llvm-project/clang/lib/AST/VTableBuilder.cpp

3278 lines
120 KiB
C++

//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with generation of the layout of virtual tables.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/VTableBuilder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdio>
using namespace clang;
#define DUMP_OVERRIDERS 0
namespace {
/// BaseOffset - Represents an offset from a derived class to a direct or
/// indirect base class.
struct BaseOffset {
/// DerivedClass - The derived class.
const CXXRecordDecl *DerivedClass;
/// VirtualBase - If the path from the derived class to the base class
/// involves virtual base classes, this holds the declaration of the last
/// virtual base in this path (i.e. closest to the base class).
const CXXRecordDecl *VirtualBase;
/// NonVirtualOffset - The offset from the derived class to the base class.
/// (Or the offset from the virtual base class to the base class, if the
/// path from the derived class to the base class involves a virtual base
/// class.
CharUnits NonVirtualOffset;
BaseOffset() : DerivedClass(0), VirtualBase(0),
NonVirtualOffset(CharUnits::Zero()) { }
BaseOffset(const CXXRecordDecl *DerivedClass,
const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
: DerivedClass(DerivedClass), VirtualBase(VirtualBase),
NonVirtualOffset(NonVirtualOffset) { }
bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
};
/// FinalOverriders - Contains the final overrider member functions for all
/// member functions in the base subobjects of a class.
class FinalOverriders {
public:
/// OverriderInfo - Information about a final overrider.
struct OverriderInfo {
/// Method - The method decl of the overrider.
const CXXMethodDecl *Method;
/// Offset - the base offset of the overrider's parent in the layout class.
CharUnits Offset;
OverriderInfo() : Method(0), Offset(CharUnits::Zero()) { }
};
private:
/// MostDerivedClass - The most derived class for which the final overriders
/// are stored.
const CXXRecordDecl *MostDerivedClass;
/// MostDerivedClassOffset - If we're building final overriders for a
/// construction vtable, this holds the offset from the layout class to the
/// most derived class.
const CharUnits MostDerivedClassOffset;
/// LayoutClass - The class we're using for layout information. Will be
/// different than the most derived class if the final overriders are for a
/// construction vtable.
const CXXRecordDecl *LayoutClass;
ASTContext &Context;
/// MostDerivedClassLayout - the AST record layout of the most derived class.
const ASTRecordLayout &MostDerivedClassLayout;
/// MethodBaseOffsetPairTy - Uniquely identifies a member function
/// in a base subobject.
typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
typedef llvm::DenseMap<MethodBaseOffsetPairTy,
OverriderInfo> OverridersMapTy;
/// OverridersMap - The final overriders for all virtual member functions of
/// all the base subobjects of the most derived class.
OverridersMapTy OverridersMap;
/// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
/// as a record decl and a subobject number) and its offsets in the most
/// derived class as well as the layout class.
typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
CharUnits> SubobjectOffsetMapTy;
typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
/// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
/// given base.
void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
CharUnits OffsetInLayoutClass,
SubobjectOffsetMapTy &SubobjectOffsets,
SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
SubobjectCountMapTy &SubobjectCounts);
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
/// dump - dump the final overriders for a base subobject, and all its direct
/// and indirect base subobjects.
void dump(raw_ostream &Out, BaseSubobject Base,
VisitedVirtualBasesSetTy& VisitedVirtualBases);
public:
FinalOverriders(const CXXRecordDecl *MostDerivedClass,
CharUnits MostDerivedClassOffset,
const CXXRecordDecl *LayoutClass);
/// getOverrider - Get the final overrider for the given method declaration in
/// the subobject with the given base offset.
OverriderInfo getOverrider(const CXXMethodDecl *MD,
CharUnits BaseOffset) const {
assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
"Did not find overrider!");
return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
}
/// dump - dump the final overriders.
void dump() {
VisitedVirtualBasesSetTy VisitedVirtualBases;
dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
VisitedVirtualBases);
}
};
FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
CharUnits MostDerivedClassOffset,
const CXXRecordDecl *LayoutClass)
: MostDerivedClass(MostDerivedClass),
MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
Context(MostDerivedClass->getASTContext()),
MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
// Compute base offsets.
SubobjectOffsetMapTy SubobjectOffsets;
SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
SubobjectCountMapTy SubobjectCounts;
ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
/*IsVirtual=*/false,
MostDerivedClassOffset,
SubobjectOffsets, SubobjectLayoutClassOffsets,
SubobjectCounts);
// Get the final overriders.
