forked from OSchip/llvm-project
621 lines
20 KiB
C++
621 lines
20 KiB
C++
//===- MipsInstrInfo.cpp - Mips Instruction Information -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the Mips implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MipsInstrInfo.h"
|
|
#include "MCTargetDesc/MipsBaseInfo.h"
|
|
#include "MCTargetDesc/MipsMCTargetDesc.h"
|
|
#include "MipsSubtarget.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOpcodes.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <cassert>
|
|
|
|
using namespace llvm;
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "MipsGenInstrInfo.inc"
|
|
|
|
// Pin the vtable to this file.
|
|
void MipsInstrInfo::anchor() {}
|
|
|
|
MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr)
|
|
: MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP),
|
|
Subtarget(STI), UncondBrOpc(UncondBr) {}
|
|
|
|
const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) {
|
|
if (STI.inMips16Mode())
|
|
return createMips16InstrInfo(STI);
|
|
|
|
return createMipsSEInstrInfo(STI);
|
|
}
|
|
|
|
bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const {
|
|
return op.isImm() && op.getImm() == 0;
|
|
}
|
|
|
|
/// insertNoop - If data hazard condition is found insert the target nop
|
|
/// instruction.
|
|
// FIXME: This appears to be dead code.
|
|
void MipsInstrInfo::
|
|
insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
|
|
{
|
|
DebugLoc DL;
|
|
BuildMI(MBB, MI, DL, get(Mips::NOP));
|
|
}
|
|
|
|
MachineMemOperand *
|
|
MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI,
|
|
MachineMemOperand::Flags Flags) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
unsigned Align = MFI.getObjectAlignment(FI);
|
|
|
|
return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
|
|
Flags, MFI.getObjectSize(FI), Align);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Branch Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc,
|
|
MachineBasicBlock *&BB,
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch");
|
|
int NumOp = Inst->getNumExplicitOperands();
|
|
|
|
// for both int and fp branches, the last explicit operand is the
|
|
// MBB.
|
|
BB = Inst->getOperand(NumOp-1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(Opc));
|
|
|
|
for (int i = 0; i < NumOp-1; i++)
|
|
Cond.push_back(Inst->getOperand(i));
|
|
}
|
|
|
|
bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
SmallVector<MachineInstr*, 2> BranchInstrs;
|
|
BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs);
|
|
|
|
return (BT == BT_None) || (BT == BT_Indirect);
|
|
}
|
|
|
|
void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
const DebugLoc &DL,
|
|
ArrayRef<MachineOperand> Cond) const {
|
|
unsigned Opc = Cond[0].getImm();
|
|
const MCInstrDesc &MCID = get(Opc);
|
|
MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID);
|
|
|
|
for (unsigned i = 1; i < Cond.size(); ++i) {
|
|
assert((Cond[i].isImm() || Cond[i].isReg()) &&
|
|
"Cannot copy operand for conditional branch!");
|
|
MIB.add(Cond[i]);
|
|
}
|
|
MIB.addMBB(TBB);
|
|
}
|
|
|
|
unsigned MipsInstrInfo::insertBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL,
|
|
int *BytesAdded) const {
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "insertBranch must not be told to insert a fallthrough");
|
|
assert(!BytesAdded && "code size not handled");
|
|
|
|
// # of condition operands:
|
|
// Unconditional branches: 0
|
|
// Floating point branches: 1 (opc)
|
|
// Int BranchZero: 2 (opc, reg)
|
|
// Int Branch: 3 (opc, reg0, reg1)
|
|
assert((Cond.size() <= 3) &&
|
|
"# of Mips branch conditions must be <= 3!");
|
|
|
|
// Two-way Conditional branch.
|
|
if (FBB) {
|
|
BuildCondBr(MBB, TBB, DL, Cond);
|
|
BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB);
|
|
return 2;
|
|
}
|
|
|
|
// One way branch.
|
|
// Unconditional branch.
|
|
if (Cond.empty())
|
|
BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB);
|
|
else // Conditional branch.
