llvm-project/llvm/utils/TableGen/Record.cpp

2002 lines
60 KiB
C++

//===- Record.cpp - Record implementation ---------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implement the tablegen record classes.
//
//===----------------------------------------------------------------------===//
#include "Record.h"
#include "Error.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// std::string wrapper for DenseMap purposes
//===----------------------------------------------------------------------===//
/// TableGenStringKey - This is a wrapper for std::string suitable for
/// using as a key to a DenseMap. Because there isn't a particularly
/// good way to indicate tombstone or empty keys for strings, we want
/// to wrap std::string to indicate that this is a "special" string
/// not expected to take on certain values (those of the tombstone and
/// empty keys). This makes things a little safer as it clarifies
/// that DenseMap is really not appropriate for general strings.
class TableGenStringKey {
public:
TableGenStringKey(const std::string &str) : data(str) {}
TableGenStringKey(const char *str) : data(str) {}
const std::string &str() const { return data; }
private:
std::string data;
};
/// Specialize DenseMapInfo for TableGenStringKey.
namespace llvm {
template<> struct DenseMapInfo<TableGenStringKey> {
static inline TableGenStringKey getEmptyKey() {
TableGenStringKey Empty("<<<EMPTY KEY>>>");
return Empty;
}
static inline TableGenStringKey getTombstoneKey() {
TableGenStringKey Tombstone("<<<TOMBSTONE KEY>>>");
return Tombstone;
}
static unsigned getHashValue(const TableGenStringKey& Val) {
return HashString(Val.str());
}
static bool isEqual(const TableGenStringKey& LHS,
const TableGenStringKey& RHS) {
return LHS.str() == RHS.str();
}
};
}
//===----------------------------------------------------------------------===//
// Type implementations
//===----------------------------------------------------------------------===//
BitRecTy BitRecTy::Shared;
IntRecTy IntRecTy::Shared;
StringRecTy StringRecTy::Shared;
CodeRecTy CodeRecTy::Shared;
DagRecTy DagRecTy::Shared;
void RecTy::dump() const { print(errs()); }
ListRecTy *RecTy::getListTy() {
if (!ListTy)
ListTy = new ListRecTy(this);
return ListTy;
}
Init *BitRecTy::convertValue(BitsInit *BI) {
if (BI->getNumBits() != 1) return 0; // Only accept if just one bit!
return BI->getBit(0);
}
bool BitRecTy::baseClassOf(const BitsRecTy *RHS) const {
return RHS->getNumBits() == 1;
}
Init *BitRecTy::convertValue(IntInit *II) {
int64_t Val = II->getValue();
if (Val != 0 && Val != 1) return 0; // Only accept 0 or 1 for a bit!
return BitInit::get(Val != 0);
}
Init *BitRecTy::convertValue(TypedInit *VI) {
if (dynamic_cast<BitRecTy*>(VI->getType()))
return VI; // Accept variable if it is already of bit type!
return 0;
}
BitsRecTy *BitsRecTy::get(unsigned Sz) {
static std::vector<BitsRecTy*> Shared;
if (Sz >= Shared.size())
Shared.resize(Sz + 1);
BitsRecTy *&Ty = Shared[Sz];
if (!Ty)
Ty = new BitsRecTy(Sz);
return Ty;
}
std::string BitsRecTy::getAsString() const {
return "bits<" + utostr(Size) + ">";
}
Init *BitsRecTy::convertValue(UnsetInit *UI) {
SmallVector<Init *, 16> NewBits(Size);
for (unsigned i = 0; i != Size; ++i)
NewBits[i] = UnsetInit::get();
return BitsInit::get(NewBits);
}
Init *BitsRecTy::convertValue(BitInit *UI) {
if (Size != 1) return 0; // Can only convert single bit.
return BitsInit::get(UI);
}
/// canFitInBitfield - Return true if the number of bits is large enough to hold
/// the integer value.
static bool canFitInBitfield(int64_t Value, unsigned NumBits) {
// For example, with NumBits == 4, we permit Values from [-7 .. 15].
return (NumBits >= sizeof(Value) * 8) ||
(Value >> NumBits == 0) || (Value >> (NumBits-1) == -1);
}
/// convertValue from Int initializer to bits type: Split the integer up into the
/// appropriate bits.
///
Init *BitsRecTy::convertValue(IntInit *II) {
int64_t Value = II->getValue();
// Make sure this bitfield is large enough to hold the integer value.
if (!canFitInBitfield(Value, Size))
return 0;
SmallVector<Init *, 16> NewBits(Size);
for (unsigned i = 0; i != Size; ++i)
NewBits[i] = BitInit::get(Value & (1LL << i));
return BitsInit::get(NewBits);
}
Init *BitsRecTy::convertValue(BitsInit *BI) {
// If the number of bits is right, return it. Otherwise we need to expand or
// truncate.
if (BI->getNumBits() == Size) return BI;
return 0;
}
Init *BitsRecTy::convertValue(TypedInit *VI) {
if (BitsRecTy *BRT = dynamic_cast<BitsRecTy*>(VI->getType()))
if (BRT->Size == Size) {
SmallVector<Init *, 16> NewBits(Size);
for (unsigned i = 0; i != Size; ++i)
NewBits[i] = VarBitInit::get(VI, i);
return BitsInit::get(NewBits);
}
if (Size == 1 && dynamic_cast<BitRecTy*>(VI->getType()))
return BitsInit::get(VI);
if (TernOpInit *Tern = dynamic_cast<TernOpInit*>(VI)) {
if (Tern->getOpcode() == TernOpInit::IF) {
Init *LHS = Tern->getLHS();
Init *MHS = Tern->getMHS();
Init *RHS = Tern->getRHS();
IntInit *MHSi = dynamic_cast<IntInit*>(MHS);
IntInit *RHSi = dynamic_cast<IntInit*>(RHS);
if (MHSi && RHSi) {
int64_t MHSVal = MHSi->getValue();
int64_t RHSVal = RHSi->getValue();
if (canFitInBitfield(MHSVal, Size) && canFitInBitfield(RHSVal, Size)) {
SmallVector<Init *, 16> NewBits(Size);
for (unsigned i = 0; i != Size; ++i)
NewBits[i] =
TernOpInit::get(TernOpInit::IF, LHS,
IntInit::get((MHSVal & (1LL << i)) ? 1 : 0),
IntInit::get((RHSVal & (1LL << i)) ? 1 : 0),
VI->getType());
return BitsInit::get(NewBits);
}
} else {
BitsInit *MHSbs = dynamic_cast<BitsInit*>(MHS);
BitsInit *RHSbs = dynamic_cast<BitsInit*>(RHS);
if (MHSbs && RHSbs) {
SmallVector<Init *, 16> NewBits(Size);
for (unsigned i = 0; i != Size; ++i)
NewBits[i] = TernOpInit::get(TernOpInit::IF, LHS,
MHSbs->getBit(i),
RHSbs->getBit(i),
VI->getType());
return BitsInit::get(NewBits);
}
}
}
}
return 0;
}
Init *IntRecTy::convertValue(BitInit *BI) {
return IntInit::get(BI->getValue());
}
Init *IntRecTy::convertValue(BitsInit *BI) {
int64_t Result = 0;
for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i)
if (BitInit *Bit = dynamic_cast<BitInit*>(BI->getBit(i))) {
Result |= Bit->getValue() << i;
} else {
return 0;
}
return IntInit::get(Result);
}
Init *IntRecTy::convertValue(TypedInit *TI) {
if (TI->getType()->typeIsConvertibleTo(this))
return TI; // Accept variable if already of the right type!
