forked from OSchip/llvm-project
1808 lines
67 KiB
C++
1808 lines
67 KiB
C++
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the interface to tear out a code region, such as an
|
|
// individual loop or a parallel section, into a new function, replacing it with
|
|
// a call to the new function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/CodeExtractor.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/BlockFrequency.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
using ProfileCount = Function::ProfileCount;
|
|
|
|
#define DEBUG_TYPE "code-extractor"
|
|
|
|
// Provide a command-line option to aggregate function arguments into a struct
|
|
// for functions produced by the code extractor. This is useful when converting
|
|
// extracted functions to pthread-based code, as only one argument (void*) can
|
|
// be passed in to pthread_create().
|
|
static cl::opt<bool>
|
|
AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
|
|
cl::desc("Aggregate arguments to code-extracted functions"));
|
|
|
|
/// Test whether a block is valid for extraction.
|
|
static bool isBlockValidForExtraction(const BasicBlock &BB,
|
|
const SetVector<BasicBlock *> &Result,
|
|
bool AllowVarArgs, bool AllowAlloca) {
|
|
// taking the address of a basic block moved to another function is illegal
|
|
if (BB.hasAddressTaken())
|
|
return false;
|
|
|
|
// don't hoist code that uses another basicblock address, as it's likely to
|
|
// lead to unexpected behavior, like cross-function jumps
|
|
SmallPtrSet<User const *, 16> Visited;
|
|
SmallVector<User const *, 16> ToVisit;
|
|
|
|
for (Instruction const &Inst : BB)
|
|
ToVisit.push_back(&Inst);
|
|
|
|
while (!ToVisit.empty()) {
|
|
User const *Curr = ToVisit.pop_back_val();
|
|
if (!Visited.insert(Curr).second)
|
|
continue;
|
|
if (isa<BlockAddress const>(Curr))
|
|
return false; // even a reference to self is likely to be not compatible
|
|
|
|
if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
|
|
continue;
|
|
|
|
for (auto const &U : Curr->operands()) {
|
|
if (auto *UU = dyn_cast<User>(U))
|
|
ToVisit.push_back(UU);
|
|
}
|
|
}
|
|
|
|
// If explicitly requested, allow vastart and alloca. For invoke instructions
|
|
// verify that extraction is valid.
|
|
for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
|
|
if (isa<AllocaInst>(I)) {
|
|
if (!AllowAlloca)
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
if (const auto *II = dyn_cast<InvokeInst>(I)) {
|
|
// Unwind destination (either a landingpad, catchswitch, or cleanuppad)
|
|
// must be a part of the subgraph which is being extracted.
|
|
if (auto *UBB = II->getUnwindDest())
|
|
if (!Result.count(UBB))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// All catch handlers of a catchswitch instruction as well as the unwind
|
|
// destination must be in the subgraph.
|
|
if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
|
|
if (auto *UBB = CSI->getUnwindDest())
|
|
if (!Result.count(UBB))
|
|
return false;
|
|
for (auto *HBB : CSI->handlers())
|
|
if (!Result.count(const_cast<BasicBlock*>(HBB)))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// Make sure that entire catch handler is within subgraph. It is sufficient
|
|
// to check that catch return's block is in the list.
|
|
if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
|
|
for (const auto *U : CPI->users())
|
|
if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
|
|
if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// And do similar checks for cleanup handler - the entire handler must be
|
|
// in subgraph which is going to be extracted. For cleanup return should
|
|
// additionally check that the unwind destination is also in the subgraph.
|
|
if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
|
|
for (const auto *U : CPI->users())
|
|
if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
|
|
if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
|
|
return false;
|
|
continue;
|
|
}
|
|
if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
|
|
if (auto *UBB = CRI->getUnwindDest())
|
|
if (!Result.count(UBB))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
if (const Function *F = CI->getCalledFunction()) {
|
|
auto IID = F->getIntrinsicID();
|
|
if (IID == Intrinsic::vastart) {
|
|
if (AllowVarArgs)
|
|
continue;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Currently, we miscompile outlined copies of eh_typid_for. There are
|
|
// proposals for fixing this in llvm.org/PR39545.
|
|
if (IID == Intrinsic::eh_typeid_for)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Build a set of blocks to extract if the input blocks are viable.
|
|
static SetVector<BasicBlock *>
|
|
buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
|
|
bool AllowVarArgs, bool AllowAlloca) {
|
|
assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
|
|
SetVector<BasicBlock *> Result;
|
|
|
|
// Loop over the blocks, adding them to our set-vector, and aborting with an
|
|
// empty set if we encounter invalid blocks.
|
|
for (BasicBlock *BB : BBs) {
|
|
// If this block is dead, don't process it.
|
|
if (DT && !DT->isReachableFromEntry(BB))
|
|
continue;
|
|
|
|
if (!Result.insert(BB))
|
|
llvm_unreachable("Repeated basic blocks in extraction input");
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
|
|
<< '\n');
|
|
|
|
for (auto *BB : Result) {
|
|
if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
|
|
return {};
|
|
|
|
// Make sure that the first block is not a landing pad.
|
|
if (BB == Result.front()) {
|
|
if (BB->isEHPad()) {
|
|
LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
|
|
return {};
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// All blocks other than the first must not have predecessors outside of
|
|
// the subgraph which is being extracted.
|
|
for (auto *PBB : predecessors(BB))
|
|
if (!Result.count(PBB)) {
|
|
LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
|
|
"outside the region except for the first block!\n"
|
|
<< "Problematic source BB: " << BB->getName() << "\n"
|
|
<< "Problematic destination BB: " << PBB->getName()
|
|
<< "\n");
|
|
return {};
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
|
|
bool AggregateArgs, BlockFrequencyInfo *BFI,
|
|
BranchProbabilityInfo *BPI, AssumptionCache *AC,
|
|
bool AllowVarArgs, bool AllowAlloca,
|
|
std::string Suffix)
|
|
: DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
|
|
BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
|
|
Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
|
|
Suffix(Suffix) {}
|
|
|
|
CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
|
|
BlockFrequencyInfo *BFI,
|
|
BranchProbabilityInfo *BPI, AssumptionCache *AC,
|
|
std::string Suffix)
|
|
: DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
|
|
BPI(BPI), AC(AC), AllowVarArgs(false),
|
|
Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
|
|
/* AllowVarArgs */ false,
|
|
/* AllowAlloca */ false)),
|
|
Suffix(Suffix) {}
|
|
|
|
/// definedInRegion - Return true if the specified value is defined in the
|
|
/// extracted region.
|
|
static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (Blocks.count(I->getParent()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// definedInCaller - Return true if the specified value is defined in the
|
|
/// function being code extracted, but not in the region being extracted.
|
|
/// These values must be passed in as live-ins to the function.
|
|
static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
|
|
if (isa<Argument>(V)) return true;
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (!Blocks.count(I->getParent()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
|
|
BasicBlock *CommonExitBlock = nullptr;
|
|
auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
|
|
for (auto *Succ : successors(Block)) {
|
|
// Internal edges, ok.
|
|
if (Blocks.count(Succ))
|
|
continue;
|
|
if (!CommonExitBlock) {
|
|
CommonExitBlock = Succ;
|
|
continue;
|
|
}
|
|
if (CommonExitBlock != Succ)
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (any_of(Blocks, hasNonCommonExitSucc))
|
|
return nullptr;
|
|
|
|
return CommonExitBlock;
|
|
}
|
|
|
|
CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
|
|
for (BasicBlock &BB : F) {
|
|
for (Instruction &II : BB.instructionsWithoutDebug())
|
|
if (auto *AI = dyn_cast<AllocaInst>(&II))
|
|
Allocas.push_back(AI);
|
|
|
|
findSideEffectInfoForBlock(BB);
|
|
}
|
|
}
|
|
|
|
void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
|
|
for (Instruction &II : BB.instructionsWithoutDebug()) {
|
|
unsigned Opcode = II.getOpcode();
|
|
Value *MemAddr = nullptr;
|
|
switch (Opcode) {
|
|
case Instruction::Store:
|
|
case Instruction::Load: {
|
|
if (Opcode == Instruction::Store) {
|
|
StoreInst *SI = cast<StoreInst>(&II);
|
|
MemAddr = SI->getPointerOperand();
|
|
} else {
|
|
LoadInst *LI = cast<LoadInst>(&II);
|
|
MemAddr = LI->getPointerOperand();
|
|
}
|
|
// Global variable can not be aliased with locals.