CXXFinalOverriderMap FinalOverriders;
MostDerivedClass->getFinalOverriders(FinalOverriders);
for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
E = FinalOverriders.end(); I != E; ++I) {
const CXXMethodDecl *MD = I->first;
const OverridingMethods& Methods = I->second;
for (OverridingMethods::const_iterator I = Methods.begin(),
E = Methods.end(); I != E; ++I) {
unsigned SubobjectNumber = I->first;
assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
SubobjectNumber)) &&
"Did not find subobject offset!");
CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
SubobjectNumber)];
assert(I->second.size() == 1 && "Final overrider is not unique!");
const UniqueVirtualMethod &Method = I->second.front();
const CXXRecordDecl *OverriderRD = Method.Method->getParent();
assert(SubobjectLayoutClassOffsets.count(
std::make_pair(OverriderRD, Method.Subobject))
&& "Did not find subobject offset!");
CharUnits OverriderOffset =
SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
Method.Subobject)];
OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
assert(!Overrider.Method && "Overrider should not exist yet!");
Overrider.Offset = OverriderOffset;
Overrider.Method = Method.Method;
}
}
#if DUMP_OVERRIDERS
// And dump them (for now).
dump();
#endif
}
static BaseOffset ComputeBaseOffset(ASTContext &Context,
const CXXRecordDecl *DerivedRD,
const CXXBasePath &Path) {
CharUnits NonVirtualOffset = CharUnits::Zero();
unsigned NonVirtualStart = 0;
const CXXRecordDecl *VirtualBase = 0;
// First, look for the virtual base class.
for (int I = Path.size(), E = 0; I != E; --I) {
const CXXBasePathElement &Element = Path[I - 1];
if (Element.Base->isVirtual()) {
NonVirtualStart = I;
QualType VBaseType = Element.Base->getType();
VirtualBase = VBaseType->getAsCXXRecordDecl();
break;
}
}
// Now compute the non-virtual offset.
for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
const CXXBasePathElement &Element = Path[I];
// Check the base class offset.
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
NonVirtualOffset += Layout.getBaseClassOffset(Base);
}
// FIXME: This should probably use CharUnits or something. Maybe we should
// even change the base offsets in ASTRecordLayout to be specified in
// CharUnits.
return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
}
static BaseOffset ComputeBaseOffset(ASTContext &Context,
const CXXRecordDecl *BaseRD,
const CXXRecordDecl *DerivedRD) {
CXXBasePaths Paths(/*FindAmbiguities=*/false,
/*RecordPaths=*/true, /*DetectVirtual=*/false);
if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
llvm_unreachable("Class must be derived from the passed in base class!");
return ComputeBaseOffset(Context, DerivedRD, Paths.front());
}
static BaseOffset
ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
const CXXMethodDecl *DerivedMD,
const CXXMethodDecl *BaseMD) {
const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
// Canonicalize the return types.
CanQualType CanDerivedReturnType =
Context.getCanonicalType(DerivedFT->getResultType());
CanQualType CanBaseReturnType =
Context.getCanonicalType(BaseFT->getResultType());
assert(CanDerivedReturnType->getTypeClass() ==
CanBaseReturnType->getTypeClass() &&
"Types must have same type class!");
if (CanDerivedReturnType == CanBaseReturnType) {
// No adjustment needed.
return BaseOffset();
}
if (isa<ReferenceType>(CanDerivedReturnType)) {
CanDerivedReturnType =
CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
CanBaseReturnType =
CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
} else if (isa<PointerType>(CanDerivedReturnType)) {
CanDerivedReturnType =
CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
CanBaseReturnType =
CanBaseReturnType->getAs<PointerType>()->getPointeeType();
} else {
llvm_unreachable("Unexpected return type!");
}
// We need to compare unqualified types here; consider
// const T *Base::foo();
// T *Derived::foo();
if (CanDerivedReturnType.getUnqualifiedType() ==
CanBaseReturnType.getUnqualifiedType()) {
// No adjustment needed.
return BaseOffset();
}
const CXXRecordDecl *DerivedRD =
cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
const CXXRecordDecl *BaseRD =
cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
return ComputeBaseOffset(Context, BaseRD, DerivedRD);
}
void
FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
CharUnits OffsetInLayoutClass,
SubobjectOffsetMapTy &SubobjectOffsets,
SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
SubobjectCountMapTy &SubobjectCounts) {
const CXXRecordDecl *RD = Base.getBase();
unsigned SubobjectNumber = 0;
if (!IsVirtual)
SubobjectNumber = ++SubobjectCounts[RD];
// Set up the subobject to offset mapping.
assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
&& "Subobject offset already exists!");
assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
&& "Subobject offset already exists!");
SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
OffsetInLayoutClass;
// Traverse our bases.