return 0;
}
Init *StringRecTy::convertValue(UnOpInit *BO) {
if (BO->getOpcode() == UnOpInit::CAST) {
Init *L = BO->getOperand()->convertInitializerTo(this);
if (L == 0) return 0;
if (L != BO->getOperand())
return UnOpInit::get(UnOpInit::CAST, L, new StringRecTy);
return BO;
}
return convertValue((TypedInit*)BO);
}
Init *StringRecTy::convertValue(BinOpInit *BO) {
if (BO->getOpcode() == BinOpInit::STRCONCAT) {
Init *L = BO->getLHS()->convertInitializerTo(this);
Init *R = BO->getRHS()->convertInitializerTo(this);
if (L == 0 || R == 0) return 0;
if (L != BO->getLHS() || R != BO->getRHS())
return BinOpInit::get(BinOpInit::STRCONCAT, L, R, new StringRecTy);
return BO;
}
return convertValue((TypedInit*)BO);
}
Init *StringRecTy::convertValue(TypedInit *TI) {
if (dynamic_cast<StringRecTy*>(TI->getType()))
return TI; // Accept variable if already of the right type!
return 0;
}
std::string ListRecTy::getAsString() const {
return "list<" + Ty->getAsString() + ">";
}
Init *ListRecTy::convertValue(ListInit *LI) {
std::vector<Init*> Elements;
// Verify that all of the elements of the list are subclasses of the
// appropriate class!
for (unsigned i = 0, e = LI->getSize(); i != e; ++i)
if (Init *CI = LI->getElement(i)->convertInitializerTo(Ty))
Elements.push_back(CI);
else
return 0;
ListRecTy *LType = dynamic_cast<ListRecTy*>(LI->getType());
if (LType == 0) {
return 0;
}
return ListInit::get(Elements, this);
}
Init *ListRecTy::convertValue(TypedInit *TI) {
// Ensure that TI is compatible with our class.
if (ListRecTy *LRT = dynamic_cast<ListRecTy*>(TI->getType()))
if (LRT->getElementType()->typeIsConvertibleTo(getElementType()))
return TI;
return 0;
}
Init *CodeRecTy::convertValue(TypedInit *TI) {
if (TI->getType()->typeIsConvertibleTo(this))
return TI;
return 0;
}
Init *DagRecTy::convertValue(TypedInit *TI) {
if (TI->getType()->typeIsConvertibleTo(this))
return TI;
return 0;
}
Init *DagRecTy::convertValue(UnOpInit *BO) {
if (BO->getOpcode() == UnOpInit::CAST) {
Init *L = BO->getOperand()->convertInitializerTo(this);
if (L == 0) return 0;
if (L != BO->getOperand())
return UnOpInit::get(UnOpInit::CAST, L, new DagRecTy);
return BO;
}
return 0;
}
Init *DagRecTy::convertValue(BinOpInit *BO) {
if (BO->getOpcode() == BinOpInit::CONCAT) {
Init *L = BO->getLHS()->convertInitializerTo(this);
Init *R = BO->getRHS()->convertInitializerTo(this);
if (L == 0 || R == 0) return 0;
if (L != BO->getLHS() || R != BO->getRHS())
return BinOpInit::get(BinOpInit::CONCAT, L, R, new DagRecTy);
return BO;
}
return 0;
}
RecordRecTy *RecordRecTy::get(Record *R) {
return &dynamic_cast<RecordRecTy&>(*R->getDefInit()->getType());
}
std::string RecordRecTy::getAsString() const {
return Rec->getName();
}
Init *RecordRecTy::convertValue(DefInit *DI) {
// Ensure that DI is a subclass of Rec.
if (!DI->getDef()->isSubClassOf(Rec))
return 0;
return DI;
}
Init *RecordRecTy::convertValue(TypedInit *TI) {
// Ensure that TI is compatible with Rec.
if (RecordRecTy *RRT = dynamic_cast<RecordRecTy*>(TI->getType()))
if (RRT->getRecord()->isSubClassOf(getRecord()) ||
RRT->getRecord() == getRecord())
return TI;
return 0;
}
bool RecordRecTy::baseClassOf(const RecordRecTy *RHS) const {
if (Rec == RHS->getRecord() || RHS->getRecord()->isSubClassOf(Rec))
return true;
const std::vector<Record*> &SC = Rec->getSuperClasses();
for (unsigned i = 0, e = SC.size(); i != e; ++i)
if (RHS->getRecord()->isSubClassOf(SC[i]))
return true;
return false;
}
/// resolveTypes - Find a common type that T1 and T2 convert to.
/// Return 0 if no such type exists.
///
RecTy *llvm::resolveTypes(RecTy *T1, RecTy *T2) {
if (!T1->typeIsConvertibleTo(T2)) {
if (!T2->typeIsConvertibleTo(T1)) {
// If one is a Record type, check superclasses
RecordRecTy *RecTy1 = dynamic_cast<RecordRecTy*>(T1);
if (RecTy1) {
// See if T2 inherits from a type T1 also inherits from
const std::vector<Record *> &T1SuperClasses =
RecTy1->getRecord()->getSuperClasses();
for(std::vector<Record *>::const_iterator i = T1SuperClasses.begin(),
iend = T1SuperClasses.end();
i != iend;
++i) {
RecordRecTy *SuperRecTy1 = RecordRecTy::get(*i);
RecTy *NewType1 = resolveTypes(SuperRecTy1, T2);
if (NewType1 != 0) {
if (NewType1 != SuperRecTy1) {
delete SuperRecTy1;
}
return NewType1;
}
}
}
RecordRecTy *RecTy2 = dynamic_cast<RecordRecTy*>(T2);
if (RecTy2) {
// See if T1 inherits from a type T2 also inherits from
const std::vector<Record *> &T2SuperClasses =
RecTy2->getRecord()->getSuperClasses();
for (std::vector<Record *>::const_iterator i = T2SuperClasses.begin(),
iend = T2SuperClasses.end();
i != iend;
++i) {
RecordRecTy *SuperRecTy2 = RecordRecTy::get(*i);
RecTy *NewType2 = resolveTypes(T1, SuperRecTy2);
if (NewType2 != 0) {
if (NewType2 != SuperRecTy2) {
delete SuperRecTy2;
}
return NewType2;
}
}
}
return 0;
}
return T2;
}
return T1;
}
//===----------------------------------------------------------------------===//
// Initializer implementations
//===----------------------------------------------------------------------===//
void Init::dump() const { return print(errs()); }
UnsetInit *UnsetInit::get() {
static UnsetInit TheInit;
return &TheInit;
}
BitInit *BitInit::get(bool V) {
static BitInit True(true);
static BitInit False(false);
return V ? &True : &False;
}
static void
ProfileBitsInit(FoldingSetNodeID &ID, ArrayRef<Init *> Range) {
ID.AddInteger(Range.size());
for (ArrayRef<Init *>::iterator i = Range.begin(),
iend = Range.end();
i != iend;
++i)
ID.AddPointer(*i);
}
BitsInit *BitsInit::get(ArrayRef<Init *> Range) {
typedef FoldingSet<BitsInit> Pool;
static Pool ThePool;
FoldingSetNodeID ID;
ProfileBitsInit(ID, Range);
void *IP = 0;
if (BitsInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
BitsInit *I = new BitsInit(Range);
ThePool.InsertNode(I, IP);
return I;
}
void BitsInit::Profile(FoldingSetNodeID &ID) const {
ProfileBitsInit(ID, Bits);
}
Init *
BitsInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const {
SmallVector<Init *, 16> NewBits(Bits.size());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Bits[i] >= getNumBits())
return 0;
NewBits[i] = getBit(Bits[i]);
}
return BitsInit::get(NewBits);
}
std::string BitsInit::getAsString() const {
std::string Result = "{ ";
for (unsigned i = 0, e = getNumBits(); i != e; ++i) {
if (i) Result += ", ";
if (Init *Bit = getBit(e-i-1))
Result += Bit->getAsString();
else
Result += "*";
}
return Result + " }";
}
// resolveReferences - If there are any field references that refer to fields
// that have been filled in, we can propagate the values now.