|
|
if (dyn_cast<Constant>(MemAddr))
|
|
break;
|
|
Value *Base = MemAddr->stripInBoundsConstantOffsets();
|
|
if (!isa<AllocaInst>(Base)) {
|
|
SideEffectingBlocks.insert(&BB);
|
|
return;
|
|
}
|
|
BaseMemAddrs[&BB].insert(Base);
|
|
break;
|
|
}
|
|
default: {
|
|
IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
|
|
if (IntrInst) {
|
|
if (IntrInst->isLifetimeStartOrEnd())
|
|
break;
|
|
SideEffectingBlocks.insert(&BB);
|
|
return;
|
|
}
|
|
// Treat all the other cases conservatively if it has side effects.
|
|
if (II.mayHaveSideEffects()) {
|
|
SideEffectingBlocks.insert(&BB);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
|
|
BasicBlock &BB, AllocaInst *Addr) const {
|
|
if (SideEffectingBlocks.count(&BB))
|
|
return true;
|
|
auto It = BaseMemAddrs.find(&BB);
|
|
if (It != BaseMemAddrs.end())
|
|
return It->second.count(Addr);
|
|
return false;
|
|
}
|
|
|
|
bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
|
|
const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
|
|
AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
|
|
Function *Func = (*Blocks.begin())->getParent();
|
|
for (BasicBlock &BB : *Func) {
|
|
if (Blocks.count(&BB))
|
|
continue;
|
|
if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
BasicBlock *
|
|
CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
|
|
BasicBlock *SinglePredFromOutlineRegion = nullptr;
|
|
assert(!Blocks.count(CommonExitBlock) &&
|
|
"Expect a block outside the region!");
|
|
for (auto *Pred : predecessors(CommonExitBlock)) {
|
|
if (!Blocks.count(Pred))
|
|
continue;
|
|
if (!SinglePredFromOutlineRegion) {
|
|
SinglePredFromOutlineRegion = Pred;
|
|
} else if (SinglePredFromOutlineRegion != Pred) {
|
|
SinglePredFromOutlineRegion = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (SinglePredFromOutlineRegion)
|
|
return SinglePredFromOutlineRegion;
|
|
|
|
#ifndef NDEBUG
|
|
auto getFirstPHI = [](BasicBlock *BB) {
|
|
BasicBlock::iterator I = BB->begin();
|
|
PHINode *FirstPhi = nullptr;
|
|
while (I != BB->end()) {
|
|
PHINode *Phi = dyn_cast<PHINode>(I);
|
|
if (!Phi)
|
|
break;
|
|
if (!FirstPhi) {
|
|
FirstPhi = Phi;
|
|
break;
|
|
}
|
|
}
|
|
return FirstPhi;
|
|
};
|
|
// If there are any phi nodes, the single pred either exists or has already
|
|
// be created before code extraction.
|
|
assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
|
|
#endif
|
|
|
|
BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
|
|
CommonExitBlock->getFirstNonPHI()->getIterator());
|
|
|
|
for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
|
|
PI != PE;) {
|
|
BasicBlock *Pred = *PI++;
|
|
if (Blocks.count(Pred))
|
|
continue;
|
|
Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
|
|
}
|
|
// Now add the old exit block to the outline region.
|
|
Blocks.insert(CommonExitBlock);
|
|
return CommonExitBlock;
|
|
}
|
|
|
|
// Find the pair of life time markers for address 'Addr' that are either
|
|
// defined inside the outline region or can legally be shrinkwrapped into the
|
|
// outline region. If there are not other untracked uses of the address, return
|
|
// the pair of markers if found; otherwise return a pair of nullptr.
|
|
CodeExtractor::LifetimeMarkerInfo
|
|
CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
|
|
Instruction *Addr,
|
|
BasicBlock *ExitBlock) const {
|
|
LifetimeMarkerInfo Info;
|
|
|
|
for (User *U : Addr->users()) {
|
|
IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
|
|
if (IntrInst) {
|
|
// We don't model addresses with multiple start/end markers, but the
|
|
// markers do not need to be in the region.
|
|
if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
|
|
if (Info.LifeStart)
|
|
return {};
|
|
Info.LifeStart = IntrInst;
|
|
continue;
|
|
}
|
|
if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
|
|
if (Info.LifeEnd)
|
|
return {};
|
|
Info.LifeEnd = IntrInst;
|
|
continue;
|
|
}
|
|
// At this point, permit debug uses outside of the region.
|
|
// This is fixed in a later call to fixupDebugInfoPostExtraction().
|
|
if (isa<DbgInfoIntrinsic>(IntrInst))
|
|
continue;
|
|
}
|
|
// Find untracked uses of the address, bail.
|
|
if (!definedInRegion(Blocks, U))
|
|
return {};
|
|
}
|
|
|
|
if (!Info.LifeStart || !Info.LifeEnd)
|
|
return {};
|
|
|
|
Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
|
|
Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
|
|
// Do legality check.
|
|
if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
|
|
!isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
|
|
return {};
|
|
|
|
// Check to see if we have a place to do hoisting, if not, bail.
|
|
if (Info.HoistLifeEnd && !ExitBlock)
|
|
return {};
|
|
|
|
return Info;
|
|
}
|
|
|
|
void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
|
|
ValueSet &SinkCands, ValueSet &HoistCands,
|
|
BasicBlock *&ExitBlock) const {
|
|
Function *Func = (*Blocks.begin())->getParent();
|
|
ExitBlock = getCommonExitBlock(Blocks);
|
|
|
|
auto moveOrIgnoreLifetimeMarkers =
|
|
[&](const LifetimeMarkerInfo &LMI) -> bool {
|
|
if (!LMI.LifeStart)
|
|
return false;
|
|
if (LMI.SinkLifeStart) {
|
|
LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
|
|
<< "\n");
|
|
SinkCands.insert(LMI.LifeStart);
|
|
}
|
|
if (LMI.HoistLifeEnd) {
|
|
LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
|
|
HoistCands.insert(LMI.LifeEnd);
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Look up allocas in the original function in CodeExtractorAnalysisCache, as
|
|
// this is much faster than walking all the instructions.
|
|
for (AllocaInst *AI : CEAC.getAllocas()) {
|
|
BasicBlock *BB = AI->getParent();
|
|
if (Blocks.count(BB))
|
|
continue;
|
|
|
|
// As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
|
|
// check whether it is actually still in the original function.
|
|
Function *AIFunc = BB->getParent();
|
|
if (AIFunc != Func)
|
|
continue;
|
|
|
|
LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
|
|
bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
|
|
if (Moved) {
|
|
LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
|
|
SinkCands.insert(AI);
|
|
continue;
|
|
}
|
|
|
|
// Find bitcasts in the outlined region that have lifetime marker users
|
|
// outside that region. Replace the lifetime marker use with an
|
|
// outside region bitcast to avoid unnecessary alloca/reload instructions
|
|
// and extra lifetime markers.
