forked from OSchip/llvm-project
635 lines
23 KiB
C++
635 lines
23 KiB
C++
//===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BlockGenerator and VectorBlockGenerator classes,
|
|
// which generate sequential code and vectorized code for a polyhedral
|
|
// statement, respectively.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/ScopInfo.h"
|
|
#include "isl/aff.h"
|
|
#include "isl/ast.h"
|
|
#include "isl/ast_build.h"
|
|
#include "isl/set.h"
|
|
#include "polly/CodeGen/BlockGenerators.h"
|
|
#include "polly/CodeGen/CodeGeneration.h"
|
|
#include "polly/CodeGen/IslExprBuilder.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/Support/GICHelper.h"
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
static cl::opt<bool>
|
|
Aligned("enable-polly-aligned",
|
|
cl::desc("Assumed aligned memory accesses."), cl::Hidden,
|
|
cl::value_desc("OpenMP code generation enabled if true"),
|
|
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool, true>
|
|
SCEVCodegenF("polly-codegen-scev",
|
|
cl::desc("Use SCEV based code generation."), cl::Hidden,
|
|
cl::location(SCEVCodegen), cl::init(false), cl::ZeroOrMore,
|
|
cl::cat(PollyCategory));
|
|
|
|
bool polly::SCEVCodegen;
|
|
|
|
bool polly::canSynthesize(const Instruction *I, const llvm::LoopInfo *LI,
|
|
ScalarEvolution *SE, const Region *R) {
|
|
if (SCEVCodegen) {
|
|
if (!I || !SE->isSCEVable(I->getType()))
|
|
return false;
|
|
|
|
if (const SCEV *Scev = SE->getSCEV(const_cast<Instruction *>(I)))
|
|
if (!isa<SCEVCouldNotCompute>(Scev))
|
|
if (!hasScalarDepsInsideRegion(Scev, R))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
Loop *L = LI->getLoopFor(I->getParent());
|
|
return L && I == L->getCanonicalInductionVariable() && R->contains(L);
|
|
}
|
|
|
|
BlockGenerator::BlockGenerator(PollyIRBuilder &B, ScopStmt &Stmt, Pass *P,
|
|
LoopInfo &LI, ScalarEvolution &SE,
|
|
isl_ast_build *Build,
|
|
IslExprBuilder *ExprBuilder)
|
|
: Builder(B), Statement(Stmt), P(P), LI(LI), SE(SE), Build(Build),
|
|
ExprBuilder(ExprBuilder) {}
|
|
|
|
Value *BlockGenerator::lookupAvailableValue(const Value *Old, ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap) const {
|
|
// We assume constants never change.
|
|
// This avoids map lookups for many calls to this function.
|
|
if (isa<Constant>(Old))
|
|
return const_cast<Value *>(Old);
|
|
|
|
if (Value *New = GlobalMap.lookup(Old)) {
|
|
if (Old->getType()->getScalarSizeInBits() <
|
|
New->getType()->getScalarSizeInBits())
|
|
New = Builder.CreateTruncOrBitCast(New, Old->getType());
|
|
|
|
return New;
|
|
}
|
|
|
|
// Or it is probably a scop-constant value defined as global, function
|
|
// parameter or an instruction not within the scop.
