(epoll_ctl); \
|
|
TSAN_INTERCEPT(epoll_wait); \
|
|
TSAN_INTERCEPT(epoll_pwait)
|
|
#else
|
|
#define TSAN_MAYBE_INTERCEPT_EPOLL
|
|
#endif
|
|
|
|
// The following functions are intercepted merely to process pending signals.
|
|
// If program blocks signal X, we must deliver the signal before the function
|
|
// returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
|
|
// it's better to deliver the signal straight away.
|
|
TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
|
|
SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
|
|
return REAL(sigsuspend)(mask);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sigblock, int mask) {
|
|
SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
|
|
return REAL(sigblock)(mask);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
|
|
SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
|
|
return REAL(sigsetmask)(mask);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
|
|
__sanitizer_sigset_t *oldset) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
|
|
return REAL(pthread_sigmask)(how, set, oldset);
|
|
}
|
|
|
|
namespace __tsan {
|
|
|
|
static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
|
|
bool sigact, int sig, my_siginfo_t *info, void *uctx) {
|
|
if (acquire)
|
|
Acquire(thr, 0, (uptr)&sigactions[sig]);
|
|
// Signals are generally asynchronous, so if we receive a signals when
|
|
// ignores are enabled we should disable ignores. This is critical for sync
|
|
// and interceptors, because otherwise we can miss syncronization and report
|
|
// false races.
|
|
int ignore_reads_and_writes = thr->ignore_reads_and_writes;
|
|
int ignore_interceptors = thr->ignore_interceptors;
|
|
int ignore_sync = thr->ignore_sync;
|
|
if (!ctx->after_multithreaded_fork) {
|
|
thr->ignore_reads_and_writes = 0;
|
|
thr->fast_state.ClearIgnoreBit();
|
|
thr->ignore_interceptors = 0;
|
|
thr->ignore_sync = 0;
|
|
}
|
|
// Ensure that the handler does not spoil errno.
|
|
const int saved_errno = errno;
|
|
errno = 99;
|
|
// This code races with sigaction. Be careful to not read sa_sigaction twice.
|
|
// Also need to remember pc for reporting before the call,
|
|
// because the handler can reset it.
|
|
volatile uptr pc = sigact ?
|
|
(uptr)sigactions[sig].sa_sigaction :
|
|
(uptr)sigactions[sig].sa_handler;
|
|
if (pc != (uptr)SIG_DFL && pc != (uptr)SIG_IGN) {
|
|
if (sigact)
|
|
((sigactionhandler_t)pc)(sig, info, uctx);
|
|
else
|
|
((sighandler_t)pc)(sig);
|
|
}
|
|
if (!ctx->after_multithreaded_fork) {
|
|
thr->ignore_reads_and_writes = ignore_reads_and_writes;
|
|
if (ignore_reads_and_writes)
|
|
thr->fast_state.SetIgnoreBit();
|
|
thr->ignore_interceptors = ignore_interceptors;
|
|
thr->ignore_sync = ignore_sync;
|
|
}
|
|
// We do not detect errno spoiling for SIGTERM,
|
|
// because some SIGTERM handlers do spoil errno but reraise SIGTERM,
|
|
// tsan reports false positive in such case.
|
|
// It's difficult to properly detect this situation (reraise),
|
|
// because in async signal processing case (when handler is called directly
|
|
// from rtl_generic_sighandler) we have not yet received the reraised
|
|
// signal; and it looks too fragile to intercept all ways to reraise a signal.
|
|
if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
|
|
VarSizeStackTrace stack;
|
|
// StackTrace::GetNestInstructionPc(pc) is used because return address is
|
|
// expected, OutputReport() will undo this.