|
|
BuildCondBr(MBB, TBB, DL, Cond);
|
|
return 1;
|
|
}
|
|
|
|
unsigned MipsInstrInfo::removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved) const {
|
|
assert(!BytesRemoved && "code size not handled");
|
|
|
|
MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
|
|
unsigned removed;
|
|
|
|
// Skip all the debug instructions.
|
|
while (I != REnd && I->isDebugValue())
|
|
++I;
|
|
|
|
if (I == REnd)
|
|
return 0;
|
|
|
|
MachineBasicBlock::iterator FirstBr = ++I.getReverse();
|
|
|
|
// Up to 2 branches are removed.
|
|
// Note that indirect branches are not removed.
|
|
for (removed = 0; I != REnd && removed < 2; ++I, ++removed)
|
|
if (!getAnalyzableBrOpc(I->getOpcode()))
|
|
break;
|
|
|
|
MBB.erase((--I).getReverse(), FirstBr);
|
|
|
|
return removed;
|
|
}
|
|
|
|
/// reverseBranchCondition - Return the inverse opcode of the
|
|
/// specified Branch instruction.
|
|
bool MipsInstrInfo::reverseBranchCondition(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert( (Cond.size() && Cond.size() <= 3) &&
|
|
"Invalid Mips branch condition!");
|
|
Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm()));
|
|
return false;
|
|
}
|
|
|
|
MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch(
|
|
MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond, bool AllowModify,
|
|
SmallVectorImpl<MachineInstr *> &BranchInstrs) const {
|
|
MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
|
|
|
|
// Skip all the debug instructions.
|
|
while (I != REnd && I->isDebugValue())
|
|
++I;
|
|
|
|
if (I == REnd || !isUnpredicatedTerminator(*I)) {
|
|
// This block ends with no branches (it just falls through to its succ).
|
|
// Leave TBB/FBB null.
|
|
TBB = FBB = nullptr;
|
|
return BT_NoBranch;
|
|
}
|
|
|
|
MachineInstr *LastInst = &*I;
|
|
unsigned LastOpc = LastInst->getOpcode();
|
|
BranchInstrs.push_back(LastInst);
|
|
|
|
// Not an analyzable branch (e.g., indirect jump).
|
|
if (!getAnalyzableBrOpc(LastOpc))
|
|
return LastInst->isIndirectBranch() ? BT_Indirect : BT_None;
|
|
|
|
// Get the second to last instruction in the block.
|
|
unsigned SecondLastOpc = 0;
|
|
MachineInstr *SecondLastInst = nullptr;
|
|
|
|
if (++I != REnd) {
|
|
SecondLastInst = &*I;
|
|
SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode());
|
|
|
|
// Not an analyzable branch (must be an indirect jump).
|
|
if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc)
|
|
return BT_None;
|
|
}
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
if (!SecondLastOpc) {
|
|
// Unconditional branch.
|
|
if (LastInst->isUnconditionalBranch()) {
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return BT_Uncond;
|
|
}
|
|
|
|
// Conditional branch
|
|
AnalyzeCondBr(LastInst, LastOpc, TBB, Cond);
|
|
return BT_Cond;
|
|
}
|
|
|
|
// If we reached here, there are two branches.
|
|
// If there are three terminators, we don't know what sort of block this is.
|
|
if (++I != REnd && isUnpredicatedTerminator(*I))
|
|
return BT_None;
|
|
|
|
BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst);
|
|
|
|
// If second to last instruction is an unconditional branch,
|
|
// analyze it and remove the last instruction.
|
|
if (SecondLastInst->isUnconditionalBranch()) {
|
|
// Return if the last instruction cannot be removed.
|
|
if (!AllowModify)
|
|
return BT_None;
|
|
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
LastInst->eraseFromParent();
|
|
BranchInstrs.pop_back();
|
|
return BT_Uncond;
|
|
}
|
|
|
|
// Conditional branch followed by an unconditional branch.
|
|
// The last one must be unconditional.
|
|
if (!LastInst->isUnconditionalBranch())
|
|
return BT_None;
|
|
|
|
AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond);
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
|
|
return BT_CondUncond;
|
|
}
|
|
|
|
/// Return the corresponding compact (no delay slot) form of a branch.