//
Init *BitsInit::resolveReferences(Record &R, const RecordVal *RV) const {
bool Changed = false;
SmallVector<Init *, 16> NewBits(getNumBits());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
Init *B;
Init *CurBit = getBit(i);
do {
B = CurBit;
CurBit = CurBit->resolveReferences(R, RV);
Changed |= B != CurBit;
} while (B != CurBit);
NewBits[i] = CurBit;
}
if (Changed)
return BitsInit::get(NewBits);
return const_cast<BitsInit *>(this);
}
IntInit *IntInit::get(int64_t V) {
typedef DenseMap<int64_t, IntInit *> Pool;
static Pool ThePool;
IntInit *&I = ThePool[V];
if (!I) I = new IntInit(V);
return I;
}
std::string IntInit::getAsString() const {
return itostr(Value);
}
Init *
IntInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const {
SmallVector<Init *, 16> NewBits(Bits.size());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Bits[i] >= 64)
return 0;
NewBits[i] = BitInit::get(Value & (INT64_C(1) << Bits[i]));
}
return BitsInit::get(NewBits);
}
StringInit *StringInit::get(const std::string &V) {
typedef StringMap<StringInit *> Pool;
static Pool ThePool;
StringInit *&I = ThePool[V];
if (!I) I = new StringInit(V);
return I;
}
CodeInit *CodeInit::get(const std::string &V) {
typedef StringMap<CodeInit *> Pool;
static Pool ThePool;
CodeInit *&I = ThePool[V];
if (!I) I = new CodeInit(V);
return I;
}
static void ProfileListInit(FoldingSetNodeID &ID,
ArrayRef<Init *> Range,
RecTy *EltTy) {
ID.AddInteger(Range.size());
ID.AddPointer(EltTy);
for (ArrayRef<Init *>::iterator i = Range.begin(),
iend = Range.end();
i != iend;
++i)
ID.AddPointer(*i);
}
ListInit *ListInit::get(ArrayRef<Init *> Range, RecTy *EltTy) {
typedef FoldingSet<ListInit> Pool;
static Pool ThePool;
// Just use the FoldingSetNodeID to compute a hash. Use a DenseMap
// for actual storage.
FoldingSetNodeID ID;
ProfileListInit(ID, Range, EltTy);
void *IP = 0;
if (ListInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
ListInit *I = new ListInit(Range, EltTy);
ThePool.InsertNode(I, IP);
return I;
}
void ListInit::Profile(FoldingSetNodeID &ID) const {
ListRecTy *ListType = dynamic_cast<ListRecTy *>(getType());
assert(ListType && "Bad type for ListInit!");
RecTy *EltTy = ListType->getElementType();
ProfileListInit(ID, Values, EltTy);
}
Init *
ListInit::convertInitListSlice(const std::vector<unsigned> &Elements) const {
std::vector<Init*> Vals;
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
if (Elements[i] >= getSize())
return 0;
Vals.push_back(getElement(Elements[i]));
}
return ListInit::get(Vals, getType());
}
Record *ListInit::getElementAsRecord(unsigned i) const {
assert(i < Values.size() && "List element index out of range!");
DefInit *DI = dynamic_cast<DefInit*>(Values[i]);
if (DI == 0) throw "Expected record in list!";
return DI->getDef();
}
Init *ListInit::resolveReferences(Record &R, const RecordVal *RV) const {
std::vector<Init*> Resolved;
Resolved.reserve(getSize());
bool Changed = false;
for (unsigned i = 0, e = getSize(); i != e; ++i) {
Init *E;
Init *CurElt = getElement(i);
do {
E = CurElt;
CurElt = CurElt->resolveReferences(R, RV);
Changed |= E != CurElt;
} while (E != CurElt);
Resolved.push_back(E);
}
if (Changed)
return ListInit::get(Resolved, getType());
return const_cast<ListInit *>(this);
}
Init *ListInit::resolveListElementReference(Record &R, const RecordVal *IRV,
unsigned Elt) const {
if (Elt >= getSize())
return 0; // Out of range reference.
Init *E = getElement(Elt);
// If the element is set to some value, or if we are resolving a reference
// to a specific variable and that variable is explicitly unset, then
// replace the VarListElementInit with it.
if (IRV || !dynamic_cast<UnsetInit*>(E))
return E;
return 0;
}
std::string ListInit::getAsString() const {
std::string Result = "[";
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
if (i) Result += ", ";
Result += Values[i]->getAsString();
}
return Result + "]";
}
Init *OpInit::resolveBitReference(Record &R, const RecordVal *IRV,
unsigned Bit) const {
Init *Folded = Fold(&R, 0);
if (Folded != this) {
TypedInit *Typed = dynamic_cast<TypedInit *>(Folded);
if (Typed) {
return Typed->resolveBitReference(R, IRV, Bit);
}
}
return 0;
}
Init *OpInit::resolveListElementReference(Record &R, const RecordVal *IRV,
unsigned Elt) const {
Init *Folded = Fold(&R, 0);
if (Folded != this) {
TypedInit *Typed = dynamic_cast<TypedInit *>(Folded);
if (Typed) {
return Typed->resolveListElementReference(R, IRV, Elt);
}
}
return 0;
}
UnOpInit *UnOpInit::get(UnaryOp opc, Init *lhs, RecTy *Type) {
typedef std::pair<std::pair<unsigned, Init *>, RecTy *> Key;
typedef DenseMap<Key, UnOpInit *> Pool;
static Pool ThePool;
Key TheKey(std::make_pair(std::make_pair(opc, lhs), Type));
UnOpInit *&I = ThePool[TheKey];
if (!I) I = new UnOpInit(opc, lhs, Type);
return I;
}
Init *UnOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
switch (getOpcode()) {
default: assert(0 && "Unknown unop");
case CAST: {
if (getType()->getAsString() == "string") {
StringInit *LHSs = dynamic_cast<StringInit*>(LHS);
if (LHSs) {
return LHSs;
}
DefInit *LHSd = dynamic_cast<DefInit*>(LHS);
if (LHSd) {
return StringInit::get(LHSd->getDef()->getName());
}
} else {
StringInit *LHSs = dynamic_cast<StringInit*>(LHS);
if (LHSs) {
std::string Name = LHSs->getValue();
// From TGParser::ParseIDValue
if (CurRec) {
if (const RecordVal *RV = CurRec->getValue(Name)) {
if (RV->getType() != getType())
throw "type mismatch in cast";
return VarInit::get(Name, RV->getType());
}
std::string TemplateArgName = CurRec->getName()+":"+Name;
if (CurRec->isTemplateArg(TemplateArgName)) {
const RecordVal *RV = CurRec->getValue(TemplateArgName);
assert(RV && "Template arg doesn't exist??");
if (RV->getType() != getType())
throw "type mismatch in cast";
return VarInit::get(TemplateArgName, RV->getType());
}
}
if (CurMultiClass) {
std::string MCName = CurMultiClass->Rec.getName()+"::"+Name;
if (CurMultiClass->Rec.isTemplateArg(MCName)) {
const RecordVal *RV = CurMultiClass->Rec.getValue(MCName);
assert(RV && "Template arg doesn't exist??");
if (RV->getType() != getType())
throw "type mismatch in cast";
return VarInit::get(MCName, RV->getType());
}
}
if (Record *D = (CurRec->getRecords()).getDef(Name))
return DefInit::get(D);
throw TGError(CurRec->getLoc(), "Undefined reference:'" + Name + "'\n");
}
}
break;
}
case HEAD: {
ListInit *LHSl = dynamic_cast<ListInit*>(LHS);
if (LHSl) {
if (LHSl->getSize() == 0) {
assert(0 && "Empty list in car");
return 0;
}
return LHSl->getElement(0);
}
break;
}
case TAIL: {
ListInit *LHSl = dynamic_cast<ListInit*>(LHS);
if (LHSl) {
if (LHSl->getSize() == 0) {
assert(0 && "Empty list in cdr");
return 0;
}
// Note the +1. We can't just pass the result of getValues()
// directly.