|
|
SmallVector<Instruction *, 2> LifetimeBitcastUsers;
|
|
for (User *U : AI->users()) {
|
|
if (!definedInRegion(Blocks, U))
|
|
continue;
|
|
|
|
if (U->stripInBoundsConstantOffsets() != AI)
|
|
continue;
|
|
|
|
Instruction *Bitcast = cast<Instruction>(U);
|
|
for (User *BU : Bitcast->users()) {
|
|
IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
|
|
if (!IntrInst)
|
|
continue;
|
|
|
|
if (!IntrInst->isLifetimeStartOrEnd())
|
|
continue;
|
|
|
|
if (definedInRegion(Blocks, IntrInst))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
|
|
<< *Bitcast << " in out-of-region lifetime marker "
|
|
<< *IntrInst << "\n");
|
|
LifetimeBitcastUsers.push_back(IntrInst);
|
|
}
|
|
}
|
|
|
|
for (Instruction *I : LifetimeBitcastUsers) {
|
|
Module *M = AIFunc->getParent();
|
|
LLVMContext &Ctx = M->getContext();
|
|
auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
|
|
CastInst *CastI =
|
|
CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
|
|
I->replaceUsesOfWith(I->getOperand(1), CastI);
|
|
}
|
|
|
|
// Follow any bitcasts.
|
|
SmallVector<Instruction *, 2> Bitcasts;
|
|
SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
|
|
for (User *U : AI->users()) {
|
|
if (U->stripInBoundsConstantOffsets() == AI) {
|
|
Instruction *Bitcast = cast<Instruction>(U);
|
|
LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
|
|
if (LMI.LifeStart) {
|
|
Bitcasts.push_back(Bitcast);
|
|
BitcastLifetimeInfo.push_back(LMI);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Found unknown use of AI.
|
|
if (!definedInRegion(Blocks, U)) {
|
|
Bitcasts.clear();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Either no bitcasts reference the alloca or there are unknown uses.
|
|
if (Bitcasts.empty())
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
|
|
SinkCands.insert(AI);
|
|
for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
|
|
Instruction *BitcastAddr = Bitcasts[I];
|
|
const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
|
|
assert(LMI.LifeStart &&
|
|
"Unsafe to sink bitcast without lifetime markers");
|
|
moveOrIgnoreLifetimeMarkers(LMI);
|
|
if (!definedInRegion(Blocks, BitcastAddr)) {
|
|
LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
|
|
<< "\n");
|
|
SinkCands.insert(BitcastAddr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CodeExtractor::isEligible() const {
|
|
if (Blocks.empty())
|
|
return false;
|
|
BasicBlock *Header = *Blocks.begin();
|
|
Function *F = Header->getParent();
|
|
|
|
// For functions with varargs, check that varargs handling is only done in the
|
|
// outlined function, i.e vastart and vaend are only used in outlined blocks.
|
|
if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
|
|
auto containsVarArgIntrinsic = [](const Instruction &I) {
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I))
|
|
if (const Function *Callee = CI->getCalledFunction())
|
|
return Callee->getIntrinsicID() == Intrinsic::vastart ||
|
|
Callee->getIntrinsicID() == Intrinsic::vaend;
|
|
return false;
|
|
};
|
|
|
|
for (auto &BB : *F) {
|
|
if (Blocks.count(&BB))
|
|
continue;
|
|
if (llvm::any_of(BB, containsVarArgIntrinsic))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
|
|
const ValueSet &SinkCands) const {
|
|
for (BasicBlock *BB : Blocks) {
|
|
// If a used value is defined outside the region, it's an input. If an
|
|
// instruction is used outside the region, it's an output.
|
|
for (Instruction &II : *BB) {
|
|
for (auto &OI : II.operands()) {
|
|
Value *V = OI;
|
|
if (!SinkCands.count(V) && definedInCaller(Blocks, V))
|
|
Inputs.insert(V);
|
|
}
|
|
|
|
for (User *U : II.users())
|
|
if (!definedInRegion(Blocks, U)) {
|
|
Outputs.insert(&II);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
|
|
/// of the region, we need to split the entry block of the region so that the
|
|
/// PHI node is easier to deal with.
|
|
void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
|
|
unsigned NumPredsFromRegion = 0;
|
|
unsigned NumPredsOutsideRegion = 0;
|
|
|
|
if (Header != &Header->getParent()->getEntryBlock()) {
|
|
PHINode *PN = dyn_cast<PHINode>(Header->begin());
|
|
if (!PN) return; // No PHI nodes.
|
|
|
|
// If the header node contains any PHI nodes, check to see if there is more
|
|
// than one entry from outside the region. If so, we need to sever the
|
|
// header block into two.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (Blocks.count(PN->getIncomingBlock(i)))
|
|
++NumPredsFromRegion;
|
|
else
|
|
++NumPredsOutsideRegion;
|
|
|
|
// If there is one (or fewer) predecessor from outside the region, we don't
|
|
// need to do anything special.
|
|
if (NumPredsOutsideRegion <= 1) return;
|
|
}
|
|
|
|
// Otherwise, we need to split the header block into two pieces: one
|
|
// containing PHI nodes merging values from outside of the region, and a
|
|
// second that contains all of the code for the block and merges back any
|
|
// incoming values from inside of the region.
|
|
BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
|
|
|
|
// We only want to code extract the second block now, and it becomes the new
|
|
// header of the region.
|
|
BasicBlock *OldPred = Header;
|
|
Blocks.remove(OldPred);
|
|
Blocks.insert(NewBB);
|
|
Header = NewBB;
|
|
|
|
// Okay, now we need to adjust the PHI nodes and any branches from within the
|
|
// region to go to the new header block instead of the old header block.
|
|
if (NumPredsFromRegion) {
|
|
PHINode *PN = cast<PHINode>(OldPred->begin());
|
|
// Loop over all of the predecessors of OldPred that are in the region,
|
|
// changing them to branch to NewBB instead.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (Blocks.count(PN->getIncomingBlock(i))) {
|
|
Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
|
|
TI->replaceUsesOfWith(OldPred, NewBB);
|
|
}
|
|
|
|
// Okay, everything within the region is now branching to the right block, we
|
|
// just have to update the PHI nodes now, inserting PHI nodes into NewBB.
|
|
BasicBlock::iterator AfterPHIs;
|
|
for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
|
|
PHINode *PN = cast<PHINode>(AfterPHIs);
|
|
// Create a new PHI node in the new region, which has an incoming value
|
|
// from OldPred of PN.
|
|
PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
|
|
PN->getName() + ".ce", &NewBB->front());
|
|
PN->replaceAllUsesWith(NewPN);
|
|
NewPN->addIncoming(PN, OldPred);
|
|
|
|
// Loop over all of the incoming value in PN, moving them to NewPN if they
|
|
// are from the extracted region.
|
|
for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
|
|
if (Blocks.count(PN->getIncomingBlock(i))) {
|
|
NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
|
|
PN->removeIncomingValue(i);
|
|
--i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
|
|
/// outlined region, we split these PHIs on two: one with inputs from region
|
|
/// and other with remaining incoming blocks; then first PHIs are placed in
|
|
/// outlined region.
|
|
void CodeExtractor::severSplitPHINodesOfExits(
|
|
const SmallPtrSetImpl<BasicBlock *> &Exits) {
|
|
for (BasicBlock *ExitBB : Exits) {
|
|
BasicBlock *NewBB = nullptr;
|
|
|
|
for (PHINode &PN : ExitBB->phis()) {
|
|
// Find all incoming values from the outlining region.
|
|
SmallVector<unsigned, 2> IncomingVals;
|
|
for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
|
|
if (Blocks.count(PN.getIncomingBlock(i)))
|
|
IncomingVals.push_back(i);
|
|
|
|
// Do not process PHI if there is one (or fewer) predecessor from region.
|
|
// If PHI has exactly one predecessor from region, only this one incoming
|
|
// will be replaced on codeRepl block, so it should be safe to skip PHI.
|
|
if (IncomingVals.size() <= 1)
|
|
continue;
|
|
|
|
// Create block for new PHIs and add it to the list of outlined if it
|
|
// wasn't done before.