|
|
if (isa<GlobalValue>(Old) || isa<Argument>(Old))
|
|
return const_cast<Value *>(Old);
|
|
|
|
if (const Instruction *Inst = dyn_cast<Instruction>(Old))
|
|
if (!Statement.getParent()->getRegion().contains(Inst->getParent()))
|
|
return const_cast<Value *>(Old);
|
|
|
|
if (Value *New = BBMap.lookup(Old))
|
|
return New;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Value *BlockGenerator::getNewValue(const Value *Old, ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap, LoopToScevMapT <S,
|
|
Loop *L) {
|
|
if (Value *New = lookupAvailableValue(Old, BBMap, GlobalMap))
|
|
return New;
|
|
|
|
if (SCEVCodegen && SE.isSCEVable(Old->getType()))
|
|
if (const SCEV *Scev = SE.getSCEVAtScope(const_cast<Value *>(Old), L)) {
|
|
if (!isa<SCEVCouldNotCompute>(Scev)) {
|
|
const SCEV *NewScev = apply(Scev, LTS, SE);
|
|
ValueToValueMap VTV;
|
|
VTV.insert(BBMap.begin(), BBMap.end());
|
|
VTV.insert(GlobalMap.begin(), GlobalMap.end());
|
|
NewScev = SCEVParameterRewriter::rewrite(NewScev, SE, VTV);
|
|
SCEVExpander Expander(SE, "polly");
|
|
Value *Expanded = Expander.expandCodeFor(NewScev, Old->getType(),
|
|
Builder.GetInsertPoint());
|
|
|
|
BBMap[Old] = Expanded;
|
|
return Expanded;
|
|
}
|
|
}
|
|
|
|
// Now the scalar dependence is neither available nor SCEVCodegenable, this
|
|
// should never happen in the current code generator.
|
|
llvm_unreachable("Unexpected scalar dependence in region!");
|
|
return nullptr;
|
|
}
|
|
|
|
void BlockGenerator::copyInstScalar(const Instruction *Inst, ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap, LoopToScevMapT <S) {
|
|
// We do not generate debug intrinsics as we did not investigate how to
|
|
// copy them correctly. At the current state, they just crash the code
|
|
// generation as the meta-data operands are not correctly copied.
|
|
if (isa<DbgInfoIntrinsic>(Inst))
|
|
return;
|
|
|
|
Instruction *NewInst = Inst->clone();
|
|
|
|
// Replace old operands with the new ones.
|
|
for (Value *OldOperand : Inst->operands()) {
|
|
Value *NewOperand =
|
|
getNewValue(OldOperand, BBMap, GlobalMap, LTS, getLoopForInst(Inst));
|
|
|
|
if (!NewOperand) {
|
|
assert(!isa<StoreInst>(NewInst) &&
|
|
"Store instructions are always needed!");
|
|
delete NewInst;
|
|
return;
|
|
}
|
|
|
|
NewInst->replaceUsesOfWith(OldOperand, NewOperand);
|
|
}
|
|
|
|
Builder.Insert(NewInst);
|
|
BBMap[Inst] = NewInst;
|
|
|
|
if (!NewInst->getType()->isVoidTy())
|
|
NewInst->setName("p_" + Inst->getName());
|
|
}
|
|
|
|
Value *BlockGenerator::getNewAccessOperand(const MemoryAccess &MA) {
|
|
isl_pw_multi_aff *PWSchedule, *PWAccRel;
|
|
isl_union_map *ScheduleU;
|
|
isl_map *Schedule, *AccRel;
|
|
isl_ast_expr *Expr;
|
|
|
|
assert(ExprBuilder && Build &&
|
|
"Cannot generate new value without IslExprBuilder!");
|
|
|
|
AccRel = MA.getNewAccessRelation();
|
|
assert(AccRel && "We generate new code only for new access relations!");
|
|
|
|
ScheduleU = isl_ast_build_get_schedule(Build);
|
|
ScheduleU = isl_union_map_intersect_domain(
|
|
ScheduleU, isl_union_set_from_set(MA.getStatement()->getDomain()));
|
|
Schedule = isl_map_from_union_map(ScheduleU);
|
|
|
|
PWSchedule = isl_pw_multi_aff_from_map(isl_map_reverse(Schedule));
|
|
PWAccRel = isl_pw_multi_aff_from_map(AccRel);
|
|
PWAccRel = isl_pw_multi_aff_pullback_pw_multi_aff(PWAccRel, PWSchedule);
|
|
|
|
Expr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
|
|
|
|
return ExprBuilder->create(Expr);
|
|
}
|
|
|
|
Value *BlockGenerator::generateLocationAccessed(const Instruction *Inst,
|
|
const Value *Pointer,
|
|
ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
const MemoryAccess &MA = Statement.getAccessFor(Inst);
|
|