|
|
unsigned MipsInstrInfo::getEquivalentCompactForm(
|
|
const MachineBasicBlock::iterator I) const {
|
|
unsigned Opcode = I->getOpcode();
|
|
bool canUseShortMicroMipsCTI = false;
|
|
|
|
if (Subtarget.inMicroMipsMode()) {
|
|
switch (Opcode) {
|
|
case Mips::BNE:
|
|
case Mips::BNE_MM:
|
|
case Mips::BEQ:
|
|
case Mips::BEQ_MM:
|
|
// microMIPS has NE,EQ branches that do not have delay slots provided one
|
|
// of the operands is zero.
|
|
if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg())
|
|
canUseShortMicroMipsCTI = true;
|
|
break;
|
|
// For microMIPS the PseudoReturn and PseudoIndirectBranch are always
|
|
// expanded to JR_MM, so they can be replaced with JRC16_MM.
|
|
case Mips::JR:
|
|
case Mips::PseudoReturn:
|
|
case Mips::PseudoIndirectBranch:
|
|
case Mips::TAILCALLREG:
|
|
canUseShortMicroMipsCTI = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// MIPSR6 forbids both operands being the zero register.
|
|
if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) &&
|
|
(I->getOperand(0).isReg() &&
|
|
(I->getOperand(0).getReg() == Mips::ZERO ||
|
|
I->getOperand(0).getReg() == Mips::ZERO_64)) &&
|
|
(I->getOperand(1).isReg() &&
|
|
(I->getOperand(1).getReg() == Mips::ZERO ||
|
|
I->getOperand(1).getReg() == Mips::ZERO_64)))
|
|
return 0;
|
|
|
|
if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) {
|
|
switch (Opcode) {
|
|
case Mips::B:
|
|
return Mips::BC;
|
|
case Mips::BAL:
|
|
return Mips::BALC;
|
|
case Mips::BEQ:
|
|
case Mips::BEQ_MM:
|
|
if (canUseShortMicroMipsCTI)
|
|
return Mips::BEQZC_MM;
|
|
else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
|
|
return 0;
|
|
return Mips::BEQC;
|
|
case Mips::BNE:
|
|
case Mips::BNE_MM:
|
|
if (canUseShortMicroMipsCTI)
|
|
return Mips::BNEZC_MM;
|
|
else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
|
|
return 0;
|
|
return Mips::BNEC;
|
|
case Mips::BGE:
|
|
if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
|
|
return 0;
|
|
return Mips::BGEC;
|
|
case Mips::BGEU:
|
|
if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
|
|
return 0;
|
|
return Mips::BGEUC;
|
|
case Mips::BGEZ:
|
|
return Mips::BGEZC;
|
|
case Mips::BGTZ:
|
|
return Mips::BGTZC;
|
|
case Mips::BLEZ:
|
|
return Mips::BLEZC;
|
|
case Mips::BLT:
|
|
if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
|
|
return 0;
|
|
return Mips::BLTC;
|
|
case Mips::BLTU:
|
|
if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
|
|
return 0;
|
|
return Mips::BLTUC;
|
|
case Mips::BLTZ:
|
|
return Mips::BLTZC;
|
|
case Mips::BEQ64:
|
|
if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
|
|
return 0;
|
|
return Mips::BEQC64;
|
|
case Mips::BNE64:
|
|
if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
|
|
return 0;
|
|
return Mips::BNEC64;
|
|
case Mips::BGTZ64:
|
|
return Mips::BGTZC64;
|
|
case Mips::BGEZ64:
|
|
return Mips::BGEZC64;
|
|
case Mips::BLTZ64:
|
|
return Mips::BLTZC64;
|
|
case Mips::BLEZ64:
|
|
return Mips::BLEZC64;
|
|
// For MIPSR6, the instruction 'jic' can be used for these cases. Some
|
|
// tools will accept 'jrc reg' as an alias for 'jic 0, $reg'.