|
|
if (!NewBB) {
|
|
NewBB = BasicBlock::Create(ExitBB->getContext(),
|
|
ExitBB->getName() + ".split",
|
|
ExitBB->getParent(), ExitBB);
|
|
SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
|
|
pred_end(ExitBB));
|
|
for (BasicBlock *PredBB : Preds)
|
|
if (Blocks.count(PredBB))
|
|
PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
|
|
BranchInst::Create(ExitBB, NewBB);
|
|
Blocks.insert(NewBB);
|
|
}
|
|
|
|
// Split this PHI.
|
|
PHINode *NewPN =
|
|
PHINode::Create(PN.getType(), IncomingVals.size(),
|
|
PN.getName() + ".ce", NewBB->getFirstNonPHI());
|
|
for (unsigned i : IncomingVals)
|
|
NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
|
|
for (unsigned i : reverse(IncomingVals))
|
|
PN.removeIncomingValue(i, false);
|
|
PN.addIncoming(NewPN, NewBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeExtractor::splitReturnBlocks() {
|
|
for (BasicBlock *Block : Blocks)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
|
|
BasicBlock *New =
|
|
Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
|
|
if (DT) {
|
|
// Old dominates New. New node dominates all other nodes dominated
|
|
// by Old.
|
|
DomTreeNode *OldNode = DT->getNode(Block);
|
|
SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
|
|
OldNode->end());
|
|
|
|
DomTreeNode *NewNode = DT->addNewBlock(New, Block);
|
|
|
|
for (DomTreeNode *I : Children)
|
|
DT->changeImmediateDominator(I, NewNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// constructFunction - make a function based on inputs and outputs, as follows:
|
|
/// f(in0, ..., inN, out0, ..., outN)
|
|
Function *CodeExtractor::constructFunction(const ValueSet &inputs,
|
|
const ValueSet &outputs,
|
|
BasicBlock *header,
|
|
BasicBlock *newRootNode,
|
|
BasicBlock *newHeader,
|
|
Function *oldFunction,
|
|
Module *M) {
|
|
LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
|
|
LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
|
|
|
|
// This function returns unsigned, outputs will go back by reference.
|
|
switch (NumExitBlocks) {
|
|
case 0:
|
|
case 1: RetTy = Type::getVoidTy(header->getContext()); break;
|
|
case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
|
|
default: RetTy = Type::getInt16Ty(header->getContext()); break;
|
|
}
|
|
|
|
std::vector<Type *> paramTy;
|
|
|
|
// Add the types of the input values to the function's argument list
|
|
for (Value *value : inputs) {
|
|
LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
|
|
paramTy.push_back(value->getType());
|
|
}
|
|
|
|
// Add the types of the output values to the function's argument list.
|
|
for (Value *output : outputs) {
|
|
LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
|
|
if (AggregateArgs)
|
|
paramTy.push_back(output->getType());
|
|
else
|
|
paramTy.push_back(PointerType::getUnqual(output->getType()));
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "Function type: " << *RetTy << " f(";
|
|
for (Type *i : paramTy)
|
|
dbgs() << *i << ", ";
|
|
dbgs() << ")\n";
|
|
});
|
|
|
|
StructType *StructTy = nullptr;
|
|
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
|
|
StructTy = StructType::get(M->getContext(), paramTy);
|
|
paramTy.clear();
|
|
paramTy.push_back(PointerType::getUnqual(StructTy));
|
|
}
|
|
FunctionType *funcType =
|
|
FunctionType::get(RetTy, paramTy,
|
|
AllowVarArgs && oldFunction->isVarArg());
|
|
|
|
std::string SuffixToUse =
|
|
Suffix.empty()
|
|
? (header->getName().empty() ? "extracted" : header->getName().str())
|
|
: Suffix;
|
|
// Create the new function
|
|
Function *newFunction = Function::Create(
|
|
funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
|
|
oldFunction->getName() + "." + SuffixToUse, M);
|
|
// If the old function is no-throw, so is the new one.
|
|
if (oldFunction->doesNotThrow())
|
|
newFunction->setDoesNotThrow();
|
|
|
|
// Inherit the uwtable attribute if we need to.
|
|
if (oldFunction->hasUWTable())
|
|
newFunction->setHasUWTable();
|
|
|
|
// Inherit all of the target dependent attributes and white-listed
|
|
// target independent attributes.
|
|
// (e.g. If the extracted region contains a call to an x86.sse
|
|
// instruction we need to make sure that the extracted region has the
|
|
// "target-features" attribute allowing it to be lowered.
|
|
// FIXME: This should be changed to check to see if a specific
|
|
// attribute can not be inherited.
|
|
for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
|
|
if (Attr.isStringAttribute()) {
|
|
if (Attr.getKindAsString() == "thunk")
|
|
continue;
|
|
} else
|
|
switch (Attr.getKindAsEnum()) {
|
|
// Those attributes cannot be propagated safely. Explicitly list them
|
|
// here so we get a warning if new attributes are added. This list also
|
|
// includes non-function attributes.
|
|
case Attribute::Alignment:
|
|
case Attribute::AllocSize:
|
|
case Attribute::ArgMemOnly:
|
|
case Attribute::Builtin:
|
|
case Attribute::ByVal:
|
|
case Attribute::Convergent:
|
|
case Attribute::Dereferenceable:
|
|
case Attribute::DereferenceableOrNull:
|
|
case Attribute::InAlloca:
|
|
case Attribute::InReg:
|
|
case Attribute::InaccessibleMemOnly:
|
|
case Attribute::InaccessibleMemOrArgMemOnly:
|
|
case Attribute::JumpTable:
|
|
case Attribute::Naked:
|
|
case Attribute::Nest:
|
|
case Attribute::NoAlias:
|
|
case Attribute::NoBuiltin:
|
|
case Attribute::NoCapture:
|
|
case Attribute::NoMerge:
|
|
case Attribute::NoReturn:
|
|
case Attribute::NoSync:
|
|
case Attribute::NoUndef:
|
|
case Attribute::None:
|
|
case Attribute::NonNull:
|
|
case Attribute::Preallocated:
|
|
case Attribute::ReadNone:
|
|
case Attribute::ReadOnly:
|
|
case Attribute::Returned:
|
|
case Attribute::ReturnsTwice:
|
|
case Attribute::SExt:
|
|
case Attribute::Speculatable:
|
|
case Attribute::StackAlignment:
|
|
case Attribute::StructRet:
|
|
case Attribute::SwiftError:
|
|
case Attribute::SwiftSelf:
|
|
case Attribute::WillReturn:
|
|
case Attribute::WriteOnly:
|
|
case Attribute::ZExt:
|
|
case Attribute::ImmArg:
|
|
case Attribute::ByRef:
|
|
case Attribute::EndAttrKinds:
|
|
case Attribute::EmptyKey:
|
|
case Attribute::TombstoneKey:
|
|
continue;
|
|
// Those attributes should be safe to propagate to the extracted function.
|
|
case Attribute::AlwaysInline:
|
|
case Attribute::Cold:
|
|
case Attribute::NoRecurse:
|
|
case Attribute::InlineHint:
|
|
case Attribute::MinSize:
|
|
case Attribute::NoDuplicate:
|
|
case Attribute::NoFree:
|
|
case Attribute::NoImplicitFloat:
|
|
case Attribute::NoInline:
|
|
case Attribute::NonLazyBind:
|
|
case Attribute::NoRedZone:
|
|
case Attribute::NoUnwind:
|
|
case Attribute::NullPointerIsValid:
|
|
case Attribute::OptForFuzzing:
|
|
case Attribute::OptimizeNone:
|
|
case Attribute::OptimizeForSize:
|
|
case Attribute::SafeStack:
|
|
case Attribute::ShadowCallStack:
|
|
case Attribute::SanitizeAddress:
|
|
case Attribute::SanitizeMemory:
|
|
case Attribute::SanitizeThread:
|
|
case Attribute::SanitizeHWAddress:
|
|
case Attribute::SanitizeMemTag:
|
|
case Attribute::SpeculativeLoadHardening:
|
|
case Attribute::StackProtect:
|
|
case Attribute::StackProtectReq:
|
|
case Attribute::StackProtectStrong:
|
|
case Attribute::StrictFP:
|
|
case Attribute::UWTable:
|
|
case Attribute::NoCfCheck:
|
|
case Attribute::MustProgress:
|
|
break;
|
|
}
|
|
|
|
newFunction->addFnAttr(Attr);
|
|
}
|
|
newFunction->getBasicBlockList().push_back(newRootNode);
|
|
|
|
// Create an iterator to name all of the arguments we inserted.