ArrayRef<Init *>::iterator begin = LHSl->getValues().begin()+1;
ArrayRef<Init *>::iterator end = LHSl->getValues().end();
ListInit *Result =
ListInit::get(ArrayRef<Init *>(begin, end - begin),
LHSl->getType());
return Result;
}
break;
}
case EMPTY: {
ListInit *LHSl = dynamic_cast<ListInit*>(LHS);
if (LHSl) {
if (LHSl->getSize() == 0) {
return IntInit::get(1);
} else {
return IntInit::get(0);
}
}
StringInit *LHSs = dynamic_cast<StringInit*>(LHS);
if (LHSs) {
if (LHSs->getValue().empty()) {
return IntInit::get(1);
} else {
return IntInit::get(0);
}
}
break;
}
}
return const_cast<UnOpInit *>(this);
}
Init *UnOpInit::resolveReferences(Record &R, const RecordVal *RV) const {
Init *lhs = LHS->resolveReferences(R, RV);
if (LHS != lhs)
return (UnOpInit::get(getOpcode(), lhs, getType()))->Fold(&R, 0);
return Fold(&R, 0);
}
std::string UnOpInit::getAsString() const {
std::string Result;
switch (Opc) {
case CAST: Result = "!cast<" + getType()->getAsString() + ">"; break;
case HEAD: Result = "!head"; break;
case TAIL: Result = "!tail"; break;
case EMPTY: Result = "!empty"; break;
}
return Result + "(" + LHS->getAsString() + ")";
}
BinOpInit *BinOpInit::get(BinaryOp opc, Init *lhs,
Init *rhs, RecTy *Type) {
typedef std::pair<
std::pair<std::pair<unsigned, Init *>, Init *>,
RecTy *
> Key;
typedef DenseMap<Key, BinOpInit *> Pool;
static Pool ThePool;
Key TheKey(std::make_pair(std::make_pair(std::make_pair(opc, lhs), rhs),
Type));
BinOpInit *&I = ThePool[TheKey];
if (!I) I = new BinOpInit(opc, lhs, rhs, Type);
return I;
}
Init *BinOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
switch (getOpcode()) {
default: assert(0 && "Unknown binop");
case CONCAT: {
DagInit *LHSs = dynamic_cast<DagInit*>(LHS);
DagInit *RHSs = dynamic_cast<DagInit*>(RHS);
if (LHSs && RHSs) {
DefInit *LOp = dynamic_cast<DefInit*>(LHSs->getOperator());
DefInit *ROp = dynamic_cast<DefInit*>(RHSs->getOperator());
if (LOp == 0 || ROp == 0 || LOp->getDef() != ROp->getDef())
throw "Concated Dag operators do not match!";
std::vector<Init*> Args;
std::vector<std::string> ArgNames;
for (unsigned i = 0, e = LHSs->getNumArgs(); i != e; ++i) {
Args.push_back(LHSs->getArg(i));
ArgNames.push_back(LHSs->getArgName(i));
}
for (unsigned i = 0, e = RHSs->getNumArgs(); i != e; ++i) {
Args.push_back(RHSs->getArg(i));
ArgNames.push_back(RHSs->getArgName(i));
}
return DagInit::get(LHSs->getOperator(), "", Args, ArgNames);
}
break;
}
case STRCONCAT: {
StringInit *LHSs = dynamic_cast<StringInit*>(LHS);
StringInit *RHSs = dynamic_cast<StringInit*>(RHS);
if (LHSs && RHSs)
return StringInit::get(LHSs->getValue() + RHSs->getValue());
break;
}
case EQ: {
// try to fold eq comparison for 'bit' and 'int', otherwise fallback
// to string objects.
IntInit* L =
dynamic_cast<IntInit*>(LHS->convertInitializerTo(IntRecTy::get()));
IntInit* R =
dynamic_cast<IntInit*>(RHS->convertInitializerTo(IntRecTy::get()));
if (L && R)
return IntInit::get(L->getValue() == R->getValue());
StringInit *LHSs = dynamic_cast<StringInit*>(LHS);
StringInit *RHSs = dynamic_cast<StringInit*>(RHS);
// Make sure we've resolved
if (LHSs && RHSs)
return IntInit::get(LHSs->getValue() == RHSs->getValue());
break;
}
case SHL:
case SRA:
case SRL: {
IntInit *LHSi = dynamic_cast<IntInit*>(LHS);
IntInit *RHSi = dynamic_cast<IntInit*>(RHS);
if (LHSi && RHSi) {
int64_t LHSv = LHSi->getValue(), RHSv = RHSi->getValue();
int64_t Result;
switch (getOpcode()) {
default: assert(0 && "Bad opcode!");
case SHL: Result = LHSv << RHSv; break;
case SRA: Result = LHSv >> RHSv; break;
case SRL: Result = (uint64_t)LHSv >> (uint64_t)RHSv; break;
}
return IntInit::get(Result);
}
break;
}
}
return const_cast<BinOpInit *>(this);
}
Init *BinOpInit::resolveReferences(Record &R, const RecordVal *RV) const {
Init *lhs = LHS->resolveReferences(R, RV);
Init *rhs = RHS->resolveReferences(R, RV);
if (LHS != lhs || RHS != rhs)
return (BinOpInit::get(getOpcode(), lhs, rhs, getType()))->Fold(&R, 0);
return Fold(&R, 0);
}
std::string BinOpInit::getAsString() const {
std::string Result;
switch (Opc) {
case CONCAT: Result = "!con"; break;
case SHL: Result = "!shl"; break;
case SRA: Result = "!sra"; break;
case SRL: Result = "!srl"; break;
case EQ: Result = "!eq"; break;
case STRCONCAT: Result = "!strconcat"; break;
}
return Result + "(" + LHS->getAsString() + ", " + RHS->getAsString() + ")";
}
TernOpInit *TernOpInit::get(TernaryOp opc, Init *lhs,
Init *mhs, Init *rhs,
RecTy *Type) {
typedef std::pair<
std::pair<
std::pair<std::pair<unsigned, RecTy *>, Init *>,
Init *
>,
Init *
> Key;
typedef DenseMap<Key, TernOpInit *> Pool;
static Pool ThePool;
Key TheKey(std::make_pair(std::make_pair(std::make_pair(std::make_pair(opc,
Type),
lhs),
mhs),
rhs));
TernOpInit *&I = ThePool[TheKey];
if (!I) I = new TernOpInit(opc, lhs, mhs, rhs, Type);
return I;
}
static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type,
Record *CurRec, MultiClass *CurMultiClass);
static Init *EvaluateOperation(OpInit *RHSo, Init *LHS, Init *Arg,
RecTy *Type, Record *CurRec,
MultiClass *CurMultiClass) {
std::vector<Init *> NewOperands;
TypedInit *TArg = dynamic_cast<TypedInit*>(Arg);
// If this is a dag, recurse
if (TArg && TArg->getType()->getAsString() == "dag") {
Init *Result = ForeachHelper(LHS, Arg, RHSo, Type,
CurRec, CurMultiClass);
if (Result != 0) {
return Result;
} else {
return 0;
}
}
for (int i = 0; i < RHSo->getNumOperands(); ++i) {
OpInit *RHSoo = dynamic_cast<OpInit*>(RHSo->getOperand(i));
if (RHSoo) {
Init *Result = EvaluateOperation(RHSoo, LHS, Arg,
Type, CurRec, CurMultiClass);
if (Result != 0) {
NewOperands.push_back(Result);
} else {
NewOperands.push_back(Arg);
}
} else if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) {
NewOperands.push_back(Arg);
} else {
NewOperands.push_back(RHSo->getOperand(i));
}
}
// Now run the operator and use its result as the new leaf
const OpInit *NewOp = RHSo->clone(NewOperands);