isl_map *NewAccRel = MA.getNewAccessRelation();
|
|
|
|
Value *NewPointer;
|
|
if (NewAccRel)
|
|
NewPointer = getNewAccessOperand(MA);
|
|
else
|
|
NewPointer =
|
|
getNewValue(Pointer, BBMap, GlobalMap, LTS, getLoopForInst(Inst));
|
|
|
|
isl_map_free(NewAccRel);
|
|
return NewPointer;
|
|
}
|
|
|
|
Loop *BlockGenerator::getLoopForInst(const llvm::Instruction *Inst) {
|
|
return LI.getLoopFor(Inst->getParent());
|
|
}
|
|
|
|
Value *BlockGenerator::generateScalarLoad(const LoadInst *Load,
|
|
ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
const Instruction *Inst = dyn_cast<Instruction>(Load);
|
|
Value *NewPointer =
|
|
generateLocationAccessed(Inst, Pointer, BBMap, GlobalMap, LTS);
|
|
Value *ScalarLoad =
|
|
Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
|
|
return ScalarLoad;
|
|
}
|
|
|
|
Value *BlockGenerator::generateScalarStore(const StoreInst *Store,
|
|
ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
const Value *Pointer = Store->getPointerOperand();
|
|
Value *NewPointer =
|
|
generateLocationAccessed(Store, Pointer, BBMap, GlobalMap, LTS);
|
|
Value *ValueOperand = getNewValue(Store->getValueOperand(), BBMap, GlobalMap,
|
|
LTS, getLoopForInst(Store));
|
|
|
|
return Builder.CreateStore(ValueOperand, NewPointer);
|
|
}
|
|
|
|
void BlockGenerator::copyInstruction(const Instruction *Inst, ValueMapT &BBMap,
|
|
ValueMapT &GlobalMap,
|
|
LoopToScevMapT <S) {
|
|
// Terminator instructions control the control flow. They are explicitly
|
|
// expressed in the clast and do not need to be copied.
|
|
if (Inst->isTerminator())
|
|
return;
|
|
|
|
if (canSynthesize(Inst, &P->getAnalysis<LoopInfo>(), &SE,
|
|
&Statement.getParent()->getRegion()))
|
|
return;
|
|
|
|
if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
|
|
Value *NewLoad = generateScalarLoad(Load, BBMap, GlobalMap, LTS);
|
|
// Compute NewLoad before its insertion in BBMap to make the insertion
|
|
// deterministic.
|
|
BBMap[Load] = NewLoad;
|
|
return;
|
|
}
|
|
|
|
if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
|
|
Value *NewStore = generateScalarStore(Store, BBMap, GlobalMap, LTS);
|
|
// Compute NewStore before its insertion in BBMap to make the insertion
|
|
// deterministic.
|
|
BBMap[Store] = NewStore;
|
|
return;
|
|
}
|
|
|
|
copyInstScalar(Inst, BBMap, GlobalMap, LTS);
|
|
}
|
|
|
|
void BlockGenerator::copyBB(ValueMapT &GlobalMap, LoopToScevMapT <S) {
|
|
BasicBlock *BB = Statement.getBasicBlock();
|
|
BasicBlock *CopyBB =
|
|
SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P);
|
|
CopyBB->setName("polly.stmt." + BB->getName());
|
|
Builder.SetInsertPoint(CopyBB->begin());
|
|
|
|
ValueMapT BBMap;
|
|
|
|
for (Instruction &Inst : *BB)
|
|
copyInstruction(&Inst, BBMap, GlobalMap, LTS);
|
|
}
|
|
|
|
VectorBlockGenerator::VectorBlockGenerator(
|
|
PollyIRBuilder &B, VectorValueMapT &GlobalMaps,
|
|
std::vector<LoopToScevMapT> &VLTS, ScopStmt &Stmt,
|
|
__isl_keep isl_map *Schedule, Pass *P, LoopInfo &LI, ScalarEvolution &SE)
|
|
: BlockGenerator(B, Stmt, P, LI, SE, nullptr, nullptr),
|
|
GlobalMaps(GlobalMaps), VLTS(VLTS), Schedule(Schedule) {
|
|
assert(GlobalMaps.size() > 1 && "Only one vector lane found");
|
|
assert(Schedule && "No statement domain provided");
|
|
}
|
|
|
|
Value *VectorBlockGenerator::getVectorValue(const Value *Old,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps,
|
|
Loop *L) {
|
|
if (Value *NewValue = VectorMap.lookup(Old))
|
|
return NewValue;
|
|
|
|
int Width = getVectorWidth();
|
|
|
|
Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
|
|
|
|
for (int Lane = 0; Lane < Width; Lane++)
|
|
Vector = Builder.CreateInsertElement(
|
|
Vector,
|
|