|
|
Function::arg_iterator AI = newFunction->arg_begin();
|
|
|
|
// Rewrite all users of the inputs in the extracted region to use the
|
|
// arguments (or appropriate addressing into struct) instead.
|
|
for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
|
|
Value *RewriteVal;
|
|
if (AggregateArgs) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
|
|
Instruction *TI = newFunction->begin()->getTerminator();
|
|
GetElementPtrInst *GEP = GetElementPtrInst::Create(
|
|
StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
|
|
RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
|
|
"loadgep_" + inputs[i]->getName(), TI);
|
|
} else
|
|
RewriteVal = &*AI++;
|
|
|
|
std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
|
|
for (User *use : Users)
|
|
if (Instruction *inst = dyn_cast<Instruction>(use))
|
|
if (Blocks.count(inst->getParent()))
|
|
inst->replaceUsesOfWith(inputs[i], RewriteVal);
|
|
}
|
|
|
|
// Set names for input and output arguments.
|
|
if (!AggregateArgs) {
|
|
AI = newFunction->arg_begin();
|
|
for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
|
|
AI->setName(inputs[i]->getName());
|
|
for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
|
|
AI->setName(outputs[i]->getName()+".out");
|
|
}
|
|
|
|
// Rewrite branches to basic blocks outside of the loop to new dummy blocks
|
|
// within the new function. This must be done before we lose track of which
|
|
// blocks were originally in the code region.
|
|
std::vector<User *> Users(header->user_begin(), header->user_end());
|
|
for (auto &U : Users)
|
|
// The BasicBlock which contains the branch is not in the region
|
|
// modify the branch target to a new block
|
|
if (Instruction *I = dyn_cast<Instruction>(U))
|
|
if (I->isTerminator() && I->getFunction() == oldFunction &&
|
|
!Blocks.count(I->getParent()))
|
|
I->replaceUsesOfWith(header, newHeader);
|
|
|
|
return newFunction;
|
|
}
|
|
|
|
/// Erase lifetime.start markers which reference inputs to the extraction
|
|
/// region, and insert the referenced memory into \p LifetimesStart.
|
|
///
|
|
/// The extraction region is defined by a set of blocks (\p Blocks), and a set
|
|
/// of allocas which will be moved from the caller function into the extracted
|
|
/// function (\p SunkAllocas).
|
|
static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
|
|
const SetVector<Value *> &SunkAllocas,
|
|
SetVector<Value *> &LifetimesStart) {
|
|
for (BasicBlock *BB : Blocks) {
|
|
for (auto It = BB->begin(), End = BB->end(); It != End;) {
|
|
auto *II = dyn_cast<IntrinsicInst>(&*It);
|
|
++It;
|
|
if (!II || !II->isLifetimeStartOrEnd())
|
|
continue;
|
|
|
|
// Get the memory operand of the lifetime marker. If the underlying
|
|
// object is a sunk alloca, or is otherwise defined in the extraction
|
|
// region, the lifetime marker must not be erased.
|
|
Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
|
|
if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
|
|
continue;
|
|
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start)
|
|
LifetimesStart.insert(Mem);
|
|
II->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Insert lifetime start/end markers surrounding the call to the new function
|
|
/// for objects defined in the caller.
|
|
static void insertLifetimeMarkersSurroundingCall(
|
|
Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
|
|
CallInst *TheCall) {
|
|
LLVMContext &Ctx = M->getContext();
|
|
auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
|
|
auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
|
|
Instruction *Term = TheCall->getParent()->getTerminator();
|
|
|
|
// The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
|
|
// needed to satisfy this requirement so they may be reused.
|
|
DenseMap<Value *, Value *> Bitcasts;
|
|
|
|
// Emit lifetime markers for the pointers given in \p Objects. Insert the
|
|
// markers before the call if \p InsertBefore, and after the call otherwise.
|
|
auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
|
|
bool InsertBefore) {
|
|
for (Value *Mem : Objects) {
|
|
assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
|
|
TheCall->getFunction()) &&
|
|
"Input memory not defined in original function");
|
|
Value *&MemAsI8Ptr = Bitcasts[Mem];
|
|
if (!MemAsI8Ptr) {
|
|
if (Mem->getType() == Int8PtrTy)
|
|
MemAsI8Ptr = Mem;
|
|
else
|
|
MemAsI8Ptr =
|
|
CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
|
|
}
|
|
|
|
auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
|
|
if (InsertBefore)
|
|
Marker->insertBefore(TheCall);
|
|
else
|
|
Marker->insertBefore(Term);
|
|
}
|
|
};
|
|
|
|
if (!LifetimesStart.empty()) {
|
|
auto StartFn = llvm::Intrinsic::getDeclaration(
|
|
M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
|
|
insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
|
|
}
|
|
|
|
if (!LifetimesEnd.empty()) {
|
|
auto EndFn = llvm::Intrinsic::getDeclaration(
|
|
M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
|
|
insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
|
|
}
|
|
}
|
|
|
|
/// emitCallAndSwitchStatement - This method sets up the caller side by adding
|
|
/// the call instruction, splitting any PHI nodes in the header block as
|
|
/// necessary.
|
|
CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
|
|
BasicBlock *codeReplacer,
|
|
ValueSet &inputs,
|
|
ValueSet &outputs) {
|
|
// Emit a call to the new function, passing in: *pointer to struct (if
|
|
// aggregating parameters), or plan inputs and allocated memory for outputs
|
|
std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
|
|
|
|
Module *M = newFunction->getParent();
|
|
LLVMContext &Context = M->getContext();
|
|
const DataLayout &DL = M->getDataLayout();
|
|
CallInst *call = nullptr;
|
|
|
|
// Add inputs as params, or to be filled into the struct
|
|
unsigned ArgNo = 0;
|
|
SmallVector<unsigned, 1> SwiftErrorArgs;
|
|
for (Value *input : inputs) {
|
|
if (AggregateArgs)
|
|
StructValues.push_back(input);
|
|
else {
|
|
params.push_back(input);
|
|
if (input->isSwiftError())
|
|
SwiftErrorArgs.push_back(ArgNo);
|
|
}
|
|
++ArgNo;
|
|
}
|
|
|
|
// Create allocas for the outputs
|
|
for (Value *output : outputs) {
|
|
if (AggregateArgs) {
|
|
StructValues.push_back(output);
|
|
} else {
|
|
AllocaInst *alloca =
|
|
new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
|
|
nullptr, output->getName() + ".loc",
|
|
&codeReplacer->getParent()->front().front());
|
|
ReloadOutputs.push_back(alloca);
|
|
params.push_back(alloca);
|
|
}
|
|
}
|
|
|
|
StructType *StructArgTy = nullptr;
|
|
AllocaInst *Struct = nullptr;
|
|
if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
|
|
std::vector<Type *> ArgTypes;
|
|
for (ValueSet::iterator v = StructValues.begin(),
|
|
ve = StructValues.end(); v != ve; ++v)
|
|
ArgTypes.push_back((*v)->getType());
|
|
|
|
// Allocate a struct at the beginning of this function
|
|
StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
|
|
Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
|
|
"structArg",
|
|
&codeReplacer->getParent()->front().front());
|
|
params.push_back(Struct);
|
|
|
|
for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
|
|
GetElementPtrInst *GEP = GetElementPtrInst::Create(
|
|
StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
|
|
codeReplacer->getInstList().push_back(GEP);
|
|
new StoreInst(StructValues[i], GEP, codeReplacer);
|
|
}
|
|
}
|
|
|
|
// Emit the call to the function
|
|
call = CallInst::Create(newFunction, params,
|
|
NumExitBlocks > 1 ? "targetBlock" : "");
|
|
// Add debug location to the new call, if the original function has debug
|
|
// info. In that case, the terminator of the entry block of the extracted
|
|
// function contains the first debug location of the extracted function,
|
|
// set in extractCodeRegion.
