llvm-project/llvm/lib/Target/AMDGPU/GCNRegPressure.cpp

504 lines
16 KiB
C++

//===- GCNRegPressure.cpp -------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "GCNRegPressure.h"
#include "AMDGPUSubtarget.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "machine-scheduler"
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
void llvm::printLivesAt(SlotIndex SI,
const LiveIntervals &LIS,
const MachineRegisterInfo &MRI) {
dbgs() << "Live regs at " << SI << ": "
<< *LIS.getInstructionFromIndex(SI);
unsigned Num = 0;
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
const unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
if (!LIS.hasInterval(Reg))
continue;
const auto &LI = LIS.getInterval(Reg);
if (LI.hasSubRanges()) {
bool firstTime = true;
for (const auto &S : LI.subranges()) {
if (!S.liveAt(SI)) continue;
if (firstTime) {
dbgs() << " " << PrintReg(Reg, MRI.getTargetRegisterInfo())
<< '\n';
firstTime = false;
}
dbgs() << " " << S << '\n';
++Num;
}
} else if (LI.liveAt(SI)) {
dbgs() << " " << LI << '\n';
++Num;
}
}
if (!Num) dbgs() << " <none>\n";
}
static bool isEqual(const GCNRPTracker::LiveRegSet &S1,
const GCNRPTracker::LiveRegSet &S2) {
if (S1.size() != S2.size())
return false;
for (const auto &P : S1) {
auto I = S2.find(P.first);
if (I == S2.end() || I->second != P.second)
return false;
}
return true;
}
#endif
///////////////////////////////////////////////////////////////////////////////
// GCNRegPressure
unsigned GCNRegPressure::getRegKind(unsigned Reg,
const MachineRegisterInfo &MRI) {
assert(TargetRegisterInfo::isVirtualRegister(Reg));
const auto RC = MRI.getRegClass(Reg);
auto STI = static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
return STI->isSGPRClass(RC) ?
(STI->getRegSizeInBits(*RC) == 32 ? SGPR32 : SGPR_TUPLE) :
(STI->getRegSizeInBits(*RC) == 32 ? VGPR32 : VGPR_TUPLE);
}
void GCNRegPressure::inc(unsigned Reg,
LaneBitmask PrevMask,
LaneBitmask NewMask,
const MachineRegisterInfo &MRI) {
if (NewMask == PrevMask)
return;
int Sign = 1;
if (NewMask < PrevMask) {
std::swap(NewMask, PrevMask);
Sign = -1;
}
#ifndef NDEBUG
const auto MaxMask = MRI.getMaxLaneMaskForVReg(Reg);
#endif
switch (auto Kind = getRegKind(Reg, MRI)) {
case SGPR32:
case VGPR32:
assert(PrevMask.none() && NewMask == MaxMask);
Value[Kind] += Sign;
break;
case SGPR_TUPLE:
case VGPR_TUPLE:
assert(NewMask < MaxMask || NewMask == MaxMask);
assert(PrevMask < NewMask);
Value[Kind == SGPR_TUPLE ? SGPR32 : VGPR32] +=
Sign * (~PrevMask & NewMask).getNumLanes();
if (PrevMask.none()) {
assert(NewMask.any());
Value[Kind] += Sign * MRI.getPressureSets(Reg).getWeight();
}
break;
default: llvm_unreachable("Unknown register kind");
}
}
bool GCNRegPressure::less(const SISubtarget &ST,
const GCNRegPressure& O,
unsigned MaxOccupancy) const {
const auto SGPROcc = std::min(MaxOccupancy,
ST.getOccupancyWithNumSGPRs(getSGPRNum()));
const auto VGPROcc = std::min(MaxOccupancy,
ST.getOccupancyWithNumVGPRs(getVGPRNum()));
const auto OtherSGPROcc = std::min(MaxOccupancy,
ST.getOccupancyWithNumSGPRs(O.getSGPRNum()));
const auto OtherVGPROcc = std::min(MaxOccupancy,
ST.getOccupancyWithNumVGPRs(O.getVGPRNum()));
const auto Occ = std::min(SGPROcc, VGPROcc);