|
|
ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
|
|
ThreadRegistryLock l(ctx->thread_registry);
|
|
ScopedReport rep(ReportTypeErrnoInSignal);
|
|
if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
|
|
rep.AddStack(stack, true);
|
|
OutputReport(thr, rep);
|
|
}
|
|
}
|
|
errno = saved_errno;
|
|
}
|
|
|
|
void ProcessPendingSignals(ThreadState *thr) {
|
|
ThreadSignalContext *sctx = SigCtx(thr);
|
|
if (sctx == 0 ||
|
|
atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
|
|
return;
|
|
atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
|
|
atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
|
|
internal_sigfillset(&sctx->emptyset);
|
|
int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
|
|
CHECK_EQ(res, 0);
|
|
for (int sig = 0; sig < kSigCount; sig++) {
|
|
SignalDesc *signal = &sctx->pending_signals[sig];
|
|
if (signal->armed) {
|
|
signal->armed = false;
|
|
CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
|
|
&signal->siginfo, &signal->ctx);
|
|
}
|
|
}
|
|
res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
|
|
CHECK_EQ(res, 0);
|
|
atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
|
|
}
|
|
|
|
} // namespace __tsan
|
|
|
|
static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
|
|
return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
|
|
sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
|
|
// If we are sending signal to ourselves, we must process it now.
|
|
(sctx && sig == sctx->int_signal_send);
|
|
}
|
|
|
|
void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
|
|
my_siginfo_t *info, void *ctx) {
|
|
ThreadState *thr = cur_thread();
|
|
ThreadSignalContext *sctx = SigCtx(thr);
|
|
if (sig < 0 || sig >= kSigCount) {
|
|
VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
|
|
return;
|
|
}
|
|
// Don't mess with synchronous signals.
|
|
const bool sync = is_sync_signal(sctx, sig);
|
|
if (sync ||
|
|
// If we are in blocking function, we can safely process it now
|
|
// (but check if we are in a recursive interceptor,
|
|
// i.e. pthread_join()->munmap()).
|
|
(sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
|
|
atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
|
|
if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
|
|
atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
|
|
CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
|
|
atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
|
|
} else {
|
|
// Be very conservative with when we do acquire in this case.
|
|
// It's unsafe to do acquire in async handlers, because ThreadState
|
|
// can be in inconsistent state.
|
|
// SIGSYS looks relatively safe -- it's synchronous and can actually
|
|
// need some global state.
|
|
bool acq = (sig == SIGSYS);
|
|
CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
|
|
}
|
|
atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
|
|
return;
|
|
}
|
|
|
|
if (sctx == 0)
|
|
return;
|
|
SignalDesc *signal = &sctx->pending_signals[sig];
|
|
if (signal->armed == false) {
|
|
signal->armed = true;
|
|
signal->sigaction = sigact;
|
|
if (info)
|
|
internal_memcpy(&signal->siginfo, info, sizeof(*info));
|
|
if (ctx)
|
|
internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
|
|
atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
|
|
}
|
|
}
|
|
|
|
static void rtl_sighandler(int sig) {
|
|
rtl_generic_sighandler(false, sig, 0, 0);
|
|
}
|
|
|
|
static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) {
|
|
rtl_generic_sighandler(true, sig, info, ctx);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) {
|
|
// Note: if we call REAL(sigaction) directly for any reason without proxying
|
|
// the signal handler through rtl_sigaction, very bad things will happen.
|
|
// The handler will run synchronously and corrupt tsan per-thread state.
|
|
SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
|
|
if (old)
|
|
internal_memcpy(old, &sigactions[sig], sizeof(*old));
|
|
if (act == 0)
|
|
return 0;
|
|
// Copy act into sigactions[sig].
|
|
// Can't use struct copy, because compiler can emit call to memcpy.
|
|
// Can't use internal_memcpy, because it copies byte-by-byte,
|
|
// and signal handler reads the sa_handler concurrently. It it can read
|
|
// some bytes from old value and some bytes from new value.
|
|
// Use volatile to prevent insertion of memcpy.