|
|
if (codeReplacer->getParent()->getSubprogram()) {
|
|
if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
|
|
call->setDebugLoc(DL);
|
|
}
|
|
codeReplacer->getInstList().push_back(call);
|
|
|
|
// Set swifterror parameter attributes.
|
|
for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
|
|
call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
|
|
newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
|
|
}
|
|
|
|
Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
|
|
unsigned FirstOut = inputs.size();
|
|
if (!AggregateArgs)
|
|
std::advance(OutputArgBegin, inputs.size());
|
|
|
|
// Reload the outputs passed in by reference.
|
|
for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
|
|
Value *Output = nullptr;
|
|
if (AggregateArgs) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
|
|
GetElementPtrInst *GEP = GetElementPtrInst::Create(
|
|
StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
|
|
codeReplacer->getInstList().push_back(GEP);
|
|
Output = GEP;
|
|
} else {
|
|
Output = ReloadOutputs[i];
|
|
}
|
|
LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
|
|
outputs[i]->getName() + ".reload",
|
|
codeReplacer);
|
|
Reloads.push_back(load);
|
|
std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
|
|
for (unsigned u = 0, e = Users.size(); u != e; ++u) {
|
|
Instruction *inst = cast<Instruction>(Users[u]);
|
|
if (!Blocks.count(inst->getParent()))
|
|
inst->replaceUsesOfWith(outputs[i], load);
|
|
}
|
|
}
|
|
|
|
// Now we can emit a switch statement using the call as a value.
|
|
SwitchInst *TheSwitch =
|
|
SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
|
|
codeReplacer, 0, codeReplacer);
|
|
|
|
// Since there may be multiple exits from the original region, make the new
|
|
// function return an unsigned, switch on that number. This loop iterates
|
|
// over all of the blocks in the extracted region, updating any terminator
|
|
// instructions in the to-be-extracted region that branch to blocks that are
|
|
// not in the region to be extracted.
|
|
std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
|
|
|
|
unsigned switchVal = 0;
|
|
for (BasicBlock *Block : Blocks) {
|
|
Instruction *TI = Block->getTerminator();
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
if (!Blocks.count(TI->getSuccessor(i))) {
|
|
BasicBlock *OldTarget = TI->getSuccessor(i);
|
|
// add a new basic block which returns the appropriate value
|
|
BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
|
|
if (!NewTarget) {
|
|
// If we don't already have an exit stub for this non-extracted
|
|
// destination, create one now!
|
|
NewTarget = BasicBlock::Create(Context,
|
|
OldTarget->getName() + ".exitStub",
|
|
newFunction);
|
|
unsigned SuccNum = switchVal++;
|
|
|
|
Value *brVal = nullptr;
|
|
switch (NumExitBlocks) {
|
|
case 0:
|
|
case 1: break; // No value needed.
|
|
case 2: // Conditional branch, return a bool
|
|
brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
|
|
break;
|
|
default:
|
|
brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
|
|
break;
|
|
}
|
|
|
|
ReturnInst::Create(Context, brVal, NewTarget);
|
|
|
|
// Update the switch instruction.
|
|
TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
|
|
SuccNum),
|
|
OldTarget);
|
|
}
|
|
|
|
// rewrite the original branch instruction with this new target
|
|
TI->setSuccessor(i, NewTarget);
|
|
}
|
|
}
|
|
|
|
// Store the arguments right after the definition of output value.
|
|
// This should be proceeded after creating exit stubs to be ensure that invoke
|
|
// result restore will be placed in the outlined function.
|
|
Function::arg_iterator OAI = OutputArgBegin;
|
|
for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
|
|
auto *OutI = dyn_cast<Instruction>(outputs[i]);
|
|
if (!OutI)
|
|
continue;
|
|
|
|
// Find proper insertion point.
|
|
BasicBlock::iterator InsertPt;
|
|
// In case OutI is an invoke, we insert the store at the beginning in the
|
|
// 'normal destination' BB. Otherwise we insert the store right after OutI.
|
|
if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
|
|
InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
|
|
else if (auto *Phi = dyn_cast<PHINode>(OutI))
|
|
InsertPt = Phi->getParent()->getFirstInsertionPt();
|
|
else
|
|
InsertPt = std::next(OutI->getIterator());
|
|
|
|
Instruction *InsertBefore = &*InsertPt;
|
|
assert((InsertBefore->getFunction() == newFunction ||
|
|
Blocks.count(InsertBefore->getParent())) &&
|
|
"InsertPt should be in new function");
|
|
assert(OAI != newFunction->arg_end() &&
|
|
"Number of output arguments should match "
|
|
"the amount of defined values");
|
|
if (AggregateArgs) {
|
|
Value *Idx[2];
|
|
Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
|
|
Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
|
|
GetElementPtrInst *GEP = GetElementPtrInst::Create(
|
|
StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
|
|
InsertBefore);
|
|
new StoreInst(outputs[i], GEP, InsertBefore);
|
|
// Since there should be only one struct argument aggregating
|
|
// all the output values, we shouldn't increment OAI, which always
|
|
// points to the struct argument, in this case.
|
|
} else {
|
|
new StoreInst(outputs[i], &*OAI, InsertBefore);
|
|
++OAI;
|
|
}
|
|
}
|
|
|
|
// Now that we've done the deed, simplify the switch instruction.
|
|
Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
|
|
switch (NumExitBlocks) {
|
|
case 0:
|
|
// There are no successors (the block containing the switch itself), which
|
|
// means that previously this was the last part of the function, and hence
|
|
// this should be rewritten as a `ret'
|
|
|
|
// Check if the function should return a value
|
|
if (OldFnRetTy->isVoidTy()) {
|
|
ReturnInst::Create(Context, nullptr, TheSwitch); // Return void
|
|
} else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
|
|
// return what we have
|
|
ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
|
|
} else {
|
|
// Otherwise we must have code extracted an unwind or something, just
|
|
// return whatever we want.
|
|
ReturnInst::Create(Context,
|
|
Constant::getNullValue(OldFnRetTy), TheSwitch);
|
|
}
|
|
|
|
TheSwitch->eraseFromParent();
|
|
break;
|
|
case 1:
|
|
// Only a single destination, change the switch into an unconditional
|
|
// branch.
|
|
BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
|
|
TheSwitch->eraseFromParent();
|
|
break;
|
|
case 2:
|
|
BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
|
|
call, TheSwitch);
|
|
TheSwitch->eraseFromParent();
|
|
break;
|
|
default:
|
|
// Otherwise, make the default destination of the switch instruction be one
|
|
// of the other successors.
|
|
TheSwitch->setCondition(call);
|
|
TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
|
|
// Remove redundant case
|
|
TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
|
|
break;
|
|
}
|
|
|
|
// Insert lifetime markers around the reloads of any output values. The
|
|
// allocas output values are stored in are only in-use in the codeRepl block.
|
|
insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
|
|
|
|
return call;
|
|
}
|
|
|
|
void CodeExtractor::moveCodeToFunction(Function *newFunction) {
|
|
Function *oldFunc = (*Blocks.begin())->getParent();
|
|
Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
|
|
Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
|
|
|
|
for (BasicBlock *Block : Blocks) {
|
|
// Delete the basic block from the old function, and the list of blocks
|
|
oldBlocks.remove(Block);
|
|
|
|
// Insert this basic block into the new function
|
|
newBlocks.push_back(Block);
|
|
}
|
|
}
|
|
|
|
void CodeExtractor::calculateNewCallTerminatorWeights(
|
|
BasicBlock *CodeReplacer,
|
|
DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
|
|
BranchProbabilityInfo *BPI) {
|
|
using Distribution = BlockFrequencyInfoImplBase::Distribution;
|
|
using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
|
|
|
|
// Update the branch weights for the exit block.
|
|
Instruction *TI = CodeReplacer->getTerminator();
|
|
SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
|
|
|
|
// Block Frequency distribution with dummy node.
|
|
Distribution BranchDist;
|
|
|
|
SmallVector<BranchProbability, 4> EdgeProbabilities(
|
|
TI->getNumSuccessors(), BranchProbability::getUnknown());
|
|
|
|
// Add each of the frequencies of the successors.