Init *NewVal = NewOp->Fold(CurRec, CurMultiClass);
if (NewVal != NewOp)
return NewVal;
return 0;
}
static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type,
Record *CurRec, MultiClass *CurMultiClass) {
DagInit *MHSd = dynamic_cast<DagInit*>(MHS);
ListInit *MHSl = dynamic_cast<ListInit*>(MHS);
DagRecTy *DagType = dynamic_cast<DagRecTy*>(Type);
ListRecTy *ListType = dynamic_cast<ListRecTy*>(Type);
OpInit *RHSo = dynamic_cast<OpInit*>(RHS);
if (!RHSo) {
throw TGError(CurRec->getLoc(), "!foreach requires an operator\n");
}
TypedInit *LHSt = dynamic_cast<TypedInit*>(LHS);
if (!LHSt) {
throw TGError(CurRec->getLoc(), "!foreach requires typed variable\n");
}
if ((MHSd && DagType) || (MHSl && ListType)) {
if (MHSd) {
Init *Val = MHSd->getOperator();
Init *Result = EvaluateOperation(RHSo, LHS, Val,
Type, CurRec, CurMultiClass);
if (Result != 0) {
Val = Result;
}
std::vector<std::pair<Init *, std::string> > args;
for (unsigned int i = 0; i < MHSd->getNumArgs(); ++i) {
Init *Arg;
std::string ArgName;
Arg = MHSd->getArg(i);
ArgName = MHSd->getArgName(i);
// Process args
Init *Result = EvaluateOperation(RHSo, LHS, Arg, Type,
CurRec, CurMultiClass);
if (Result != 0) {
Arg = Result;
}
// TODO: Process arg names
args.push_back(std::make_pair(Arg, ArgName));
}
return DagInit::get(Val, "", args);
}
if (MHSl) {
std::vector<Init *> NewOperands;
std::vector<Init *> NewList(MHSl->begin(), MHSl->end());
for (std::vector<Init *>::iterator li = NewList.begin(),
liend = NewList.end();
li != liend;
++li) {
Init *Item = *li;
NewOperands.clear();
for(int i = 0; i < RHSo->getNumOperands(); ++i) {
// First, replace the foreach variable with the list item
if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) {
NewOperands.push_back(Item);
} else {
NewOperands.push_back(RHSo->getOperand(i));
}
}
// Now run the operator and use its result as the new list item
const OpInit *NewOp = RHSo->clone(NewOperands);
Init *NewItem = NewOp->Fold(CurRec, CurMultiClass);
if (NewItem != NewOp)
*li = NewItem;
}
return ListInit::get(NewList, MHSl->getType());
}
}
return 0;
}
Init *TernOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const {
switch (getOpcode()) {
default: assert(0 && "Unknown binop");
case SUBST: {
DefInit *LHSd = dynamic_cast<DefInit*>(LHS);
VarInit *LHSv = dynamic_cast<VarInit*>(LHS);
StringInit *LHSs = dynamic_cast<StringInit*>(LHS);
DefInit *MHSd = dynamic_cast<DefInit*>(MHS);
VarInit *MHSv = dynamic_cast<VarInit*>(MHS);
StringInit *MHSs = dynamic_cast<StringInit*>(MHS);
DefInit *RHSd = dynamic_cast<DefInit*>(RHS);
VarInit *RHSv = dynamic_cast<VarInit*>(RHS);
StringInit *RHSs = dynamic_cast<StringInit*>(RHS);
if ((LHSd && MHSd && RHSd)
|| (LHSv && MHSv && RHSv)
|| (LHSs && MHSs && RHSs)) {
if (RHSd) {
Record *Val = RHSd->getDef();
if (LHSd->getAsString() == RHSd->getAsString()) {
Val = MHSd->getDef();
}
return DefInit::get(Val);
}
if (RHSv) {
std::string Val = RHSv->getName();
if (LHSv->getAsString() == RHSv->getAsString()) {
Val = MHSv->getName();
}
return VarInit::get(Val, getType());
}
if (RHSs) {
std::string Val = RHSs->getValue();
std::string::size_type found;
std::string::size_type idx = 0;
do {
found = Val.find(LHSs->getValue(), idx);
if (found != std::string::npos) {
Val.replace(found, LHSs->getValue().size(), MHSs->getValue());
}
idx = found + MHSs->getValue().size();
} while (found != std::string::npos);
return StringInit::get(Val);
}
}
break;
}
case FOREACH: {
Init *Result = ForeachHelper(LHS, MHS, RHS, getType(),
CurRec, CurMultiClass);
if (Result != 0) {
return Result;
}
break;
}
case IF: {
IntInit *LHSi = dynamic_cast<IntInit*>(LHS);
if (Init *I = LHS->convertInitializerTo(IntRecTy::get()))
LHSi = dynamic_cast<IntInit*>(I);
if (LHSi) {
if (LHSi->getValue()) {
return MHS;
} else {
return RHS;
}
}
break;
}
}
return const_cast<TernOpInit *>(this);
}
Init *TernOpInit::resolveReferences(Record &R,
const RecordVal *RV) const {
Init *lhs = LHS->resolveReferences(R, RV);
if (Opc == IF && lhs != LHS) {
IntInit *Value = dynamic_cast<IntInit*>(lhs);
if (Init *I = lhs->convertInitializerTo(IntRecTy::get()))
Value = dynamic_cast<IntInit*>(I);
if (Value != 0) {
// Short-circuit
if (Value->getValue()) {
Init *mhs = MHS->resolveReferences(R, RV);
return (TernOpInit::get(getOpcode(), lhs, mhs,
RHS, getType()))->Fold(&R, 0);
} else {
Init *rhs = RHS->resolveReferences(R, RV);
return (TernOpInit::get(getOpcode(), lhs, MHS,
rhs, getType()))->Fold(&R, 0);
}
}
}
Init *mhs = MHS->resolveReferences(R, RV);
Init *rhs = RHS->resolveReferences(R, RV);
if (LHS != lhs || MHS != mhs || RHS != rhs)
return (TernOpInit::get(getOpcode(), lhs, mhs, rhs,
getType()))->Fold(&R, 0);
return Fold(&R, 0);
}
std::string TernOpInit::getAsString() const {
std::string Result;
switch (Opc) {
case SUBST: Result = "!subst"; break;
case FOREACH: Result = "!foreach"; break;
case IF: Result = "!if"; break;
}
return Result + "(" + LHS->getAsString() + ", " + MHS->getAsString() + ", "
+ RHS->getAsString() + ")";
}
RecTy *TypedInit::getFieldType(const std::string &FieldName) const {
RecordRecTy *RecordType = dynamic_cast<RecordRecTy *>(getType());
if (RecordType) {
RecordVal *Field = RecordType->getRecord()->getValue(FieldName);
if (Field) {
return Field->getType();
}
}
return 0;
}
Init *
TypedInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const {
BitsRecTy *T = dynamic_cast<BitsRecTy*>(getType());
if (T == 0) return 0; // Cannot subscript a non-bits variable.
unsigned NumBits = T->getNumBits();
SmallVector<Init *, 16> NewBits(Bits.size());
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Bits[i] >= NumBits)
return 0;
NewBits[i] = VarBitInit::get(const_cast<TypedInit *>(this), Bits[i]);
}
return BitsInit::get(NewBits);
}
Init *
TypedInit::convertInitListSlice(const std::vector<unsigned> &Elements) const {
ListRecTy *T = dynamic_cast<ListRecTy*>(getType());
if (T == 0) return 0; // Cannot subscript a non-list variable.