const auto OtherOcc = std::min(OtherSGPROcc, OtherVGPROcc);
if (Occ != OtherOcc)
return Occ > OtherOcc;
bool SGPRImportant = SGPROcc < VGPROcc;
const bool OtherSGPRImportant = OtherSGPROcc < OtherVGPROcc;
// if both pressures disagree on what is more important compare vgprs
if (SGPRImportant != OtherSGPRImportant) {
SGPRImportant = false;
}
// compare large regs pressure
bool SGPRFirst = SGPRImportant;
for (int I = 2; I > 0; --I, SGPRFirst = !SGPRFirst) {
if (SGPRFirst) {
auto SW = getSGPRTuplesWeight();
auto OtherSW = O.getSGPRTuplesWeight();
if (SW != OtherSW)
return SW < OtherSW;
} else {
auto VW = getVGPRTuplesWeight();
auto OtherVW = O.getVGPRTuplesWeight();
if (VW != OtherVW)
return VW < OtherVW;
}
}
return SGPRImportant ? (getSGPRNum() < O.getSGPRNum()):
(getVGPRNum() < O.getVGPRNum());
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
void GCNRegPressure::print(raw_ostream &OS, const SISubtarget *ST) const {
OS << "VGPRs: " << getVGPRNum();
if (ST) OS << "(O" << ST->getOccupancyWithNumVGPRs(getVGPRNum()) << ')';
OS << ", SGPRs: " << getSGPRNum();
if (ST) OS << "(O" << ST->getOccupancyWithNumSGPRs(getSGPRNum()) << ')';
OS << ", LVGPR WT: " << getVGPRTuplesWeight()
<< ", LSGPR WT: " << getSGPRTuplesWeight();
if (ST) OS << " -> Occ: " << getOccupancy(*ST);
OS << '\n';
}
#endif
static LaneBitmask getDefRegMask(const MachineOperand &MO,
const MachineRegisterInfo &MRI) {
assert(MO.isDef() && MO.isReg() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg()));
// We don't rely on read-undef flag because in case of tentative schedule
// tracking it isn't set correctly yet. This works correctly however since
// use mask has been tracked before using LIS.
return MO.getSubReg() == 0 ?
MRI.getMaxLaneMaskForVReg(MO.getReg()) :
MRI.getTargetRegisterInfo()->getSubRegIndexLaneMask(MO.getSubReg());
}
static LaneBitmask getUsedRegMask(const MachineOperand &MO,
const MachineRegisterInfo &MRI,
const LiveIntervals &LIS) {
assert(MO.isUse() && MO.isReg() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg()));
if (auto SubReg = MO.getSubReg())
return MRI.getTargetRegisterInfo()->getSubRegIndexLaneMask(SubReg);
auto MaxMask = MRI.getMaxLaneMaskForVReg(MO.getReg());
if (MaxMask == LaneBitmask::getLane(0)) // cannot have subregs
return MaxMask;
// For a tentative schedule LIS isn't updated yet but livemask should remain
// the same on any schedule. Subreg defs can be reordered but they all must
// dominate uses anyway.
auto SI = LIS.getInstructionIndex(*MO.getParent()).getBaseIndex();
return getLiveLaneMask(MO.getReg(), SI, LIS, MRI);
}
static SmallVector<RegisterMaskPair, 8>
collectVirtualRegUses(const MachineInstr &MI, const LiveIntervals &LIS,
const MachineRegisterInfo &MRI) {
SmallVector<RegisterMaskPair, 8> Res;
for (const auto &MO : MI.operands()) {
if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
continue;
if (!MO.isUse() || !MO.readsReg())
continue;
auto const UsedMask = getUsedRegMask(MO, MRI, LIS);
auto Reg = MO.getReg();
auto I = std::find_if(Res.begin(), Res.end(), [Reg](const RegisterMaskPair &RM) {
return RM.RegUnit == Reg;
});
if (I != Res.end())
I->LaneMask |= UsedMask;
else
Res.push_back(RegisterMaskPair(Reg, UsedMask));
}
return Res;
}