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
|
|
BlockNode ExitNode(i);
|
|
uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
|
|
if (ExitFreq != 0)
|
|
BranchDist.addExit(ExitNode, ExitFreq);
|
|
else
|
|
EdgeProbabilities[i] = BranchProbability::getZero();
|
|
}
|
|
|
|
// Check for no total weight.
|
|
if (BranchDist.Total == 0) {
|
|
BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
|
|
return;
|
|
}
|
|
|
|
// Normalize the distribution so that they can fit in unsigned.
|
|
BranchDist.normalize();
|
|
|
|
// Create normalized branch weights and set the metadata.
|
|
for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
|
|
const auto &Weight = BranchDist.Weights[I];
|
|
|
|
// Get the weight and update the current BFI.
|
|
BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
|
|
BranchProbability BP(Weight.Amount, BranchDist.Total);
|
|
EdgeProbabilities[Weight.TargetNode.Index] = BP;
|
|
}
|
|
BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
|
|
TI->setMetadata(
|
|
LLVMContext::MD_prof,
|
|
MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
|
|
}
|
|
|
|
/// Erase debug info intrinsics which refer to values in \p F but aren't in
|
|
/// \p F.
|
|
static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
|
|
for (Instruction &I : instructions(F)) {
|
|
SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
|
|
findDbgUsers(DbgUsers, &I);
|
|
for (DbgVariableIntrinsic *DVI : DbgUsers)
|
|
if (DVI->getFunction() != &F)
|
|
DVI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// Fix up the debug info in the old and new functions by pointing line
|
|
/// locations and debug intrinsics to the new subprogram scope, and by deleting
|
|
/// intrinsics which point to values outside of the new function.
|
|
static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
|
|
CallInst &TheCall) {
|
|
DISubprogram *OldSP = OldFunc.getSubprogram();
|
|
LLVMContext &Ctx = OldFunc.getContext();
|
|
|
|
if (!OldSP) {
|
|
// Erase any debug info the new function contains.
|
|
stripDebugInfo(NewFunc);
|
|
// Make sure the old function doesn't contain any non-local metadata refs.
|
|
eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
|
|
return;
|
|
}
|
|
|
|
// Create a subprogram for the new function. Leave out a description of the
|
|
// function arguments, as the parameters don't correspond to anything at the
|
|
// source level.
|
|
assert(OldSP->getUnit() && "Missing compile unit for subprogram");
|
|
DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
|
|
OldSP->getUnit());
|
|
auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
|
|
DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
|
|
DISubprogram::SPFlagOptimized |
|
|
DISubprogram::SPFlagLocalToUnit;
|
|
auto NewSP = DIB.createFunction(
|
|
OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
|
|
/*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
|
|
NewFunc.setSubprogram(NewSP);
|
|
|
|
// Debug intrinsics in the new function need to be updated in one of two
|
|
// ways:
|
|
// 1) They need to be deleted, because they describe a value in the old
|
|
// function.
|
|
// 2) They need to point to fresh metadata, e.g. because they currently
|
|
// point to a variable in the wrong scope.
|
|
SmallDenseMap<DINode *, DINode *> RemappedMetadata;
|
|
SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
|
|
for (Instruction &I : instructions(NewFunc)) {
|
|
auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
|
|
if (!DII)
|
|
continue;
|
|
|
|
// Point the intrinsic to a fresh label within the new function.
|
|
if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
|
|
DILabel *OldLabel = DLI->getLabel();
|
|
DINode *&NewLabel = RemappedMetadata[OldLabel];
|
|
if (!NewLabel)
|
|
NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(),
|
|
OldLabel->getFile(), OldLabel->getLine());
|
|
DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
|
|
continue;
|
|
}
|
|
|
|
// If the location isn't a constant or an instruction, delete the
|
|
// intrinsic.
|
|
auto *DVI = cast<DbgVariableIntrinsic>(DII);
|
|
Value *Location = DVI->getVariableLocation();
|
|
if (!Location ||
|
|
(!isa<Constant>(Location) && !isa<Instruction>(Location))) {
|
|
DebugIntrinsicsToDelete.push_back(DVI);
|
|
continue;
|
|
}
|
|
|
|
// If the variable location is an instruction but isn't in the new
|
|
// function, delete the intrinsic.
|
|
Instruction *LocationInst = dyn_cast<Instruction>(Location);
|
|
if (LocationInst && LocationInst->getFunction() != &NewFunc) {
|
|
DebugIntrinsicsToDelete.push_back(DVI);
|
|
continue;
|
|
}
|
|
|
|
// Point the intrinsic to a fresh variable within the new function.
|
|
DILocalVariable *OldVar = DVI->getVariable();
|
|
DINode *&NewVar = RemappedMetadata[OldVar];
|
|
if (!NewVar)
|
|
NewVar = DIB.createAutoVariable(
|
|
NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
|
|
OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
|
|
OldVar->getAlignInBits());
|
|
DVI->setArgOperand(1, MetadataAsValue::get(Ctx, NewVar));
|
|
}
|
|
for (auto *DII : DebugIntrinsicsToDelete)
|
|
DII->eraseFromParent();
|
|
DIB.finalizeSubprogram(NewSP);
|
|
|
|
// Fix up the scope information attached to the line locations in the new
|
|
// function.
|
|
for (Instruction &I : instructions(NewFunc)) {
|
|
if (const DebugLoc &DL = I.getDebugLoc())
|
|
I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP));
|
|
|
|
// Loop info metadata may contain line locations. Fix them up.
|
|
auto updateLoopInfoLoc = [&Ctx,
|
|
NewSP](const DILocation &Loc) -> DILocation * {
|
|
return DILocation::get(Ctx, Loc.getLine(), Loc.getColumn(), NewSP,
|
|
nullptr);
|
|
};
|
|
updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
|
|
}
|
|
if (!TheCall.getDebugLoc())
|
|
TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
|
|
|
|
eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
|
|
}
|
|
|
|
Function *
|
|
CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
|
|
if (!isEligible())
|
|
return nullptr;
|
|
|
|
// Assumption: this is a single-entry code region, and the header is the first
|
|
// block in the region.
|
|
BasicBlock *header = *Blocks.begin();
|
|
Function *oldFunction = header->getParent();
|
|
|
|
// Calculate the entry frequency of the new function before we change the root
|
|
// block.
|
|
BlockFrequency EntryFreq;
|
|
if (BFI) {
|
|
assert(BPI && "Both BPI and BFI are required to preserve profile info");
|
|
for (BasicBlock *Pred : predecessors(header)) {
|
|
if (Blocks.count(Pred))
|
|
continue;
|
|
EntryFreq +=
|
|
BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
|
|
}
|
|
}
|
|
|
|
// Remove @llvm.assume calls that will be moved to the new function from the
|
|
// old function's assumption cache.