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
CharUnits BaseOffset;
CharUnits BaseOffsetInLayoutClass;
if (I->isVirtual()) {
// Check if we've visited this virtual base before.
if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
continue;
const ASTRecordLayout &LayoutClassLayout =
Context.getASTRecordLayout(LayoutClass);
BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
BaseOffsetInLayoutClass =
LayoutClassLayout.getVBaseClassOffset(BaseDecl);
} else {
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
BaseOffset = Base.getBaseOffset() + Offset;
BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
}
ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
I->isVirtual(), BaseOffsetInLayoutClass,
SubobjectOffsets, SubobjectLayoutClassOffsets,
SubobjectCounts);
}
}
void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
VisitedVirtualBasesSetTy &VisitedVirtualBases) {
const CXXRecordDecl *RD = Base.getBase();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
// Ignore bases that don't have any virtual member functions.
if (!BaseDecl->isPolymorphic())
continue;
CharUnits BaseOffset;
if (I->isVirtual()) {
if (!VisitedVirtualBases.insert(BaseDecl)) {
// We've visited this base before.
continue;
}
BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
} else {
BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
}
dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
}
Out << "Final overriders for (" << RD->getQualifiedNameAsString() << ", ";
Out << Base.getBaseOffset().getQuantity() << ")\n";
// Now dump the overriders for this base subobject.
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
E = RD->method_end(); I != E; ++I) {
const CXXMethodDecl *MD = *I;
if (!MD->isVirtual())
continue;
OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
Out << " " << MD->getQualifiedNameAsString() << " - (";
Out << Overrider.Method->getQualifiedNameAsString();
Out << ", " << Overrider.Offset.getQuantity() << ')';
BaseOffset Offset;
if (!Overrider.Method->isPure())
Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
if (!Offset.isEmpty()) {
Out << " [ret-adj: ";
if (Offset.VirtualBase)
Out << Offset.VirtualBase->getQualifiedNameAsString() << " vbase, ";
Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
}
Out << "\n";
}
}
/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
struct VCallOffsetMap {
typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
/// Offsets - Keeps track of methods and their offsets.
// FIXME: This should be a real map and not a vector.
SmallVector<MethodAndOffsetPairTy, 16> Offsets;
/// MethodsCanShareVCallOffset - Returns whether two virtual member functions
/// can share the same vcall offset.
static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
const CXXMethodDecl *RHS);
public:
/// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
/// add was successful, or false if there was already a member function with
/// the same signature in the map.
bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
/// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
/// vtable address point) for the given virtual member function.
CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
// empty - Return whether the offset map is empty or not.
bool empty() const { return Offsets.empty(); }
};
static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
const CXXMethodDecl *RHS) {
const FunctionProtoType *LT =
cast<FunctionProtoType>(LHS->getType().getCanonicalType());
const FunctionProtoType *RT =
cast<FunctionProtoType>(RHS->getType().getCanonicalType());
// Fast-path matches in the canonical types.
if (LT == RT) return true;
// Force the signatures to match. We can't rely on the overrides
// list here because there isn't necessarily an inheritance
// relationship between the two methods.
if (LT->getTypeQuals() != RT->getTypeQuals() ||
LT->getNumArgs() != RT->getNumArgs())
return false;
for (unsigned I = 0, E = LT->getNumArgs(); I != E; ++I)
if (LT->getArgType(I) != RT->getArgType(I))
return false;
return true;
}
bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
const CXXMethodDecl *RHS) {
assert(LHS->isVirtual() && "LHS must be virtual!");
assert(RHS->isVirtual() && "LHS must be virtual!");
// A destructor can share a vcall offset with another destructor.
if (isa<CXXDestructorDecl>(LHS))
return isa<CXXDestructorDecl>(RHS);
// FIXME: We need to check more things here.
// The methods must have the same name.
DeclarationName LHSName = LHS->getDeclName();
DeclarationName RHSName = RHS->getDeclName();
if (LHSName != RHSName)
return false;
// And the same signatures.
return HasSameVirtualSignature(LHS, RHS);
}
bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
CharUnits OffsetOffset) {
// Check if we can reuse an offset.
for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
return false;
}
// Add the offset.
Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
return true;
}
CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
// Look for an offset.
for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
return Offsets[I].second;
}
llvm_unreachable("Should always find a vcall offset offset!");
}
/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
class VCallAndVBaseOffsetBuilder {
public:
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
VBaseOffsetOffsetsMapTy;
private:
/// MostDerivedClass - The most derived class for which we're building vcall
/// and vbase offsets.
const CXXRecordDecl *MostDerivedClass;
/// LayoutClass - The class we're using for layout information. Will be
/// different than the most derived class if we're building a construction
/// vtable.
const CXXRecordDecl *LayoutClass;
/// Context - The ASTContext which we will use for layout information.