|
|
case Mips::JR:
|
|
case Mips::PseudoReturn:
|
|
case Mips::PseudoIndirectBranch:
|
|
case Mips::TAILCALLREG:
|
|
if (canUseShortMicroMipsCTI)
|
|
return Mips::JRC16_MM;
|
|
return Mips::JIC;
|
|
case Mips::JALRPseudo:
|
|
return Mips::JIALC;
|
|
case Mips::JR64:
|
|
case Mips::PseudoReturn64:
|
|
case Mips::PseudoIndirectBranch64:
|
|
case Mips::TAILCALLREG64:
|
|
return Mips::JIC64;
|
|
case Mips::JALR64Pseudo:
|
|
return Mips::JIALC64;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// Predicate for distingushing between control transfer instructions and all
|
|
/// other instructions for handling forbidden slots. Consider inline assembly
|
|
/// as unsafe as well.
|
|
bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const {
|
|
if (MI.isInlineAsm())
|
|
return false;
|
|
|
|
return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0;
|
|
}
|
|
|
|
/// Predicate for distingushing instructions that have forbidden slots.
|
|
bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const {
|
|
return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0;
|
|
}
|
|
|
|
/// Return the number of bytes of code the specified instruction may be.
|
|
unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return MI.getDesc().getSize();
|
|
case TargetOpcode::INLINEASM: { // Inline Asm: Variable size.
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const char *AsmStr = MI.getOperand(0).getSymbolName();
|
|
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
|
|
}
|
|
case Mips::CONSTPOOL_ENTRY:
|
|
// If this machine instr is a constant pool entry, its size is recorded as
|
|
// operand #2.
|
|
return MI.getOperand(2).getImm();
|
|
}
|
|
}
|
|
|
|
MachineInstrBuilder
|
|
MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc,
|
|
MachineBasicBlock::iterator I) const {
|
|
MachineInstrBuilder MIB;
|
|
|
|
// Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest
|
|
// Pick the zero form of the branch for readable assembly and for greater
|
|
// branch distance in non-microMIPS mode.
|
|
// Additional MIPSR6 does not permit the use of register $zero for compact
|
|
// branches.
|
|
// FIXME: Certain atomic sequences on mips64 generate 32bit references to
|
|
// Mips::ZERO, which is incorrect. This test should be updated to use
|
|
// Subtarget.getABI().GetZeroReg() when those atomic sequences and others
|
|
// are fixed.
|
|
int ZeroOperandPosition = -1;
|
|
bool BranchWithZeroOperand = false;
|
|
if (I->isBranch() && !I->isPseudo()) {
|
|
auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo();
|
|
ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, false, TRI);
|
|
BranchWithZeroOperand = ZeroOperandPosition != -1;
|
|
}
|
|
|
|
if (BranchWithZeroOperand) {
|
|
switch (NewOpc) {
|
|
case Mips::BEQC:
|
|
NewOpc = Mips::BEQZC;
|
|
break;
|
|
case Mips::BNEC:
|
|
NewOpc = Mips::BNEZC;
|
|
break;
|
|
case Mips::BGEC:
|
|
NewOpc = Mips::BGEZC;
|
|
break;
|
|
case Mips::BLTC:
|
|
NewOpc = Mips::BLTZC;
|
|
break;
|
|
case Mips::BEQC64:
|
|
NewOpc = Mips::BEQZC64;
|
|
break;
|
|
case Mips::BNEC64:
|
|
NewOpc = Mips::BNEZC64;
|
|
break;
|
|
}
|
|
}
|
|
|
|
MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc));
|
|
|
|
// For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an
|
|
// immediate 0 as an operand and requires the removal of it's %RA<imp-def>
|
|
// implicit operand as copying the implicit operations of the instructio we're
|
|
// looking at will give us the correct flags.