|
|
sigactions[sig].sa_handler = *(volatile sighandler_t*)&act->sa_handler;
|
|
sigactions[sig].sa_flags = *(volatile int*)&act->sa_flags;
|
|
internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
|
|
sizeof(sigactions[sig].sa_mask));
|
|
#if !SANITIZER_FREEBSD && !SANITIZER_MAC
|
|
sigactions[sig].sa_restorer = act->sa_restorer;
|
|
#endif
|
|
sigaction_t newact;
|
|
internal_memcpy(&newact, act, sizeof(newact));
|
|
internal_sigfillset(&newact.sa_mask);
|
|
if (act->sa_handler != SIG_IGN && act->sa_handler != SIG_DFL) {
|
|
if (newact.sa_flags & SA_SIGINFO)
|
|
newact.sa_sigaction = rtl_sigaction;
|
|
else
|
|
newact.sa_handler = rtl_sighandler;
|
|
}
|
|
ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
|
|
int res = REAL(sigaction)(sig, &newact, 0);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(sighandler_t, signal, int sig, sighandler_t h) {
|
|
sigaction_t act;
|
|
act.sa_handler = h;
|
|
internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
|
|
act.sa_flags = 0;
|
|
sigaction_t old;
|
|
int res = sigaction(sig, &act, &old);
|
|
if (res)
|
|
return SIG_ERR;
|
|
return old.sa_handler;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, raise, int sig) {
|
|
SCOPED_TSAN_INTERCEPTOR(raise, sig);
|
|
ThreadSignalContext *sctx = SigCtx(thr);
|
|
CHECK_NE(sctx, 0);
|
|
int prev = sctx->int_signal_send;
|
|
sctx->int_signal_send = sig;
|
|
int res = REAL(raise)(sig);
|
|
CHECK_EQ(sctx->int_signal_send, sig);
|
|
sctx->int_signal_send = prev;
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
|
|
SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
|
|
ThreadSignalContext *sctx = SigCtx(thr);
|
|
CHECK_NE(sctx, 0);
|
|
int prev = sctx->int_signal_send;
|
|
if (pid == (int)internal_getpid()) {
|
|
sctx->int_signal_send = sig;
|
|
}
|
|
int res = REAL(kill)(pid, sig);
|
|
if (pid == (int)internal_getpid()) {
|
|
CHECK_EQ(sctx->int_signal_send, sig);
|
|
sctx->int_signal_send = prev;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
|
|
SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
|
|
ThreadSignalContext *sctx = SigCtx(thr);
|
|
CHECK_NE(sctx, 0);
|
|
int prev = sctx->int_signal_send;
|
|
if (tid == pthread_self()) {
|
|
sctx->int_signal_send = sig;
|
|
}
|
|
int res = REAL(pthread_kill)(tid, sig);
|
|
if (tid == pthread_self()) {
|
|
CHECK_EQ(sctx->int_signal_send, sig);
|
|
sctx->int_signal_send = prev;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
|
|
SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
|
|
// It's intercepted merely to process pending signals.
|
|
return REAL(gettimeofday)(tv, tz);
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
|
|
void *hints, void *rv) {
|
|
SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
|
|
// We miss atomic synchronization in getaddrinfo,
|
|
// and can report false race between malloc and free
|
|
// inside of getaddrinfo. So ignore memory accesses.
|
|
ThreadIgnoreBegin(thr, pc);
|
|
int res = REAL(getaddrinfo)(node, service, hints, rv);
|
|
ThreadIgnoreEnd(thr, pc);
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, fork, int fake) {
|
|
if (cur_thread()->in_symbolizer)
|
|
return REAL(fork)(fake);
|
|
SCOPED_INTERCEPTOR_RAW(fork, fake);
|
|
ForkBefore(thr, pc);
|
|
int pid;
|
|
{
|
|
// On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
|
|
// we'll assert in CheckNoLocks() unless we ignore interceptors.
|
|
ScopedIgnoreInterceptors ignore;
|
|
pid = REAL(fork)(fake);
|
|
}
|
|
if (pid == 0) {
|
|
// child
|
|
ForkChildAfter(thr, pc);
|
|
FdOnFork(thr, pc);
|
|
} else if (pid > 0) {
|
|
// parent
|
|
ForkParentAfter(thr, pc);
|
|
} else {
|
|
// error
|
|
ForkParentAfter(thr, pc);
|
|
}
|
|
return pid;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, vfork, int fake) {
|
|
// Some programs (e.g. openjdk) call close for all file descriptors
|
|
// in the child process. Under tsan it leads to false positives, because
|
|
// address space is shared, so the parent process also thinks that
|
|
// the descriptors are closed (while they are actually not).
|
|
// This leads to false positives due to missed synchronization.
|
|
// Strictly saying this is undefined behavior, because vfork child is not
|
|
// allowed to call any functions other than exec/exit. But this is what
|
|
// openjdk does, so we want to handle it.
|
|
// We could disable interceptors in the child process. But it's not possible
|
|
// to simply intercept and wrap vfork, because vfork child is not allowed
|
|
// to return from the function that calls vfork, and that's exactly what
|
|
// we would do. So this would require some assembly trickery as well.