ASTContext &Context;
/// Components - vcall and vbase offset components
typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
VTableComponentVectorTy Components;
/// VisitedVirtualBases - Visited virtual bases.
llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
/// VCallOffsets - Keeps track of vcall offsets.
VCallOffsetMap VCallOffsets;
/// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
/// relative to the address point.
VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
/// FinalOverriders - The final overriders of the most derived class.
/// (Can be null when we're not building a vtable of the most derived class).
const FinalOverriders *Overriders;
/// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
/// given base subobject.
void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
CharUnits RealBaseOffset);
/// AddVCallOffsets - Add vcall offsets for the given base subobject.
void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
/// AddVBaseOffsets - Add vbase offsets for the given class.
void AddVBaseOffsets(const CXXRecordDecl *Base,
CharUnits OffsetInLayoutClass);
/// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
/// chars, relative to the vtable address point.
CharUnits getCurrentOffsetOffset() const;
public:
VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
const CXXRecordDecl *LayoutClass,
const FinalOverriders *Overriders,
BaseSubobject Base, bool BaseIsVirtual,
CharUnits OffsetInLayoutClass)
: MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
// Add vcall and vbase offsets.
AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
}
/// Methods for iterating over the components.
typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
const_iterator components_begin() const { return Components.rbegin(); }
const_iterator components_end() const { return Components.rend(); }
const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
return VBaseOffsetOffsets;
}
};
void
VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
bool BaseIsVirtual,
CharUnits RealBaseOffset) {
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
// Itanium C++ ABI 2.5.2:
// ..in classes sharing a virtual table with a primary base class, the vcall
// and vbase offsets added by the derived class all come before the vcall
// and vbase offsets required by the base class, so that the latter may be
// laid out as required by the base class without regard to additions from
// the derived class(es).
// (Since we're emitting the vcall and vbase offsets in reverse order, we'll
// emit them for the primary base first).
if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
CharUnits PrimaryBaseOffset;
// Get the base offset of the primary base.
if (PrimaryBaseIsVirtual) {
assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
"Primary vbase should have a zero offset!");
const ASTRecordLayout &MostDerivedClassLayout =
Context.getASTRecordLayout(MostDerivedClass);
PrimaryBaseOffset =
MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
} else {
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
"Primary base should have a zero offset!");
PrimaryBaseOffset = Base.getBaseOffset();
}
AddVCallAndVBaseOffsets(
BaseSubobject(PrimaryBase,PrimaryBaseOffset),
PrimaryBaseIsVirtual, RealBaseOffset);
}
AddVBaseOffsets(Base.getBase(), RealBaseOffset);
// We only want to add vcall offsets for virtual bases.
if (BaseIsVirtual)
AddVCallOffsets(Base, RealBaseOffset);
}
CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
// OffsetIndex is the index of this vcall or vbase offset, relative to the
// vtable address point. (We subtract 3 to account for the information just
// above the address point, the RTTI info, the offset to top, and the
// vcall offset itself).
int64_t OffsetIndex = -(int64_t)(3 + Components.size());
CharUnits PointerWidth =
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
CharUnits OffsetOffset = PointerWidth * OffsetIndex;
return OffsetOffset;
}
void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
CharUnits VBaseOffset) {
const CXXRecordDecl *RD = Base.getBase();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
// Handle the primary base first.
// We only want to add vcall offsets if the base is non-virtual; a virtual
// primary base will have its vcall and vbase offsets emitted already.
if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
// Get the base offset of the primary base.
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
"Primary base should have a zero offset!");
AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
VBaseOffset);
}
// Add the vcall offsets.
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
E = RD->method_end(); I != E; ++I) {
const CXXMethodDecl *MD = *I;
if (!MD->isVirtual())
continue;
CharUnits OffsetOffset = getCurrentOffsetOffset();
// Don't add a vcall offset if we already have one for this member function
// signature.
if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
continue;
CharUnits Offset = CharUnits::Zero();
if (Overriders) {
// Get the final overrider.
FinalOverriders::OverriderInfo Overrider =
Overriders->getOverrider(MD, Base.getBaseOffset());
/// The vcall offset is the offset from the virtual base to the object
/// where the function was overridden.
Offset = Overrider.Offset - VBaseOffset;
}
Components.push_back(
VTableComponent::MakeVCallOffset(Offset));
}
// And iterate over all non-virtual bases (ignoring the primary base).
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
if (I->isVirtual())
continue;
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
if (BaseDecl == PrimaryBase)
continue;
// Get the base offset of this base.
CharUnits BaseOffset = Base.getBaseOffset() +
Layout.getBaseClassOffset(BaseDecl);
AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
VBaseOffset);
}
}
void
VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
CharUnits OffsetInLayoutClass) {
const ASTRecordLayout &LayoutClassLayout =
Context.getASTRecordLayout(LayoutClass);
// Add vbase offsets.