///////////////////////////////////////////////////////////////////////////////
// GCNRPTracker
LaneBitmask llvm::getLiveLaneMask(unsigned Reg,
SlotIndex SI,
const LiveIntervals &LIS,
const MachineRegisterInfo &MRI) {
LaneBitmask LiveMask;
const auto &LI = LIS.getInterval(Reg);
if (LI.hasSubRanges()) {
for (const auto &S : LI.subranges())
if (S.liveAt(SI)) {
LiveMask |= S.LaneMask;
assert(LiveMask < MRI.getMaxLaneMaskForVReg(Reg) ||
LiveMask == MRI.getMaxLaneMaskForVReg(Reg));
}
} else if (LI.liveAt(SI)) {
LiveMask = MRI.getMaxLaneMaskForVReg(Reg);
}
return LiveMask;
}
GCNRPTracker::LiveRegSet llvm::getLiveRegs(SlotIndex SI,
const LiveIntervals &LIS,
const MachineRegisterInfo &MRI) {
GCNRPTracker::LiveRegSet LiveRegs;
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
auto Reg = TargetRegisterInfo::index2VirtReg(I);
if (!LIS.hasInterval(Reg))
continue;
auto LiveMask = getLiveLaneMask(Reg, SI, LIS, MRI);
if (LiveMask.any())
LiveRegs[Reg] = LiveMask;
}
return LiveRegs;
}
void GCNUpwardRPTracker::reset(const MachineInstr &MI,
const LiveRegSet *LiveRegsCopy) {
MRI = &MI.getParent()->getParent()->getRegInfo();
if (LiveRegsCopy) {
if (&LiveRegs != LiveRegsCopy)
LiveRegs = *LiveRegsCopy;
} else {
LiveRegs = getLiveRegsAfter(MI, LIS);
}
MaxPressure = CurPressure = getRegPressure(*MRI, LiveRegs);
}
void GCNUpwardRPTracker::recede(const MachineInstr &MI) {
assert(MRI && "call reset first");
LastTrackedMI = &MI;
if (MI.isDebugValue())
return;
auto const RegUses = collectVirtualRegUses(MI, LIS, *MRI);
// calc pressure at the MI (defs + uses)
auto AtMIPressure = CurPressure;
for (const auto &U : RegUses) {
auto LiveMask = LiveRegs[U.RegUnit];
AtMIPressure.inc(U.RegUnit, LiveMask, LiveMask | U.LaneMask, *MRI);
}
// update max pressure
MaxPressure = max(AtMIPressure, MaxPressure);
for (const auto &MO : MI.defs()) {
if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()) ||
MO.isDead())
continue;
auto Reg = MO.getReg();
auto I = LiveRegs.find(Reg);
if (I == LiveRegs.end())
continue;
auto &LiveMask = I->second;
auto PrevMask = LiveMask;
LiveMask &= ~getDefRegMask(MO, *MRI);
CurPressure.inc(Reg, PrevMask, LiveMask, *MRI);
if (LiveMask.none())
LiveRegs.erase(I);
}
for (const auto &U : RegUses) {
auto &LiveMask = LiveRegs[U.RegUnit];
auto PrevMask = LiveMask;
LiveMask |= U.LaneMask;
CurPressure.inc(U.RegUnit, PrevMask, LiveMask, *MRI);
}
assert(CurPressure == getRegPressure(*MRI, LiveRegs));
}
bool GCNDownwardRPTracker::reset(const MachineInstr &MI,
const LiveRegSet *LiveRegsCopy) {
MRI = &MI.getParent()->getParent()->getRegInfo();
LastTrackedMI = nullptr;
MBBEnd = MI.getParent()->end();
NextMI = &MI;
NextMI = skipDebugInstructionsForward(NextMI, MBBEnd);
if (NextMI == MBBEnd)
return false;
if (LiveRegsCopy) {
if (&LiveRegs != LiveRegsCopy)
LiveRegs = *LiveRegsCopy;
} else {
LiveRegs = getLiveRegsBefore(*NextMI, LIS);
}
MaxPressure = CurPressure = getRegPressure(*MRI, LiveRegs);
return true;
}
bool GCNDownwardRPTracker::advanceBeforeNext() {
assert(MRI && "call reset first");
NextMI = skipDebugInstructionsForward(NextMI, MBBEnd);
if (NextMI == MBBEnd)
return false;
SlotIndex SI = LIS.getInstructionIndex(*NextMI).getBaseIndex();
assert(SI.isValid());
// Remove dead registers or mask bits.