|
|
// Instead we simply turn vfork into fork.
|
|
return WRAP(fork)(fake);
|
|
}
|
|
|
|
#if !SANITIZER_MAC && !SANITIZER_ANDROID
|
|
typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
|
|
void *data);
|
|
struct dl_iterate_phdr_data {
|
|
ThreadState *thr;
|
|
uptr pc;
|
|
dl_iterate_phdr_cb_t cb;
|
|
void *data;
|
|
};
|
|
|
|
static bool IsAppNotRodata(uptr addr) {
|
|
return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
|
|
}
|
|
|
|
static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
|
|
void *data) {
|
|
dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
|
|
// dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
|
|
// accessible in dl_iterate_phdr callback. But we don't see synchronization
|
|
// inside of dynamic linker, so we "unpoison" it here in order to not
|
|
// produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
|
|
// because some libc functions call __libc_dlopen.
|
|
if (info && IsAppNotRodata((uptr)info->dlpi_name))
|
|
MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
|
|
internal_strlen(info->dlpi_name));
|
|
int res = cbdata->cb(info, size, cbdata->data);
|
|
// Perform the check one more time in case info->dlpi_name was overwritten
|
|
// by user callback.
|
|
if (info && IsAppNotRodata((uptr)info->dlpi_name))
|
|
MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
|
|
internal_strlen(info->dlpi_name));
|
|
return res;
|
|
}
|
|
|
|
TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
|
|
SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
|
|
dl_iterate_phdr_data cbdata;
|
|
cbdata.thr = thr;
|
|
cbdata.pc = pc;
|
|
cbdata.cb = cb;
|
|
cbdata.data = data;
|
|
int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
static int OnExit(ThreadState *thr) {
|
|
int status = Finalize(thr);
|
|
FlushStreams();
|
|
return status;
|
|
}
|
|
|
|
struct TsanInterceptorContext {
|
|
ThreadState *thr;
|
|
const uptr caller_pc;
|
|
const uptr pc;
|
|
};
|
|
|
|
#if !SANITIZER_MAC
|
|
static void HandleRecvmsg(ThreadState *thr, uptr pc,
|
|
__sanitizer_msghdr *msg) {
|
|
int fds[64];
|
|
int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
|
|
for (int i = 0; i < cnt; i++)
|
|
FdEventCreate(thr, pc, fds[i]);
|
|
}
|
|
#endif
|
|
|
|
#include "sanitizer_common/sanitizer_platform_interceptors.h"
|
|
// Causes interceptor recursion (getaddrinfo() and fopen())
|
|
#undef SANITIZER_INTERCEPT_GETADDRINFO
|
|
// There interceptors do not seem to be strictly necessary for tsan.
|
|
// But we see cases where the interceptors consume 70% of execution time.
|
|
// Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
|
|
// First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
|
|
// function "writes to" the buffer. Then, the same memory is "written to"
|
|
// twice, first as buf and then as pwbufp (both of them refer to the same
|
|
// addresses).
|
|
#undef SANITIZER_INTERCEPT_GETPWENT
|
|
#undef SANITIZER_INTERCEPT_GETPWENT_R
|
|
#undef SANITIZER_INTERCEPT_FGETPWENT
|
|
#undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
|
|
#undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
|
|
// We define our own.