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
// Check if this is a virtual base that we haven't visited before.
if (I->isVirtual() && VisitedVirtualBases.insert(BaseDecl)) {
CharUnits Offset =
LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
// Add the vbase offset offset.
assert(!VBaseOffsetOffsets.count(BaseDecl) &&
"vbase offset offset already exists!");
CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
VBaseOffsetOffsets.insert(
std::make_pair(BaseDecl, VBaseOffsetOffset));
Components.push_back(
VTableComponent::MakeVBaseOffset(Offset));
}
// Check the base class looking for more vbase offsets.
AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
}
}
/// VTableBuilder - Class for building vtable layout information.
// FIXME: rename to ItaniumVTableBuilder.
class VTableBuilder {
public:
/// PrimaryBasesSetVectorTy - A set vector of direct and indirect
/// primary bases.
typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
PrimaryBasesSetVectorTy;
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
VBaseOffsetOffsetsMapTy;
typedef llvm::DenseMap<BaseSubobject, uint64_t>
AddressPointsMapTy;
typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
private:
/// VTables - Global vtable information.
VTableContext &VTables;
/// MostDerivedClass - The most derived class for which we're building this
/// vtable.
const CXXRecordDecl *MostDerivedClass;
/// MostDerivedClassOffset - If we're building a construction vtable, this
/// holds the offset from the layout class to the most derived class.
const CharUnits MostDerivedClassOffset;
/// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
/// base. (This only makes sense when building a construction vtable).
bool MostDerivedClassIsVirtual;
/// LayoutClass - The class we're using for layout information. Will be
/// different than the most derived class if we're building a construction
/// vtable.
const CXXRecordDecl *LayoutClass;
/// Context - The ASTContext which we will use for layout information.
ASTContext &Context;
/// FinalOverriders - The final overriders of the most derived class.
const FinalOverriders Overriders;
/// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
/// bases in this vtable.
llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
/// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
/// the most derived class.
VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
/// Components - The components of the vtable being built.
SmallVector<VTableComponent, 64> Components;
/// AddressPoints - Address points for the vtable being built.
AddressPointsMapTy AddressPoints;
/// MethodInfo - Contains information about a method in a vtable.
/// (Used for computing 'this' pointer adjustment thunks.
struct MethodInfo {
/// BaseOffset - The base offset of this method.
const CharUnits BaseOffset;
/// BaseOffsetInLayoutClass - The base offset in the layout class of this
/// method.
const CharUnits BaseOffsetInLayoutClass;
/// VTableIndex - The index in the vtable that this method has.
/// (For destructors, this is the index of the complete destructor).
const uint64_t VTableIndex;
MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
uint64_t VTableIndex)
: BaseOffset(BaseOffset),
BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
VTableIndex(VTableIndex) { }
MethodInfo()
: BaseOffset(CharUnits::Zero()),
BaseOffsetInLayoutClass(CharUnits::Zero()),
VTableIndex(0) { }
};
typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
/// MethodInfoMap - The information for all methods in the vtable we're
/// currently building.
MethodInfoMapTy MethodInfoMap;
/// MethodVTableIndices - Contains the index (relative to the vtable address
/// point) where the function pointer for a virtual function is stored.
MethodVTableIndicesTy MethodVTableIndices;
typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
/// VTableThunks - The thunks by vtable index in the vtable currently being
/// built.
VTableThunksMapTy VTableThunks;
typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
/// Thunks - A map that contains all the thunks needed for all methods in the
/// most derived class for which the vtable is currently being built.
ThunksMapTy Thunks;
/// AddThunk - Add a thunk for the given method.
void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
/// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
/// part of the vtable we're currently building.
void ComputeThisAdjustments();
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
/// PrimaryVirtualBases - All known virtual bases who are a primary base of
/// some other base.
VisitedVirtualBasesSetTy PrimaryVirtualBases;
/// ComputeReturnAdjustment - Compute the return adjustment given a return
/// adjustment base offset.
ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
/// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
/// the 'this' pointer from the base subobject to the derived subobject.
BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
BaseSubobject Derived) const;
/// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
/// given virtual member function, its offset in the layout class and its
/// final overrider.
ThisAdjustment
ComputeThisAdjustment(const CXXMethodDecl *MD,
CharUnits BaseOffsetInLayoutClass,
FinalOverriders::OverriderInfo Overrider);
/// AddMethod - Add a single virtual member function to the vtable
/// components vector.
void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
/// IsOverriderUsed - Returns whether the overrider will ever be used in this
/// part of the vtable.