getNewValue(Old, ScalarMaps[Lane], GlobalMaps[Lane], VLTS[Lane], L),
|
|
Builder.getInt32(Lane));
|
|
|
|
VectorMap[Old] = Vector;
|
|
|
|
return Vector;
|
|
}
|
|
|
|
Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
|
|
PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
|
|
assert(PointerTy && "PointerType expected");
|
|
|
|
Type *ScalarType = PointerTy->getElementType();
|
|
VectorType *VectorType = VectorType::get(ScalarType, Width);
|
|
|
|
return PointerType::getUnqual(VectorType);
|
|
}
|
|
|
|
Value *
|
|
VectorBlockGenerator::generateStrideOneLoad(const LoadInst *Load,
|
|
VectorValueMapT &ScalarMaps,
|
|
bool NegativeStride = false) {
|
|
unsigned VectorWidth = getVectorWidth();
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
|
|
unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
|
|
|
|
Value *NewPointer = nullptr;
|
|
NewPointer = getNewValue(Pointer, ScalarMaps[Offset], GlobalMaps[Offset],
|
|
VLTS[Offset], getLoopForInst(Load));
|
|
Value *VectorPtr =
|
|
Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
|
|
LoadInst *VecLoad =
|
|
Builder.CreateLoad(VectorPtr, Load->getName() + "_p_vec_full");
|
|
if (!Aligned)
|
|
VecLoad->setAlignment(8);
|
|
|
|
if (NegativeStride) {
|
|
SmallVector<Constant *, 16> Indices;
|
|
for (int i = VectorWidth - 1; i >= 0; i--)
|
|
Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
|
|
Constant *SV = llvm::ConstantVector::get(Indices);
|
|
Value *RevVecLoad = Builder.CreateShuffleVector(
|
|
VecLoad, VecLoad, SV, Load->getName() + "_reverse");
|
|
return RevVecLoad;
|
|
}
|
|
|
|
return VecLoad;
|
|
}
|
|
|
|
Value *VectorBlockGenerator::generateStrideZeroLoad(const LoadInst *Load,
|
|
ValueMapT &BBMap) {
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
|
|
Value *NewPointer =
|
|
getNewValue(Pointer, BBMap, GlobalMaps[0], VLTS[0], getLoopForInst(Load));
|
|
Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
|
|
Load->getName() + "_p_vec_p");
|
|
LoadInst *ScalarLoad =
|
|
Builder.CreateLoad(VectorPtr, Load->getName() + "_p_splat_one");
|
|
|
|
if (!Aligned)
|
|
ScalarLoad->setAlignment(8);
|
|
|
|
Constant *SplatVector = Constant::getNullValue(
|
|
VectorType::get(Builder.getInt32Ty(), getVectorWidth()));
|
|
|
|
Value *VectorLoad = Builder.CreateShuffleVector(
|
|
ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
|
|
return VectorLoad;
|
|
}
|
|
|
|
Value *
|
|
VectorBlockGenerator::generateUnknownStrideLoad(const LoadInst *Load,
|
|
VectorValueMapT &ScalarMaps) {
|
|
int VectorWidth = getVectorWidth();
|
|
const Value *Pointer = Load->getPointerOperand();
|
|
VectorType *VectorType = VectorType::get(
|
|
dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
|
|
|
|
Value *Vector = UndefValue::get(VectorType);
|
|
|
|
for (int i = 0; i < VectorWidth; i++) {
|
|
Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i],
|
|
VLTS[i], getLoopForInst(Load));
|
|
Value *ScalarLoad =
|
|
Builder.CreateLoad(NewPointer, Load->getName() + "_p_scalar_");
|
|
Vector = Builder.CreateInsertElement(
|
|
Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
|
|
}
|
|
|
|
return Vector;
|
|
}
|
|
|
|
void VectorBlockGenerator::generateLoad(const LoadInst *Load,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
if (PollyVectorizerChoice >= VECTORIZER_FIRST_NEED_GROUPED_UNROLL ||
|
|
!VectorType::isValidElementType(Load->getType())) {
|
|
for (int i = 0; i < getVectorWidth(); i++)
|
|
ScalarMaps[i][Load] =
|
|
generateScalarLoad(Load, ScalarMaps[i], GlobalMaps[i], VLTS[i]);
|
|
return;
|
|
}
|
|
|
|
const MemoryAccess &Access = Statement.getAccessFor(Load);
|
|
|
|
// Make sure we have scalar values available to access the pointer to
|
|
// the data location.