if (Elements.size() == 1)
return VarListElementInit::get(const_cast<TypedInit *>(this), Elements[0]);
std::vector<Init*> ListInits;
ListInits.reserve(Elements.size());
for (unsigned i = 0, e = Elements.size(); i != e; ++i)
ListInits.push_back(VarListElementInit::get(const_cast<TypedInit *>(this),
Elements[i]));
return ListInit::get(ListInits, T);
}
VarInit *VarInit::get(const std::string &VN, RecTy *T) {
typedef std::pair<RecTy *, TableGenStringKey> Key;
typedef DenseMap<Key, VarInit *> Pool;
static Pool ThePool;
Key TheKey(std::make_pair(T, VN));
VarInit *&I = ThePool[TheKey];
if (!I) I = new VarInit(VN, T);
return I;
}
Init *VarInit::resolveBitReference(Record &R, const RecordVal *IRV,
unsigned Bit) const {
if (R.isTemplateArg(getName())) return 0;
if (IRV && IRV->getName() != getName()) return 0;
RecordVal *RV = R.getValue(getName());
assert(RV && "Reference to a non-existent variable?");
assert(dynamic_cast<BitsInit*>(RV->getValue()));
BitsInit *BI = (BitsInit*)RV->getValue();
assert(Bit < BI->getNumBits() && "Bit reference out of range!");
Init *B = BI->getBit(Bit);
// If the bit is set to some value, or if we are resolving a reference to a
// specific variable and that variable is explicitly unset, then replace the
// VarBitInit with it.
if (IRV || !dynamic_cast<UnsetInit*>(B))
return B;
return 0;
}
Init *VarInit::resolveListElementReference(Record &R,
const RecordVal *IRV,
unsigned Elt) const {
if (R.isTemplateArg(getName())) return 0;
if (IRV && IRV->getName() != getName()) return 0;
RecordVal *RV = R.getValue(getName());
assert(RV && "Reference to a non-existent variable?");
ListInit *LI = dynamic_cast<ListInit*>(RV->getValue());
if (!LI) {
VarInit *VI = dynamic_cast<VarInit*>(RV->getValue());
assert(VI && "Invalid list element!");
return VarListElementInit::get(VI, Elt);
}
if (Elt >= LI->getSize())
return 0; // Out of range reference.
Init *E = LI->getElement(Elt);
// If the element is set to some value, or if we are resolving a reference
// to a specific variable and that variable is explicitly unset, then
// replace the VarListElementInit with it.
if (IRV || !dynamic_cast<UnsetInit*>(E))
return E;
return 0;
}
RecTy *VarInit::getFieldType(const std::string &FieldName) const {
if (RecordRecTy *RTy = dynamic_cast<RecordRecTy*>(getType()))
if (const RecordVal *RV = RTy->getRecord()->getValue(FieldName))
return RV->getType();
return 0;
}
Init *VarInit::getFieldInit(Record &R, const RecordVal *RV,
const std::string &FieldName) const {
if (dynamic_cast<RecordRecTy*>(getType()))
if (const RecordVal *Val = R.getValue(VarName)) {
if (RV != Val && (RV || dynamic_cast<UnsetInit*>(Val->getValue())))
return 0;
Init *TheInit = Val->getValue();
assert(TheInit != this && "Infinite loop detected!");
if (Init *I = TheInit->getFieldInit(R, RV, FieldName))
return I;
else
return 0;
}
return 0;
}
/// resolveReferences - This method is used by classes that refer to other
/// variables which may not be defined at the time the expression is formed.
/// If a value is set for the variable later, this method will be called on
/// users of the value to allow the value to propagate out.
///
Init *VarInit::resolveReferences(Record &R, const RecordVal *RV) const {
if (RecordVal *Val = R.getValue(VarName))
if (RV == Val || (RV == 0 && !dynamic_cast<UnsetInit*>(Val->getValue())))
return Val->getValue();
return const_cast<VarInit *>(this);
}
VarBitInit *VarBitInit::get(TypedInit *T, unsigned B) {
typedef std::pair<TypedInit *, unsigned> Key;
typedef DenseMap<Key, VarBitInit *> Pool;
static Pool ThePool;
Key TheKey(std::make_pair(T, B));
VarBitInit *&I = ThePool[TheKey];
if (!I) I = new VarBitInit(T, B);
return I;
}
std::string VarBitInit::getAsString() const {
return TI->getAsString() + "{" + utostr(Bit) + "}";
}
Init *VarBitInit::resolveReferences(Record &R, const RecordVal *RV) const {
if (Init *I = getVariable()->resolveBitReference(R, RV, getBitNum()))
return I;
return const_cast<VarBitInit *>(this);
}
VarListElementInit *VarListElementInit::get(TypedInit *T,
unsigned E) {
typedef std::pair<TypedInit *, unsigned> Key;
typedef DenseMap<Key, VarListElementInit *> Pool;
static Pool ThePool;
Key TheKey(std::make_pair(T, E));
VarListElementInit *&I = ThePool[TheKey];
if (!I) I = new VarListElementInit(T, E);
return I;
}
std::string VarListElementInit::getAsString() const {
return TI->getAsString() + "[" + utostr(Element) + "]";
}
Init *
VarListElementInit::resolveReferences(Record &R, const RecordVal *RV) const {
if (Init *I = getVariable()->resolveListElementReference(R, RV,
getElementNum()))
return I;
return const_cast<VarListElementInit *>(this);
}
Init *VarListElementInit::resolveBitReference(Record &R, const RecordVal *RV,
unsigned Bit) const {
// FIXME: This should be implemented, to support references like:
// bit B = AA[0]{1};
return 0;
}
Init *VarListElementInit:: resolveListElementReference(Record &R,
const RecordVal *RV,
unsigned Elt) const {
// FIXME: This should be implemented, to support references like:
// int B = AA[0][1];
return 0;
}
DefInit *DefInit::get(Record *R) {
return R->getDefInit();
}
RecTy *DefInit::getFieldType(const std::string &FieldName) const {
if (const RecordVal *RV = Def->getValue(FieldName))
return RV->getType();
return 0;
}
Init *DefInit::getFieldInit(Record &R, const RecordVal *RV,
const std::string &FieldName) const {
return Def->getValue(FieldName)->getValue();
}
std::string DefInit::getAsString() const {
return Def->getName();
}
FieldInit *FieldInit::get(Init *R, const std::string &FN) {
typedef std::pair<Init *, TableGenStringKey> Key;
typedef DenseMap<Key, FieldInit *> Pool;
static Pool ThePool;
Key TheKey(std::make_pair(R, FN));
FieldInit *&I = ThePool[TheKey];
if (!I) I = new FieldInit(R, FN);
return I;
}
Init *FieldInit::resolveBitReference(Record &R, const RecordVal *RV,
unsigned Bit) const {
if (Init *BitsVal = Rec->getFieldInit(R, RV, FieldName))
if (BitsInit *BI = dynamic_cast<BitsInit*>(BitsVal)) {
assert(Bit < BI->getNumBits() && "Bit reference out of range!");
Init *B = BI->getBit(Bit);
if (dynamic_cast<BitInit*>(B)) // If the bit is set.
return B; // Replace the VarBitInit with it.