|
|
#if SANITIZER_INTERCEPT_TLS_GET_ADDR
|
|
#define NEED_TLS_GET_ADDR
|
|
#endif
|
|
#undef SANITIZER_INTERCEPT_TLS_GET_ADDR
|
|
|
|
#define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
|
|
#define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
|
|
INTERCEPT_FUNCTION_VER(name, ver)
|
|
|
|
#define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
|
|
MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
|
|
((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
|
|
true)
|
|
|
|
#define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
|
|
MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
|
|
((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
|
|
false)
|
|
|
|
#define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
|
|
SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
|
|
TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
|
|
ctx = (void *)&_ctx; \
|
|
(void) ctx;
|
|
|
|
#define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
|
|
SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
|
|
TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
|
|
ctx = (void *)&_ctx; \
|
|
(void) ctx;
|
|
|
|
#define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
|
|
Acquire(thr, pc, File2addr(path)); \
|
|
if (file) { \
|
|
int fd = fileno_unlocked(file); \
|
|
if (fd >= 0) FdFileCreate(thr, pc, fd); \
|
|
}
|
|
|
|
#define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
|
|
if (file) { \
|
|
int fd = fileno_unlocked(file); \
|
|
if (fd >= 0) FdClose(thr, pc, fd); \
|
|
}
|
|
|
|
#define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
|
|
libignore()->OnLibraryLoaded(filename)
|
|
|
|
#define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
|
|
libignore()->OnLibraryUnloaded()
|
|
|
|
#define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
|
|
Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
|
|
|
|
#define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
|
|
Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
|
|
|
|
#define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
|
|
Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
|
|
|
|
#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
|
|
FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
|
|
|
|
#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
|
|
FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
|
|
|
|
#define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
|
|
FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
|
|
|
|
#define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
|
|
FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
|
|
|
|
#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
|
|
ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
|
|
|
|
#define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
|
|
__tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
|
|
|
|
#define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
|
|
|
|
#define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
|
|
OnExit(((TsanInterceptorContext *) ctx)->thr)
|
|
|
|
#define COMMON_INTERCEPTOR_MUTEX_LOCK(ctx, m) \
|
|
MutexLock(((TsanInterceptorContext *)ctx)->thr, \
|
|
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
|
|
|
|
#define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
|
|
MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
|
|
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
|
|
|
|
#define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
|
|
MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
|
|
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
|
|
|
|
#define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
|
|
MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
|
|
((TsanInterceptorContext *)ctx)->pc, (uptr)m)
|
|
|
|
#if !SANITIZER_MAC
|
|
#define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
|
|
HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
|
|
((TsanInterceptorContext *)ctx)->pc, msg)
|
|
#endif
|
|
|
|
#define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
|
|
if (TsanThread *t = GetCurrentThread()) { \
|
|
*begin = t->tls_begin(); \
|
|
*end = t->tls_end(); \
|
|
} else { \
|
|
*begin = *end = 0; \
|
|
}
|
|
|
|
#define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
|
|
SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
|
|
|
|
#define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
|
|
SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
|
|
|
|
#include "sanitizer_common/sanitizer_common_interceptors.inc"
|
|
|
|
#define TSAN_SYSCALL() \
|
|
ThreadState *thr = cur_thread(); \
|
|
if (thr->ignore_interceptors) \
|
|
return; \
|
|
ScopedSyscall scoped_syscall(thr) \
|
|
/**/
|
|
|
|