|
|
extractScalarValues(Load, VectorMap, ScalarMaps);
|
|
|
|
Value *NewLoad;
|
|
if (Access.isStrideZero(isl_map_copy(Schedule)))
|
|
NewLoad = generateStrideZeroLoad(Load, ScalarMaps[0]);
|
|
else if (Access.isStrideOne(isl_map_copy(Schedule)))
|
|
NewLoad = generateStrideOneLoad(Load, ScalarMaps);
|
|
else if (Access.isStrideX(isl_map_copy(Schedule), -1))
|
|
NewLoad = generateStrideOneLoad(Load, ScalarMaps, true);
|
|
else
|
|
NewLoad = generateUnknownStrideLoad(Load, ScalarMaps);
|
|
|
|
VectorMap[Load] = NewLoad;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyUnaryInst(const UnaryInstruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
int VectorWidth = getVectorWidth();
|
|
Value *NewOperand = getVectorValue(Inst->getOperand(0), VectorMap, ScalarMaps,
|
|
getLoopForInst(Inst));
|
|
|
|
assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
|
|
|
|
const CastInst *Cast = dyn_cast<CastInst>(Inst);
|
|
VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
|
|
VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
|
|
}
|
|
|
|
void VectorBlockGenerator::copyBinaryInst(const BinaryOperator *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
Loop *L = getLoopForInst(Inst);
|
|
Value *OpZero = Inst->getOperand(0);
|
|
Value *OpOne = Inst->getOperand(1);
|
|
|
|
Value *NewOpZero, *NewOpOne;
|
|
NewOpZero = getVectorValue(OpZero, VectorMap, ScalarMaps, L);
|
|
NewOpOne = getVectorValue(OpOne, VectorMap, ScalarMaps, L);
|
|
|
|
Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
|
|
Inst->getName() + "p_vec");
|
|
VectorMap[Inst] = NewInst;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyStore(const StoreInst *Store,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
int VectorWidth = getVectorWidth();
|
|
|
|
const MemoryAccess &Access = Statement.getAccessFor(Store);
|
|
|
|
const Value *Pointer = Store->getPointerOperand();
|
|
Value *Vector = getVectorValue(Store->getValueOperand(), VectorMap,
|
|
ScalarMaps, getLoopForInst(Store));
|
|
|
|
// Make sure we have scalar values available to access the pointer to
|
|
// the data location.
|
|
extractScalarValues(Store, VectorMap, ScalarMaps);
|
|
|
|
if (Access.isStrideOne(isl_map_copy(Schedule))) {
|
|
Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
|
|
Value *NewPointer = getNewValue(Pointer, ScalarMaps[0], GlobalMaps[0],
|
|
VLTS[0], getLoopForInst(Store));
|
|
|
|
Value *VectorPtr =
|
|
Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
|
|
StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
|
|
|
|
if (!Aligned)
|
|
Store->setAlignment(8);
|
|
} else {
|
|
for (unsigned i = 0; i < ScalarMaps.size(); i++) {
|
|
Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
|
|
Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i],
|
|
VLTS[i], getLoopForInst(Store));
|
|
Builder.CreateStore(Scalar, NewPointer);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
|
|
ValueMapT &VectorMap) {
|
|
for (Value *Operand : Inst->operands())
|
|
if (VectorMap.count(Operand))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
bool HasVectorOperand = false;
|
|
int VectorWidth = getVectorWidth();
|
|
|
|
for (Value *Operand : Inst->operands()) {
|
|
ValueMapT::iterator VecOp = VectorMap.find(Operand);
|
|
|
|
if (VecOp == VectorMap.end())
|
|
continue;
|
|
|
|
HasVectorOperand = true;
|
|
Value *NewVector = VecOp->second;
|
|
|
|
for (int i = 0; i < VectorWidth; ++i) {
|
|
ValueMapT &SM = ScalarMaps[i];
|
|
|
|
// If there is one scalar extracted, all scalar elements should have
|
|
// already been extracted by the code here. So no need to check for the
|
|
// existance of all of them.