|
|
for (BasicBlock *Block : Blocks) {
|
|
for (auto It = Block->begin(), End = Block->end(); It != End;) {
|
|
Instruction *I = &*It;
|
|
++It;
|
|
|
|
if (match(I, m_Intrinsic<Intrinsic::assume>())) {
|
|
if (AC)
|
|
AC->unregisterAssumption(cast<CallInst>(I));
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we have any return instructions in the region, split those blocks so
|
|
// that the return is not in the region.
|
|
splitReturnBlocks();
|
|
|
|
// Calculate the exit blocks for the extracted region and the total exit
|
|
// weights for each of those blocks.
|
|
DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
|
|
SmallPtrSet<BasicBlock *, 1> ExitBlocks;
|
|
for (BasicBlock *Block : Blocks) {
|
|
for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
|
|
++SI) {
|
|
if (!Blocks.count(*SI)) {
|
|
// Update the branch weight for this successor.
|
|
if (BFI) {
|
|
BlockFrequency &BF = ExitWeights[*SI];
|
|
BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
|
|
}
|
|
ExitBlocks.insert(*SI);
|
|
}
|
|
}
|
|
}
|
|
NumExitBlocks = ExitBlocks.size();
|
|
|
|
// If we have to split PHI nodes of the entry or exit blocks, do so now.
|
|
severSplitPHINodesOfEntry(header);
|
|
severSplitPHINodesOfExits(ExitBlocks);
|
|
|
|
// This takes place of the original loop
|
|
BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
|
|
"codeRepl", oldFunction,
|
|
header);
|
|
|
|
// The new function needs a root node because other nodes can branch to the
|
|
// head of the region, but the entry node of a function cannot have preds.
|
|
BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
|
|
"newFuncRoot");
|
|
auto *BranchI = BranchInst::Create(header);
|
|
// If the original function has debug info, we have to add a debug location
|
|
// to the new branch instruction from the artificial entry block.
|
|
// We use the debug location of the first instruction in the extracted
|
|
// blocks, as there is no other equivalent line in the source code.
|
|
if (oldFunction->getSubprogram()) {
|
|
any_of(Blocks, [&BranchI](const BasicBlock *BB) {
|
|
return any_of(*BB, [&BranchI](const Instruction &I) {
|
|
if (!I.getDebugLoc())
|
|
return false;
|
|
BranchI->setDebugLoc(I.getDebugLoc());
|
|
return true;
|
|
});
|
|
});
|
|
}
|
|
newFuncRoot->getInstList().push_back(BranchI);
|
|
|
|
ValueSet inputs, outputs, SinkingCands, HoistingCands;
|
|
BasicBlock *CommonExit = nullptr;
|
|
findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
|
|
assert(HoistingCands.empty() || CommonExit);
|
|
|
|
// Find inputs to, outputs from the code region.
|
|
findInputsOutputs(inputs, outputs, SinkingCands);
|
|
|
|
// Now sink all instructions which only have non-phi uses inside the region.
|
|
// Group the allocas at the start of the block, so that any bitcast uses of
|
|
// the allocas are well-defined.
|
|
AllocaInst *FirstSunkAlloca = nullptr;
|
|
for (auto *II : SinkingCands) {
|
|
if (auto *AI = dyn_cast<AllocaInst>(II)) {
|
|
AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
|
|
if (!FirstSunkAlloca)
|
|
FirstSunkAlloca = AI;
|
|
}
|
|
}
|
|
assert((SinkingCands.empty() || FirstSunkAlloca) &&
|
|
"Did not expect a sink candidate without any allocas");
|
|
for (auto *II : SinkingCands) {
|
|
if (!isa<AllocaInst>(II)) {
|
|
cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
|
|
}
|
|
}
|
|
|
|
if (!HoistingCands.empty()) {
|
|
auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
|
|
Instruction *TI = HoistToBlock->getTerminator();
|
|
for (auto *II : HoistingCands)
|
|
cast<Instruction>(II)->moveBefore(TI);
|
|
}
|
|
|
|
// Collect objects which are inputs to the extraction region and also
|
|
// referenced by lifetime start markers within it. The effects of these
|
|
// markers must be replicated in the calling function to prevent the stack
|
|
// coloring pass from merging slots which store input objects.
|
|
ValueSet LifetimesStart;
|
|
eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
|
|
|
|
// Construct new function based on inputs/outputs & add allocas for all defs.
|
|
Function *newFunction =
|
|
constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
|
|
oldFunction, oldFunction->getParent());
|
|
|
|
// Update the entry count of the function.
|
|
if (BFI) {
|
|
auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
|
|
if (Count.hasValue())
|
|
newFunction->setEntryCount(
|
|
ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
|
|
BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
|
|
}
|
|
|
|
CallInst *TheCall =
|
|
emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
|
|
|
|
moveCodeToFunction(newFunction);
|
|
|
|
// Replicate the effects of any lifetime start/end markers which referenced
|
|
// input objects in the extraction region by placing markers around the call.
|
|
insertLifetimeMarkersSurroundingCall(
|
|
oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
|
|
|
|
// Propagate personality info to the new function if there is one.
|
|
if (oldFunction->hasPersonalityFn())
|
|
newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
|
|
|
|
// Update the branch weights for the exit block.
|
|
if (BFI && NumExitBlocks > 1)
|
|
calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
|
|
|
|
// Loop over all of the PHI nodes in the header and exit blocks, and change
|
|
// any references to the old incoming edge to be the new incoming edge.
|
|
for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (!Blocks.count(PN->getIncomingBlock(i)))
|
|
PN->setIncomingBlock(i, newFuncRoot);
|
|
}
|
|
|
|
for (BasicBlock *ExitBB : ExitBlocks)
|
|
for (PHINode &PN : ExitBB->phis()) {
|
|
Value *IncomingCodeReplacerVal = nullptr;
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
|
// Ignore incoming values from outside of the extracted region.
|
|
if (!Blocks.count(PN.getIncomingBlock(i)))
|
|
continue;
|
|
|
|
// Ensure that there is only one incoming value from codeReplacer.
|
|
if (!IncomingCodeReplacerVal) {
|
|
PN.setIncomingBlock(i, codeReplacer);
|
|
IncomingCodeReplacerVal = PN.getIncomingValue(i);
|
|
} else
|
|
assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
|
|
"PHI has two incompatbile incoming values from codeRepl");
|
|
}
|
|
}
|
|
|
|
fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
|
|
|
|
// Mark the new function `noreturn` if applicable. Terminators which resume
|
|
// exception propagation are treated as returning instructions. This is to
|
|
// avoid inserting traps after calls to outlined functions which unwind.
|
|
bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
|
|
const Instruction *Term = BB.getTerminator();
|
|
return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
|
|
});
|
|
if (doesNotReturn)
|
|
newFunction->setDoesNotReturn();
|
|
|
|
LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
|
|
newFunction->dump();
|
|
report_fatal_error("verification of newFunction failed!");
|
|
});
|
|
LLVM_DEBUG(if (verifyFunction(*oldFunction))
|
|
report_fatal_error("verification of oldFunction failed!"));
|
|
LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
|
|
report_fatal_error("Stale Asumption cache for old Function!"));
|
|
return newFunction;
|
|
}
|
|
|
|
bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
|
|
const Function &NewFunc,
|
|
AssumptionCache *AC) {
|
|
for (auto AssumeVH : AC->assumptions()) {
|
|
auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
|
|
if (!I)
|
|
continue;
|
|
|
|
// There shouldn't be any llvm.assume intrinsics in the new function.
|
|
if (I->getFunction() != &OldFunc)
|
|
return true;
|
|
|
|
// There shouldn't be any stale affected values in the assumption cache
|
|
// that were previously in the old function, but that have now been moved
|
|
// to the new function.
|
|
for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
|
|
auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
|
|
if (!AffectedCI)
|
|
continue;
|
|
if (AffectedCI->getFunction() != &OldFunc)
|
|
return true;
|
|
auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
|
|
if (AssumedInst->getFunction() != &OldFunc)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|