struct ScopedSyscall {
|
|
ThreadState *thr;
|
|
|
|
explicit ScopedSyscall(ThreadState *thr)
|
|
: thr(thr) {
|
|
Initialize(thr);
|
|
}
|
|
|
|
~ScopedSyscall() {
|
|
ProcessPendingSignals(thr);
|
|
}
|
|
};
|
|
|
|
#if !SANITIZER_FREEBSD && !SANITIZER_MAC
|
|
static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
|
|
TSAN_SYSCALL();
|
|
MemoryAccessRange(thr, pc, p, s, write);
|
|
}
|
|
|
|
static void syscall_acquire(uptr pc, uptr addr) {
|
|
TSAN_SYSCALL();
|
|
Acquire(thr, pc, addr);
|
|
DPrintf("syscall_acquire(%p)\n", addr);
|
|
}
|
|
|
|
static void syscall_release(uptr pc, uptr addr) {
|
|
TSAN_SYSCALL();
|
|
DPrintf("syscall_release(%p)\n", addr);
|
|
Release(thr, pc, addr);
|
|
}
|
|
|
|
static void syscall_fd_close(uptr pc, int fd) {
|
|
TSAN_SYSCALL();
|
|
FdClose(thr, pc, fd);
|
|
}
|
|
|
|
static USED void syscall_fd_acquire(uptr pc, int fd) {
|
|
TSAN_SYSCALL();
|
|
FdAcquire(thr, pc, fd);
|
|
DPrintf("syscall_fd_acquire(%p)\n", fd);
|
|
}
|
|
|
|
static USED void syscall_fd_release(uptr pc, int fd) {
|
|
TSAN_SYSCALL();
|
|
DPrintf("syscall_fd_release(%p)\n", fd);
|
|
FdRelease(thr, pc, fd);
|
|
}
|
|
|
|
static void syscall_pre_fork(uptr pc) {
|
|
TSAN_SYSCALL();
|
|
ForkBefore(thr, pc);
|
|
}
|
|
|
|
static void syscall_post_fork(uptr pc, int pid) {
|
|
TSAN_SYSCALL();
|
|
if (pid == 0) {
|
|
// child
|
|
ForkChildAfter(thr, pc);
|
|
FdOnFork(thr, pc);
|
|
} else if (pid > 0) {
|
|
// parent
|
|
ForkParentAfter(thr, pc);
|
|
} else {
|
|
// error
|
|
ForkParentAfter(thr, pc);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
|
|
syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
|
|
|
|
#define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
|
|
syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
|
|
|
|
#define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
|
|
do { \
|
|
(void)(p); \
|
|
(void)(s); \
|
|
} while (false)
|
|
|
|
#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
|
|
do { \
|
|
(void)(p); \
|
|
(void)(s); \
|
|
} while (false)
|
|
|
|
#define COMMON_SYSCALL_ACQUIRE(addr) \
|
|
syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
|
|
|
|
#define COMMON_SYSCALL_RELEASE(addr) \
|
|
syscall_release(GET_CALLER_PC(), (uptr)(addr))
|
|
|
|
#define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
|
|
|
|
#define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
|
|
|
|
#define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
|
|
|
|
#define COMMON_SYSCALL_PRE_FORK() \
|
|
syscall_pre_fork(GET_CALLER_PC())
|
|
|
|
#define COMMON_SYSCALL_POST_FORK(res) \
|
|
syscall_post_fork(GET_CALLER_PC(), res)
|
|
|
|
#include "sanitizer_common/sanitizer_common_syscalls.inc"
|
|
|
|
#ifdef NEED_TLS_GET_ADDR
|
|
// Define own interceptor instead of sanitizer_common's for three reasons:
|
|
// 1. It must not process pending signals.
|
|
// Signal handlers may contain MOVDQA instruction (see below).
|
|
// 2. It must be as simple as possible to not contain MOVDQA.
|
|
// 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
|
|
// is empty for tsan (meant only for msan).
|
|
// Note: __tls_get_addr can be called with mis-aligned stack due to:
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
|
|
// So the interceptor must work with mis-aligned stack, in particular, does not
|
|
// execute MOVDQA with stack addresses.
|
|
TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
|
|
void *res = REAL(__tls_get_addr)(arg);
|
|
ThreadState *thr = cur_thread();
|
|
if (!thr)
|
|
return res;
|
|
DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr, thr->tls_size);
|
|
if (!dtv)
|
|
return res;
|
|
// New DTLS block has been allocated.
|
|
MemoryResetRange(thr, 0, dtv->beg, dtv->size);
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
namespace __tsan {
|
|
|
|
static void finalize(void *arg) {
|
|
ThreadState *thr = cur_thread();
|
|
int status = Finalize(thr);
|
|
// Make sure the output is not lost.
|
|
FlushStreams();
|
|
if (status)
|
|
Die();
|
|
}
|
|
|
|
#if !SANITIZER_MAC && !SANITIZER_ANDROID
|
|
static void unreachable() {
|
|
Report("FATAL: ThreadSanitizer: unreachable called\n");
|
|
Die();
|
|
}
|
|
#endif
|
|
|
|
void InitializeInterceptors() {
|
|
#if !SANITIZER_MAC
|
|
// We need to setup it early, because functions like dlsym() can call it.
|
|
REAL(memset) = internal_memset;
|
|
REAL(memcpy) = internal_memcpy;
|
|
#endif
|
|
|
|
// Instruct libc malloc to consume less memory.
|
|
#if SANITIZER_LINUX
|
|
mallopt(1, 0); // M_MXFAST
|
|
mallopt(-3, 32*1024); // M_MMAP_THRESHOLD
|
|
#endif
|
|
|
|
InitializeCommonInterceptors();
|
|
|
|
#if !SANITIZER_MAC
|
|
// We can not use TSAN_INTERCEPT to get setjmp addr,
|
|
// because it does &setjmp and setjmp is not present in some versions of libc.