|
|
if (SM.count(Operand))
|
|
break;
|
|
|
|
SM[Operand] =
|
|
Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
|
|
}
|
|
}
|
|
|
|
return HasVectorOperand;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyInstScalarized(const Instruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
bool HasVectorOperand;
|
|
int VectorWidth = getVectorWidth();
|
|
|
|
HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
|
|
|
|
for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
|
|
copyInstScalar(Inst, ScalarMaps[VectorLane], GlobalMaps[VectorLane],
|
|
VLTS[VectorLane]);
|
|
|
|
if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
|
|
return;
|
|
|
|
// Make the result available as vector value.
|
|
VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
|
|
Value *Vector = UndefValue::get(VectorType);
|
|
|
|
for (int i = 0; i < VectorWidth; i++)
|
|
Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
|
|
Builder.getInt32(i));
|
|
|
|
VectorMap[Inst] = Vector;
|
|
}
|
|
|
|
int VectorBlockGenerator::getVectorWidth() { return GlobalMaps.size(); }
|
|
|
|
void VectorBlockGenerator::copyInstruction(const Instruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
// Terminator instructions control the control flow. They are explicitly
|
|
// expressed in the clast and do not need to be copied.
|
|
if (Inst->isTerminator())
|
|
return;
|
|
|
|
if (canSynthesize(Inst, &P->getAnalysis<LoopInfo>(), &SE,
|
|
&Statement.getParent()->getRegion()))
|
|
return;
|
|
|
|
if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
|
|
generateLoad(Load, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
if (hasVectorOperands(Inst, VectorMap)) {
|
|
if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
|
|
copyStore(Store, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) {
|
|
copyUnaryInst(Unary, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) {
|
|
copyBinaryInst(Binary, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
// Falltrough: We generate scalar instructions, if we don't know how to
|
|
// generate vector code.
|
|
}
|
|
|
|
copyInstScalarized(Inst, VectorMap, ScalarMaps);
|
|
}
|
|
|
|
void VectorBlockGenerator::copyBB() {
|
|
BasicBlock *BB = Statement.getBasicBlock();
|
|
BasicBlock *CopyBB =
|
|
SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P);
|
|
CopyBB->setName("polly.stmt." + BB->getName());
|
|
Builder.SetInsertPoint(CopyBB->begin());
|
|
|
|
// Create two maps that store the mapping from the original instructions of
|
|
// the old basic block to their copies in the new basic block. Those maps
|
|
// are basic block local.
|
|
//
|
|
// As vector code generation is supported there is one map for scalar values
|
|
// and one for vector values.
|
|
//
|
|
// In case we just do scalar code generation, the vectorMap is not used and
|
|
// the scalarMap has just one dimension, which contains the mapping.
|
|
//
|
|
// In case vector code generation is done, an instruction may either appear
|
|
// in the vector map once (as it is calculating >vectorwidth< values at a
|
|
// time. Or (if the values are calculated using scalar operations), it
|
|
// appears once in every dimension of the scalarMap.
|
|
VectorValueMapT ScalarBlockMap(getVectorWidth());
|
|
ValueMapT VectorBlockMap;
|
|
|
|
for (Instruction &Inst : *BB)
|
|
copyInstruction(&Inst, VectorBlockMap, ScalarBlockMap);
|
|
}
|