|
|
if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 ||
|
|
NewOpc == Mips::JIALC64) {
|
|
|
|
if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64)
|
|
MIB->RemoveOperand(0);
|
|
|
|
for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
|
|
MIB.add(I->getOperand(J));
|
|
}
|
|
|
|
MIB.addImm(0);
|
|
|
|
} else {
|
|
for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
|
|
if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J)
|
|
continue;
|
|
|
|
MIB.add(I->getOperand(J));
|
|
}
|
|
}
|
|
|
|
MIB.copyImplicitOps(*I);
|
|
|
|
MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end());
|
|
return MIB;
|
|
}
|
|
|
|
bool MipsInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const {
|
|
assert(!MI.isBundle() &&
|
|
"TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
|
|
|
|
const MCInstrDesc &MCID = MI.getDesc();
|
|
if (!MCID.isCommutable())
|
|
return false;
|
|
|
|
switch (MI.getOpcode()) {
|
|
case Mips::DPADD_U_H:
|
|
case Mips::DPADD_U_W:
|
|
case Mips::DPADD_U_D:
|
|
case Mips::DPADD_S_H:
|
|
case Mips::DPADD_S_W:
|
|
case Mips::DPADD_S_D:
|
|
// The first operand is both input and output, so it should not commute
|
|
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3))
|
|
return false;
|
|
|
|
if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
|
|
return false;
|
|
return true;
|
|
}
|
|
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
|
|
}
|
|
|
|
// ins, ext, dext*, dins have the following constraints:
|
|
// 0 <= pos < X
|
|
// 0 < size <= X
|
|
// 0 < pos+size <= x
|
|
//
|
|
// dinsm and dinsm have the following contraints:
|
|
// 0 <= pos < X
|
|
// 0 <= size <= X
|
|
// 0 < pos+size <= x
|
|
|
|
static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo,
|
|
const int64_t PosLow, const int64_t PosHigh,
|
|
const int64_t SizeLow,
|
|
const int64_t SizeHigh,
|
|
const int64_t BothLow,
|
|
const int64_t BothHigh) {
|
|
MachineOperand MOPos = MI.getOperand(2);
|
|
if (!MOPos.isImm()) {
|
|
ErrInfo = "Position is not an immediate!";
|
|
return false;
|
|
}
|
|
int64_t Pos = MOPos.getImm();
|
|
if (!((PosLow <= Pos) && (Pos < PosHigh))) {
|
|
ErrInfo = "Position operand is out of range!";
|
|
return false;
|
|
}
|
|
|
|
MachineOperand MOSize = MI.getOperand(3);
|
|
if (!MOSize.isImm()) {
|
|
ErrInfo = "Size operand is not an immediate!";
|
|
return false;
|
|
}
|
|
int64_t Size = MOSize.getImm();
|
|
if (!((SizeLow < Size) && (Size <= SizeHigh))) {
|
|
ErrInfo = "Size operand is out of range!";
|
|
return false;
|
|
}
|
|
|
|
if (!((BothLow < (Pos + Size)) && ((Pos + Size) <= BothHigh))) {
|
|
ErrInfo = "Position + Size is out of range!";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Perform target specific instruction verification.
|
|
bool MipsInstrInfo::verifyInstruction(const MachineInstr &MI,
|
|
StringRef &ErrInfo) const {
|
|
// Verify that ins and ext instructions are well formed.
|
|
switch (MI.getOpcode()) {
|
|
case Mips::EXT:
|
|
case Mips::EXT_MM:
|
|
case Mips::INS:
|
|
case Mips::INS_MM:
|
|
case Mips::DINS:
|
|
case Mips::DINS_MM64R6:
|
|
return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 32);
|
|
case Mips::DINSM:
|
|
case Mips::DINSM_MM64R6:
|
|
// The ISA spec has a subtle difference here in that it says:
|
|
// 2 <= size <= 64 for 'dinsm', so we change the bounds so that it
|
|
// is in line with the rest of instructions.
|
|
return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 1, 64, 32, 64);
|
|
case Mips::DINSU:
|
|
case Mips::DINSU_MM64R6:
|
|
// The ISA spec has a subtle difference here in that it says:
|
|
// 2 <= size <= 64 for 'dinsm', so we change the bounds so that it
|
|
// is in line with the rest of instructions.
|
|
return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 1, 32, 32, 64);
|
|
case Mips::DEXT:
|
|
case Mips::DEXT_MM64R6:
|
|
return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 63);
|
|
case Mips::DEXTM:
|
|
case Mips::DEXTM_MM64R6:
|
|
return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 32, 64, 32, 64);
|
|
case Mips::DEXTU:
|
|
case Mips::DEXTU_MM64R6:
|
|
return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64);
|
|
default:
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|