}
return 0;
}
Init *FieldInit::resolveListElementReference(Record &R, const RecordVal *RV,
unsigned Elt) const {
if (Init *ListVal = Rec->getFieldInit(R, RV, FieldName))
if (ListInit *LI = dynamic_cast<ListInit*>(ListVal)) {
if (Elt >= LI->getSize()) return 0;
Init *E = LI->getElement(Elt);
// If the element is set to some value, or if we are resolving a
// reference to a specific variable and that variable is explicitly
// unset, then replace the VarListElementInit with it.
if (RV || !dynamic_cast<UnsetInit*>(E))
return E;
}
return 0;
}
Init *FieldInit::resolveReferences(Record &R, const RecordVal *RV) const {
Init *NewRec = RV ? Rec->resolveReferences(R, RV) : Rec;
Init *BitsVal = NewRec->getFieldInit(R, RV, FieldName);
if (BitsVal) {
Init *BVR = BitsVal->resolveReferences(R, RV);
return BVR->isComplete() ? BVR : const_cast<FieldInit *>(this);
}
if (NewRec != Rec) {
return FieldInit::get(NewRec, FieldName);
}
return const_cast<FieldInit *>(this);
}
void ProfileDagInit(FoldingSetNodeID &ID,
Init *V,
const std::string &VN,
ArrayRef<Init *> ArgRange,
ArrayRef<std::string> NameRange) {
ID.AddPointer(V);
ID.AddString(VN);
ArrayRef<Init *>::iterator Arg = ArgRange.begin();
ArrayRef<std::string>::iterator Name = NameRange.begin();
while (Arg != ArgRange.end()) {
assert(Name != NameRange.end() && "Arg name underflow!");
ID.AddPointer(*Arg++);
ID.AddString(*Name++);
}
assert(Name == NameRange.end() && "Arg name overflow!");
}
DagInit *
DagInit::get(Init *V, const std::string &VN,
ArrayRef<Init *> ArgRange,
ArrayRef<std::string> NameRange) {
typedef FoldingSet<DagInit> Pool;
static Pool ThePool;
FoldingSetNodeID ID;
ProfileDagInit(ID, V, VN, ArgRange, NameRange);
void *IP = 0;
if (DagInit *I = ThePool.FindNodeOrInsertPos(ID, IP))
return I;
DagInit *I = new DagInit(V, VN, ArgRange, NameRange);
ThePool.InsertNode(I, IP);
return I;
}
DagInit *
DagInit::get(Init *V, const std::string &VN,
const std::vector<std::pair<Init*, std::string> > &args) {
typedef std::pair<Init*, std::string> PairType;
std::vector<Init *> Args;
std::vector<std::string> Names;
for (std::vector<PairType>::const_iterator i = args.begin(),
iend = args.end();
i != iend;
++i) {
Args.push_back(i->first);
Names.push_back(i->second);
}
return DagInit::get(V, VN, Args, Names);
}
void DagInit::Profile(FoldingSetNodeID &ID) const {
ProfileDagInit(ID, Val, ValName, Args, ArgNames);
}
Init *DagInit::resolveReferences(Record &R, const RecordVal *RV) const {
std::vector<Init*> NewArgs;
for (unsigned i = 0, e = Args.size(); i != e; ++i)
NewArgs.push_back(Args[i]->resolveReferences(R, RV));
Init *Op = Val->resolveReferences(R, RV);
if (Args != NewArgs || Op != Val)
return DagInit::get(Op, ValName, NewArgs, ArgNames);
return const_cast<DagInit *>(this);
}
std::string DagInit::getAsString() const {
std::string Result = "(" + Val->getAsString();
if (!ValName.empty())
Result += ":" + ValName;
if (Args.size()) {
Result += " " + Args[0]->getAsString();
if (!ArgNames[0].empty()) Result += ":$" + ArgNames[0];
for (unsigned i = 1, e = Args.size(); i != e; ++i) {
Result += ", " + Args[i]->getAsString();
if (!ArgNames[i].empty()) Result += ":$" + ArgNames[i];
}
}
return Result + ")";
}
//===----------------------------------------------------------------------===//
// Other implementations
//===----------------------------------------------------------------------===//
RecordVal::RecordVal(Init *N, RecTy *T, unsigned P)
: Name(N), Ty(T), Prefix(P) {
Value = Ty->convertValue(UnsetInit::get());
assert(Value && "Cannot create unset value for current type!");
}
RecordVal::RecordVal(const std::string &N, RecTy *T, unsigned P)
: Name(StringInit::get(N)), Ty(T), Prefix(P) {
Value = Ty->convertValue(UnsetInit::get());
assert(Value && "Cannot create unset value for current type!");
}
const std::string &RecordVal::getName() const {
StringInit *NameString = dynamic_cast<StringInit *>(Name);
assert(NameString && "RecordVal name is not a string!");
return NameString->getValue();
}
void RecordVal::dump() const { errs() << *this; }
void RecordVal::print(raw_ostream &OS, bool PrintSem) const {
if (getPrefix()) OS << "field ";
OS << *getType() << " " << getName();
if (getValue())
OS << " = " << *getValue();
if (PrintSem) OS << ";\n";
}
unsigned Record::LastID = 0;
void Record::checkName() {
// Ensure the record name has string type.
const TypedInit *TypedName = dynamic_cast<const TypedInit *>(Name);
assert(TypedName && "Record name is not typed!");
RecTy *Type = TypedName->getType();
if (dynamic_cast<StringRecTy *>(Type) == 0) {
llvm_unreachable("Record name is not a string!");
}
}
DefInit *Record::getDefInit() {
if (!TheInit)
TheInit = new DefInit(this, new RecordRecTy(this));
return TheInit;
}
const std::string &Record::getName() const {
const StringInit *NameString =
dynamic_cast<const StringInit *>(Name);
assert(NameString && "Record name is not a string!");
return NameString->getValue();
}
void Record::setName(Init *NewName) {
if (TrackedRecords.getDef(Name->getAsUnquotedString()) == this) {
TrackedRecords.removeDef(Name->getAsUnquotedString());
Name = NewName;
TrackedRecords.addDef(this);
} else {
TrackedRecords.removeClass(Name->getAsUnquotedString());
Name = NewName;
TrackedRecords.addClass(this);
}
checkName();
// Since the Init for the name was changed, see if we can resolve
// any of it using members of the Record.
Init *ComputedName = Name->resolveReferences(*this, 0);
if (ComputedName != Name) {
setName(ComputedName);
}
// DO NOT resolve record values to the name at this point because
// there might be default values for arguments of this def. Those
// arguments might not have been resolved yet so we don't want to
// prematurely assume values for those arguments were not passed to
// this def.
//
// Nonetheless, it may be that some of this Record's values
// reference the record name. Indeed, the reason for having the
// record name be an Init is to provide this flexibility. The extra
// resolve steps after completely instantiating defs takes care of
// this. See TGParser::ParseDef and TGParser::ParseDefm.
}
void Record::setName(const std::string &Name) {
setName(StringInit::get(Name));
}
/// resolveReferencesTo - If anything in this record refers to RV, replace the
/// reference to RV with the RHS of RV. If RV is null, we resolve all possible
/// references.
void Record::resolveReferencesTo(const RecordVal *RV) {
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
if (Init *V = Values[i].getValue())
Values[i].setValue(V->resolveReferences(*this, RV));
}
}
void Record::dump() const { errs() << *this; }
raw_ostream &llvm::operator<<(raw_ostream &OS, const Record &R) {
OS << R.getName();
const std::vector<std::string> &TArgs = R.getTemplateArgs();
if (!TArgs.empty()) {
OS << "<";
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
if (i) OS << ", ";
const RecordVal *RV = R.getValue(TArgs[i]);
assert(RV && "Template argument record not found??");
RV->print(OS, false);
}
OS << ">";
}
OS << " {";
const std::vector<Record*> &SC = R.getSuperClasses();
if (!SC.empty()) {
OS << "\t//";
for (unsigned i = 0, e = SC.size(); i != e; ++i)
OS << " " << SC[i]->getName();
}
OS << "\n";
const std::vector<RecordVal> &Vals = R.getValues();
for (unsigned i = 0, e = Vals.size(); i != e; ++i)
if (Vals[i].getPrefix() && !R.isTemplateArg(Vals[i].getName()))
OS << Vals[i];
for (unsigned i = 0, e = Vals.size(); i != e; ++i)
if (!Vals[i].getPrefix() && !R.isTemplateArg(Vals[i].getName()))
OS << Vals[i];
return OS << "}\n";
}
/// getValueInit - Return the initializer for a value with the specified name,
/// or throw an exception if the field does not exist.