///
/// Itanium C++ ABI 2.5.2:
///
/// struct A { virtual void f(); };
/// struct B : virtual public A { int i; };
/// struct C : virtual public A { int j; };
/// struct D : public B, public C {};
///
/// When B and C are declared, A is a primary base in each case, so although
/// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
/// adjustment is required and no thunk is generated. However, inside D
/// objects, A is no longer a primary base of C, so if we allowed calls to
/// C::f() to use the copy of A's vtable in the C subobject, we would need
/// to adjust this from C* to B::A*, which would require a third-party
/// thunk. Since we require that a call to C::f() first convert to A*,
/// C-in-D's copy of A's vtable is never referenced, so this is not
/// necessary.
bool IsOverriderUsed(const CXXMethodDecl *Overrider,
CharUnits BaseOffsetInLayoutClass,
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
CharUnits FirstBaseOffsetInLayoutClass) const;
/// AddMethods - Add the methods of this base subobject and all its
/// primary bases to the vtable components vector.
void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
CharUnits FirstBaseOffsetInLayoutClass,
PrimaryBasesSetVectorTy &PrimaryBases);
// LayoutVTable - Layout the vtable for the given base class, including its
// secondary vtables and any vtables for virtual bases.
void LayoutVTable();
/// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
/// given base subobject, as well as all its secondary vtables.
///
/// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
/// or a direct or indirect base of a virtual base.
///
/// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
/// in the layout class.
void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
bool BaseIsMorallyVirtual,
bool BaseIsVirtualInLayoutClass,
CharUnits OffsetInLayoutClass);
/// LayoutSecondaryVTables - Layout the secondary vtables for the given base
/// subobject.
///
/// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
/// or a direct or indirect base of a virtual base.
void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
CharUnits OffsetInLayoutClass);
/// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
/// class hierarchy.
void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
CharUnits OffsetInLayoutClass,
VisitedVirtualBasesSetTy &VBases);
/// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
/// given base (excluding any primary bases).
void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
VisitedVirtualBasesSetTy &VBases);
/// isBuildingConstructionVTable - Return whether this vtable builder is
/// building a construction vtable.
bool isBuildingConstructorVTable() const {
return MostDerivedClass != LayoutClass;
}
public:
VTableBuilder(VTableContext &VTables, const CXXRecordDecl *MostDerivedClass,
CharUnits MostDerivedClassOffset,
bool MostDerivedClassIsVirtual, const
CXXRecordDecl *LayoutClass)
: VTables(VTables), MostDerivedClass(MostDerivedClass),
MostDerivedClassOffset(MostDerivedClassOffset),
MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
LayoutVTable();
if (Context.getLangOpts().DumpVTableLayouts)
dumpLayout(llvm::errs());
}
bool isMicrosoftABI() const {
return VTables.isMicrosoftABI();
}
uint64_t getNumThunks() const {
return Thunks.size();
}
ThunksMapTy::const_iterator thunks_begin() const {
return Thunks.begin();
}
ThunksMapTy::const_iterator thunks_end() const {
return Thunks.end();
}
const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
return VBaseOffsetOffsets;
}
const AddressPointsMapTy &getAddressPoints() const {
return AddressPoints;
}
MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
return MethodVTableIndices.begin();
}
MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
return MethodVTableIndices.end();
}
/// getNumVTableComponents - Return the number of components in the vtable
/// currently built.
uint64_t getNumVTableComponents() const {
return Components.size();
}
const VTableComponent *vtable_component_begin() const {
return Components.begin();
}
const VTableComponent *vtable_component_end() const {
return Components.end();
}
AddressPointsMapTy::const_iterator address_points_begin() const {
return AddressPoints.begin();
}
AddressPointsMapTy::const_iterator address_points_end() const {
return AddressPoints.end();
}
VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
return VTableThunks.begin();
}
VTableThunksMapTy::const_iterator vtable_thunks_end() const {
return VTableThunks.end();
}
/// dumpLayout - Dump the vtable layout.
void dumpLayout(raw_ostream&);
};
void VTableBuilder::AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
assert(!isBuildingConstructorVTable() &&
"Can't add thunks for construction vtable");
SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
// Check if we have this thunk already.
if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
ThunksVector.end())
return;
ThunksVector.push_back(Thunk);
}
typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
/// Visit all the methods overridden by the given method recursively,
/// in a depth-first pre-order. The Visitor's visitor method returns a bool
/// indicating whether to continue the recursion for the given overridden
/// method (i.e. returning false stops the iteration).
template <class VisitorTy>
static void
visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
assert(MD->isVirtual() && "Method is not virtual!");
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
E = MD->end_overridden_methods(); I != E; ++I) {
const CXXMethodDecl *OverriddenMD = *I;
if (!Visitor.visit(OverriddenMD))
continue;
visitAllOverriddenMethods(OverriddenMD, Visitor);
}
}
namespace {
struct OverriddenMethodsCollector {
OverriddenMethodsSetTy *Methods;
bool visit(const CXXMethodDecl *MD) {
// Don't recurse on this method if we've already collected it.