for (auto &It : LiveRegs) {
const LiveInterval &LI = LIS.getInterval(It.first);
if (LI.hasSubRanges()) {
for (const auto &S : LI.subranges()) {
if (!S.liveAt(SI)) {
auto PrevMask = It.second;
It.second &= ~S.LaneMask;
CurPressure.inc(It.first, PrevMask, It.second, *MRI);
}
}
} else if (!LI.liveAt(SI)) {
auto PrevMask = It.second;
It.second = LaneBitmask::getNone();
CurPressure.inc(It.first, PrevMask, It.second, *MRI);
}
if (It.second.none())
LiveRegs.erase(It.first);
}
MaxPressure = max(MaxPressure, CurPressure);
return true;
}
void GCNDownwardRPTracker::advanceToNext() {
LastTrackedMI = &*NextMI++;
// Add new registers or mask bits.
for (const auto &MO : LastTrackedMI->defs()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
auto &LiveMask = LiveRegs[Reg];
auto PrevMask = LiveMask;
LiveMask |= getDefRegMask(MO, *MRI);
CurPressure.inc(Reg, PrevMask, LiveMask, *MRI);
}
MaxPressure = max(MaxPressure, CurPressure);
}
bool GCNDownwardRPTracker::advance() {
// If we have just called reset live set is actual.
if ((NextMI == MBBEnd) || (LastTrackedMI && !advanceBeforeNext()))
return false;
advanceToNext();
return true;
}
bool GCNDownwardRPTracker::advance(MachineBasicBlock::const_iterator End) {
while (NextMI != End)
if (!advance()) return false;
return true;
}
bool GCNDownwardRPTracker::advance(MachineBasicBlock::const_iterator Begin,
MachineBasicBlock::const_iterator End,
const LiveRegSet *LiveRegsCopy) {
reset(*Begin, LiveRegsCopy);
return advance(End);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
static void reportMismatch(const GCNRPTracker::LiveRegSet &LISLR,
const GCNRPTracker::LiveRegSet &TrackedLR,
const TargetRegisterInfo *TRI) {
for (auto const &P : TrackedLR) {
auto I = LISLR.find(P.first);
if (I == LISLR.end()) {
dbgs() << " " << PrintReg(P.first, TRI)
<< ":L" << PrintLaneMask(P.second)
<< " isn't found in LIS reported set\n";
}
else if (I->second != P.second) {
dbgs() << " " << PrintReg(P.first, TRI)
<< " masks doesn't match: LIS reported "
<< PrintLaneMask(I->second)
<< ", tracked "
<< PrintLaneMask(P.second)
<< '\n';
}
}
for (auto const &P : LISLR) {
auto I = TrackedLR.find(P.first);
if (I == TrackedLR.end()) {
dbgs() << " " << PrintReg(P.first, TRI)
<< ":L" << PrintLaneMask(P.second)
<< " isn't found in tracked set\n";
}
}
}
bool GCNUpwardRPTracker::isValid() const {
const auto &SI = LIS.getInstructionIndex(*LastTrackedMI).getBaseIndex();
const auto LISLR = llvm::getLiveRegs(SI, LIS, *MRI);
const auto &TrackedLR = LiveRegs;
if (!isEqual(LISLR, TrackedLR)) {
dbgs() << "\nGCNUpwardRPTracker error: Tracked and"
" LIS reported livesets mismatch:\n";
printLivesAt(SI, LIS, *MRI);
reportMismatch(LISLR, TrackedLR, MRI->getTargetRegisterInfo());
return false;
}
auto LISPressure = getRegPressure(*MRI, LISLR);
if (LISPressure != CurPressure) {
dbgs() << "GCNUpwardRPTracker error: Pressure sets different\nTracked: ";
CurPressure.print(dbgs());
dbgs() << "LIS rpt: ";
LISPressure.print(dbgs());
return false;
}
return true;
}
void GCNRPTracker::printLiveRegs(raw_ostream &OS, const LiveRegSet& LiveRegs,
const MachineRegisterInfo &MRI) {
const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
auto It = LiveRegs.find(Reg);
if (It != LiveRegs.end() && It->second.any())
OS << ' ' << PrintVRegOrUnit(Reg, TRI) << ':'
<< PrintLaneMask(It->second);
}
OS << '\n';
}
#endif