///
Init *Record::getValueInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (R == 0 || R->getValue() == 0)
throw "Record `" + getName() + "' does not have a field named `" +
FieldName.str() + "'!\n";
return R->getValue();
}
/// getValueAsString - This method looks up the specified field and returns its
/// value as a string, throwing an exception if the field does not exist or if
/// the value is not a string.
///
std::string Record::getValueAsString(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (R == 0 || R->getValue() == 0)
throw "Record `" + getName() + "' does not have a field named `" +
FieldName.str() + "'!\n";
if (StringInit *SI = dynamic_cast<StringInit*>(R->getValue()))
return SI->getValue();
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' does not have a string initializer!";
}
/// getValueAsBitsInit - This method looks up the specified field and returns
/// its value as a BitsInit, throwing an exception if the field does not exist
/// or if the value is not the right type.
///
BitsInit *Record::getValueAsBitsInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (R == 0 || R->getValue() == 0)
throw "Record `" + getName() + "' does not have a field named `" +
FieldName.str() + "'!\n";
if (BitsInit *BI = dynamic_cast<BitsInit*>(R->getValue()))
return BI;
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' does not have a BitsInit initializer!";
}
/// getValueAsListInit - This method looks up the specified field and returns
/// its value as a ListInit, throwing an exception if the field does not exist
/// or if the value is not the right type.
///
ListInit *Record::getValueAsListInit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (R == 0 || R->getValue() == 0)
throw "Record `" + getName() + "' does not have a field named `" +
FieldName.str() + "'!\n";
if (ListInit *LI = dynamic_cast<ListInit*>(R->getValue()))
return LI;
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' does not have a list initializer!";
}
/// getValueAsListOfDefs - This method looks up the specified field and returns
/// its value as a vector of records, throwing an exception if the field does
/// not exist or if the value is not the right type.
///
std::vector<Record*>
Record::getValueAsListOfDefs(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<Record*> Defs;
for (unsigned i = 0; i < List->getSize(); i++) {
if (DefInit *DI = dynamic_cast<DefInit*>(List->getElement(i))) {
Defs.push_back(DI->getDef());
} else {
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' list is not entirely DefInit!";
}
}
return Defs;
}
/// getValueAsInt - This method looks up the specified field and returns its
/// value as an int64_t, throwing an exception if the field does not exist or if
/// the value is not the right type.
///
int64_t Record::getValueAsInt(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (R == 0 || R->getValue() == 0)
throw "Record `" + getName() + "' does not have a field named `" +
FieldName.str() + "'!\n";
if (IntInit *II = dynamic_cast<IntInit*>(R->getValue()))
return II->getValue();
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' does not have an int initializer!";
}
/// getValueAsListOfInts - This method looks up the specified field and returns
/// its value as a vector of integers, throwing an exception if the field does
/// not exist or if the value is not the right type.
///
std::vector<int64_t>
Record::getValueAsListOfInts(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<int64_t> Ints;
for (unsigned i = 0; i < List->getSize(); i++) {
if (IntInit *II = dynamic_cast<IntInit*>(List->getElement(i))) {
Ints.push_back(II->getValue());
} else {
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' does not have a list of ints initializer!";
}
}
return Ints;
}
/// getValueAsListOfStrings - This method looks up the specified field and
/// returns its value as a vector of strings, throwing an exception if the
/// field does not exist or if the value is not the right type.
///
std::vector<std::string>
Record::getValueAsListOfStrings(StringRef FieldName) const {
ListInit *List = getValueAsListInit(FieldName);
std::vector<std::string> Strings;
for (unsigned i = 0; i < List->getSize(); i++) {
if (StringInit *II = dynamic_cast<StringInit*>(List->getElement(i))) {
Strings.push_back(II->getValue());
} else {
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' does not have a list of strings initializer!";
}
}
return Strings;
}
/// getValueAsDef - This method looks up the specified field and returns its
/// value as a Record, throwing an exception if the field does not exist or if
/// the value is not the right type.
///
Record *Record::getValueAsDef(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (R == 0 || R->getValue() == 0)
throw "Record `" + getName() + "' does not have a field named `" +
FieldName.str() + "'!\n";
if (DefInit *DI = dynamic_cast<DefInit*>(R->getValue()))
return DI->getDef();
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' does not have a def initializer!";
}
/// getValueAsBit - This method looks up the specified field and returns its
/// value as a bit, throwing an exception if the field does not exist or if
/// the value is not the right type.
///
bool Record::getValueAsBit(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (R == 0 || R->getValue() == 0)
throw "Record `" + getName() + "' does not have a field named `" +
FieldName.str() + "'!\n";
if (BitInit *BI = dynamic_cast<BitInit*>(R->getValue()))
return BI->getValue();
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' does not have a bit initializer!";
}
/// getValueAsDag - This method looks up the specified field and returns its
/// value as an Dag, throwing an exception if the field does not exist or if
/// the value is not the right type.
///
DagInit *Record::getValueAsDag(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (R == 0 || R->getValue() == 0)
throw "Record `" + getName() + "' does not have a field named `" +
FieldName.str() + "'!\n";
if (DagInit *DI = dynamic_cast<DagInit*>(R->getValue()))
return DI;
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' does not have a dag initializer!";
}
std::string Record::getValueAsCode(StringRef FieldName) const {
const RecordVal *R = getValue(FieldName);
if (R == 0 || R->getValue() == 0)
throw "Record `" + getName() + "' does not have a field named `" +
FieldName.str() + "'!\n";
if (CodeInit *CI = dynamic_cast<CodeInit*>(R->getValue()))
return CI->getValue();
throw "Record `" + getName() + "', field `" + FieldName.str() +
"' does not have a code initializer!";
}
void MultiClass::dump() const {
errs() << "Record:\n";
Rec.dump();
errs() << "Defs:\n";
for (RecordVector::const_iterator r = DefPrototypes.begin(),
rend = DefPrototypes.end();
r != rend;
++r) {
(*r)->dump();
}
}
void RecordKeeper::dump() const { errs() << *this; }
raw_ostream &llvm::operator<<(raw_ostream &OS, const RecordKeeper &RK) {
OS << "------------- Classes -----------------\n";
const std::map<std::string, Record*> &Classes = RK.getClasses();
for (std::map<std::string, Record*>::const_iterator I = Classes.begin(),
E = Classes.end(); I != E; ++I)
OS << "class " << *I->second;
OS << "------------- Defs -----------------\n";
const std::map<std::string, Record*> &Defs = RK.getDefs();
for (std::map<std::string, Record*>::const_iterator I = Defs.begin(),
E = Defs.end(); I != E; ++I)
OS << "def " << *I->second;
return OS;
}
/// getAllDerivedDefinitions - This method returns all concrete definitions
/// that derive from the specified class name. If a class with the specified
/// name does not exist, an error is printed and true is returned.
std::vector<Record*>
RecordKeeper::getAllDerivedDefinitions(const std::string &ClassName) const {
Record *Class = getClass(ClassName);
if (!Class)
throw "ERROR: Couldn't find the `" + ClassName + "' class!\n";
std::vector<Record*> Defs;
for (std::map<std::string, Record*>::const_iterator I = getDefs().begin(),
E = getDefs().end(); I != E; ++I)
if (I->second->isSubClassOf(Class))
Defs.push_back(I->second);
return Defs;
}