|
|
using __interception::GetRealFunctionAddress;
|
|
GetRealFunctionAddress("setjmp", (uptr*)&REAL(setjmp), 0, 0);
|
|
GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
|
|
GetRealFunctionAddress("sigsetjmp", (uptr*)&REAL(sigsetjmp), 0, 0);
|
|
GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
|
|
#endif
|
|
|
|
TSAN_INTERCEPT(longjmp);
|
|
TSAN_INTERCEPT(siglongjmp);
|
|
|
|
TSAN_INTERCEPT(malloc);
|
|
TSAN_INTERCEPT(__libc_memalign);
|
|
TSAN_INTERCEPT(calloc);
|
|
TSAN_INTERCEPT(realloc);
|
|
TSAN_INTERCEPT(free);
|
|
TSAN_INTERCEPT(cfree);
|
|
TSAN_INTERCEPT(mmap);
|
|
TSAN_MAYBE_INTERCEPT_MMAP64;
|
|
TSAN_INTERCEPT(munmap);
|
|
TSAN_MAYBE_INTERCEPT_MEMALIGN;
|
|
TSAN_INTERCEPT(valloc);
|
|
TSAN_MAYBE_INTERCEPT_PVALLOC;
|
|
TSAN_INTERCEPT(posix_memalign);
|
|
|
|
TSAN_INTERCEPT(strcpy); // NOLINT
|
|
TSAN_INTERCEPT(strncpy);
|
|
TSAN_INTERCEPT(strdup);
|
|
|
|
TSAN_INTERCEPT(pthread_create);
|
|
TSAN_INTERCEPT(pthread_join);
|
|
TSAN_INTERCEPT(pthread_detach);
|
|
|
|
TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
|
|
TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
|
|
TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
|
|
TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
|
|
TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
|
|
TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
|
|
|
|
TSAN_INTERCEPT(pthread_mutex_init);
|
|
TSAN_INTERCEPT(pthread_mutex_destroy);
|
|
TSAN_INTERCEPT(pthread_mutex_trylock);
|
|
TSAN_INTERCEPT(pthread_mutex_timedlock);
|
|
|
|
TSAN_INTERCEPT(pthread_spin_init);
|
|
TSAN_INTERCEPT(pthread_spin_destroy);
|
|
TSAN_INTERCEPT(pthread_spin_lock);
|
|
TSAN_INTERCEPT(pthread_spin_trylock);
|
|
TSAN_INTERCEPT(pthread_spin_unlock);
|
|
|
|
TSAN_INTERCEPT(pthread_rwlock_init);
|
|
TSAN_INTERCEPT(pthread_rwlock_destroy);
|
|
TSAN_INTERCEPT(pthread_rwlock_rdlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_wrlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_trywrlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
|
|
TSAN_INTERCEPT(pthread_rwlock_unlock);
|
|
|
|
TSAN_INTERCEPT(pthread_barrier_init);
|
|
TSAN_INTERCEPT(pthread_barrier_destroy);
|
|
TSAN_INTERCEPT(pthread_barrier_wait);
|
|
|
|
TSAN_INTERCEPT(pthread_once);
|
|
|
|
TSAN_INTERCEPT(fstat);
|
|
TSAN_MAYBE_INTERCEPT___FXSTAT;
|
|
TSAN_MAYBE_INTERCEPT_FSTAT64;
|
|
TSAN_MAYBE_INTERCEPT___FXSTAT64;
|
|
TSAN_INTERCEPT(open);
|
|
TSAN_MAYBE_INTERCEPT_OPEN64;
|
|
TSAN_INTERCEPT(creat);
|
|
TSAN_MAYBE_INTERCEPT_CREAT64;
|
|
TSAN_INTERCEPT(dup);
|
|
TSAN_INTERCEPT(dup2);
|
|
TSAN_INTERCEPT(dup3);
|
|
TSAN_MAYBE_INTERCEPT_EVENTFD;
|
|
TSAN_MAYBE_INTERCEPT_SIGNALFD;
|
|
TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
|
|
TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
|
|
TSAN_INTERCEPT(socket);
|
|
TSAN_INTERCEPT(socketpair);
|
|
TSAN_INTERCEPT(connect);
|
|
TSAN_INTERCEPT(bind);
|
|
TSAN_INTERCEPT(listen);
|
|
TSAN_MAYBE_INTERCEPT_EPOLL;
|
|
TSAN_INTERCEPT(close);
|
|
TSAN_MAYBE_INTERCEPT___CLOSE;
|
|
TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
|
|
TSAN_INTERCEPT(pipe);
|
|
TSAN_INTERCEPT(pipe2);
|
|
|
|
TSAN_INTERCEPT(unlink);
|
|
TSAN_INTERCEPT(tmpfile);
|
|
TSAN_MAYBE_INTERCEPT_TMPFILE64;
|
|
TSAN_INTERCEPT(fread);
|
|
TSAN_INTERCEPT(fwrite);
|
|
TSAN_INTERCEPT(abort);
|
|
TSAN_INTERCEPT(puts);
|
|
TSAN_INTERCEPT(rmdir);
|
|
TSAN_INTERCEPT(closedir);
|
|
|
|
TSAN_INTERCEPT(sigaction);
|
|
TSAN_INTERCEPT(signal);
|
|
TSAN_INTERCEPT(sigsuspend);
|
|
TSAN_INTERCEPT(sigblock);
|
|
TSAN_INTERCEPT(sigsetmask);
|
|
TSAN_INTERCEPT(pthread_sigmask);
|
|
TSAN_INTERCEPT(raise);
|
|
TSAN_INTERCEPT(kill);
|
|
TSAN_INTERCEPT(pthread_kill);
|
|
TSAN_INTERCEPT(sleep);
|
|
TSAN_INTERCEPT(usleep);
|
|
TSAN_INTERCEPT(nanosleep);
|
|
TSAN_INTERCEPT(gettimeofday);
|
|
TSAN_INTERCEPT(getaddrinfo);
|
|
|
|
TSAN_INTERCEPT(fork);
|
|
TSAN_INTERCEPT(vfork);
|
|
#if !SANITIZER_ANDROID
|
|
TSAN_INTERCEPT(dl_iterate_phdr);
|
|
#endif
|
|
TSAN_INTERCEPT(on_exit);
|
|
TSAN_INTERCEPT(__cxa_atexit);
|
|
TSAN_INTERCEPT(_exit);
|
|
|
|
#ifdef NEED_TLS_GET_ADDR
|
|
TSAN_INTERCEPT(__tls_get_addr);
|
|
#endif
|
|
|
|
#if !SANITIZER_MAC && !SANITIZER_ANDROID
|
|
// Need to setup it, because interceptors check that the function is resolved.
|
|
// But atexit is emitted directly into the module, so can't be resolved.
|
|
REAL(atexit) = (int(*)(void(*)()))unreachable;
|
|
#endif
|
|
|
|
if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
|
|
Printf("ThreadSanitizer: failed to setup atexit callback\n");
|
|
Die();
|
|
}
|
|
|
|
#if !SANITIZER_MAC
|
|
if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
|
|
Printf("ThreadSanitizer: failed to create thread key\n");
|
|
Die();
|
|
}
|
|
#endif
|
|
|
|
FdInit();
|
|
}
|
|
|
|
} // namespace __tsan
|
|
|
|
// Invisible barrier for tests.
|
|
// There were several unsuccessful iterations for this functionality:
|
|
// 1. Initially it was implemented in user code using
|
|
// REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
|
|
// MacOS. Futexes are linux-specific for this matter.
|
|
// 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
|
|
// "as-if synchronized via sleep" messages in reports which failed some
|
|
// output tests.
|
|
// 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
|
|
// visible events, which lead to "failed to restore stack trace" failures.
|
|
// Note that no_sanitize_thread attribute does not turn off atomic interception
|
|
// so attaching it to the function defined in user code does not help.
|
|
// That's why we now have what we have.
|
|
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
|
|
void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
|
|
if (count >= (1 << 8)) {
|
|
Printf("barrier_init: count is too large (%d)\n", count);
|
|
Die();
|
|
}
|
|
// 8 lsb is thread count, the remaining are count of entered threads.
|
|
*barrier = count;
|
|
}
|
|
|
|
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
|
|
void __tsan_testonly_barrier_wait(u64 *barrier) {
|
|
unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
|
|
unsigned old_epoch = (old >> 8) / (old & 0xff);
|
|
for (;;) {
|
|
unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
|
|
unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
|
|
if (cur_epoch != old_epoch)
|
|
return;
|
|
internal_sched_yield();
|
|
}
|
|
}
|