return Methods->insert(MD);
}
};
}
/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
/// the overridden methods that the function decl overrides.
static void
ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
OverriddenMethodsSetTy& OverriddenMethods) {
OverriddenMethodsCollector Collector = { &OverriddenMethods };
visitAllOverriddenMethods(MD, Collector);
}
void VTableBuilder::ComputeThisAdjustments() {
// Now go through the method info map and see if any of the methods need
// 'this' pointer adjustments.
for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
E = MethodInfoMap.end(); I != E; ++I) {
const CXXMethodDecl *MD = I->first;
const MethodInfo &MethodInfo = I->second;
// Ignore adjustments for unused function pointers.
uint64_t VTableIndex = MethodInfo.VTableIndex;
if (Components[VTableIndex].getKind() ==
VTableComponent::CK_UnusedFunctionPointer)
continue;
// Get the final overrider for this method.
FinalOverriders::OverriderInfo Overrider =
Overriders.getOverrider(MD, MethodInfo.BaseOffset);
// Check if we need an adjustment at all.
if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
// When a return thunk is needed by a derived class that overrides a
// virtual base, gcc uses a virtual 'this' adjustment as well.
// While the thunk itself might be needed by vtables in subclasses or
// in construction vtables, there doesn't seem to be a reason for using
// the thunk in this vtable. Still, we do so to match gcc.
if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
continue;
}
ThisAdjustment ThisAdjustment =
ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
if (ThisAdjustment.isEmpty())
continue;
// Add it.
VTableThunks[VTableIndex].This = ThisAdjustment;
if (isa<CXXDestructorDecl>(MD) && !isMicrosoftABI()) {
// Add an adjustment for the deleting destructor as well.
VTableThunks[VTableIndex + 1].This = ThisAdjustment;
}
}
/// Clear the method info map.
MethodInfoMap.clear();
if (isBuildingConstructorVTable()) {
// We don't need to store thunk information for construction vtables.
return;
}
for (VTableThunksMapTy::const_iterator I = VTableThunks.begin(),
E = VTableThunks.end(); I != E; ++I) {
const VTableComponent &Component = Components[I->first];
const ThunkInfo &Thunk = I->second;
const CXXMethodDecl *MD;
switch (Component.getKind()) {
default:
llvm_unreachable("Unexpected vtable component kind!");
case VTableComponent::CK_FunctionPointer:
MD = Component.getFunctionDecl();
break;
case VTableComponent::CK_CompleteDtorPointer:
MD = Component.getDestructorDecl();
break;
case VTableComponent::CK_DeletingDtorPointer:
// We've already added the thunk when we saw the complete dtor pointer.
// FIXME: check how this works in the Microsoft ABI
// while working on the multiple inheritance patch.
continue;
}
if (MD->getParent() == MostDerivedClass)
AddThunk(MD, Thunk);
}
}
ReturnAdjustment VTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
ReturnAdjustment Adjustment;
if (!Offset.isEmpty()) {
if (Offset.VirtualBase) {
// Get the virtual base offset offset.
if (Offset.DerivedClass == MostDerivedClass) {
// We can get the offset offset directly from our map.
Adjustment.VBaseOffsetOffset =
VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
} else {
Adjustment.VBaseOffsetOffset =
VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
Offset.VirtualBase).getQuantity();
}
}
Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
}
return Adjustment;
}
BaseOffset
VTableBuilder::ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
BaseSubobject Derived) const {
const CXXRecordDecl *BaseRD = Base.getBase();
const CXXRecordDecl *DerivedRD = Derived.getBase();
CXXBasePaths Paths(/*FindAmbiguities=*/true,
/*RecordPaths=*/true, /*DetectVirtual=*/true);
if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
llvm_unreachable("Class must be derived from the passed in base class!");
// We have to go through all the paths, and see which one leads us to the
// right base subobject.
for (CXXBasePaths::const_paths_iterator I = Paths.begin(), E = Paths.end();
I != E; ++I) {
BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, *I);
CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
if (Offset.VirtualBase) {
// If we have a virtual base class, the non-virtual offset is relative
// to the virtual base class offset.
const ASTRecordLayout &LayoutClassLayout =
Context.getASTRecordLayout(LayoutClass);
/// Get the virtual base offset, relative to the most derived class
/// layout.
OffsetToBaseSubobject +=
LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
} else {
// Otherwise, the non-virtual offset is relative to the derived class
// offset.
OffsetToBaseSubobject += Derived.getBaseOffset();
}
// Check if this path gives us the right base subobject.
if (OffsetToBaseSubobject == Base.getBaseOffset()) {
// Since we're going from the base class _to_ the derived class, we'll
// invert the non-virtual offset here.
Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
return Offset;
}
}
return BaseOffset();
}
ThisAdjustment
VTableBuilder::ComputeThisAdjustment(const CXXMethodDecl *MD,
CharUnits BaseOffsetInLayoutClass,
FinalOverriders::OverriderInfo Overrider) {
// Ignore adjustments for pure virtual member functions.
if (Overrider.Method->isPure())
return ThisAdjustment();
BaseSubobject OverriddenBaseSubobject(MD->getParent(),
BaseOffsetInLayoutClass);
BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
Overrider.Offset);
// Compute the adjustment offset.
BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
OverriderBaseSubobject);
if (Offset.isEmpty())
return ThisAdjustment();
ThisAdjustment Adjustment;
if (Offset.VirtualBase) {
// Get the vcall offset map for this virtual base.
VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
if (VCallOffsets.empty()) {
// We don't have vcall offsets for this virtual base, go ahead and
// build them.
VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
/*FinalOverriders=*/0,
BaseSubobject(Offset.VirtualBase,
CharUnits::Zero()),
/*BaseIsVirtual=*/true,
/*OffsetInLayoutClass=*/
CharUnits::Zero());
VCallOffsets = Builder.getVCallOffsets();
}
Adjustment.VCallOffsetOffset =
VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
}
// Set the non-virtual part of the adjustment.
Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
return Adjustment;
}
void
VTableBuilder::AddMethod(const CXXMethodDecl *MD,
ReturnAdjustment ReturnAdjustment) {
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
assert(ReturnAdjustment.isEmpty() &&
"Destructor can't have return adjustment!");
// FIXME: Should probably add a layer of abstraction for vtable generation.
if (!isMicrosoftABI()) {
// Add both the complete destructor and the deleting destructor.
Components.push_back(VTableComponent::MakeCompleteDtor(DD));
Components.push_back(VTableComponent::MakeDeletingDtor(DD));
} else {
// Add the scalar deleting destructor.
Components.push_back(VTableComponent::MakeDeletingDtor(DD));
}
} else {
// Add the return adjustment if necessary.
if (!ReturnAdjustment.isEmpty())
VTableThunks[Components.size()].Return = ReturnAdjustment;
// Add the function.
Components.push_back(VTableComponent::MakeFunction(MD));
}
}
/// OverridesIndirectMethodInBase - Return whether the given member function
/// overrides any methods in the set of given bases.
/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
/// For example, if we have:
///
/// struct A { virtual void f(); }
/// struct B : A { virtual void f(); }
/// struct C : B { virtual void f(); }
///
/// OverridesIndirectMethodInBase will return true if given C::f as the method
/// and { A } as the set of bases.
static bool
OverridesIndirectMethodInBases(const CXXMethodDecl *MD,
VTableBuilder::PrimaryBasesSetVectorTy &Bases) {
if (Bases.count(MD->getParent()))
return true;
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
E = MD->end_overridden_methods(); I != E; ++I) {
const CXXMethodDecl *OverriddenMD = *I;
// Check "indirect overriders".
if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
return true;
}
return false;
}
bool
VTableBuilder::IsOverriderUsed(const CXXMethodDecl *Overrider,
CharUnits BaseOffsetInLayoutClass,
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
CharUnits FirstBaseOffsetInLayoutClass) const {
// If the base and the first base in the primary base chain have the same
// offsets, then this overrider will be used.
if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
return true;
// We know now that Base (or a direct or indirect base of it) is a primary
// base in part of the class hierarchy, but not a primary base in the most
// derived class.
// If the overrider is the first base in the primary base chain, we know
// that the overrider will be used.
if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
return true;
VTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
PrimaryBases.insert(RD);
// Now traverse the base chain, starting with the first base, until we find
// the base that is no longer a primary base.
while (true) {
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
if (!PrimaryBase)
break;
if (Layout.isPrimaryBaseVirtual()) {
assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
"Primary base should always be at offset 0!");
const ASTRecordLayout &LayoutClassLayout =
Context.getASTRecordLayout(LayoutClass);
// Now check if this is the primary base that is not a primary base in the
// most derived class.
if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
FirstBaseOffsetInLayoutClass) {
// We found it, stop walking the chain.
break;
}
} else {
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
"Primary base should always be at offset 0!");
}
if (!PrimaryBases.insert(PrimaryBase))
llvm_unreachable("Found a duplicate primary base!");
RD = PrimaryBase;
}
// If the final overrider is an override of one of the primary bases,
// then we know that it will be used.
return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
}
typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
/// FindNearestOverriddenMethod - Given a method, returns the overridden method
/// from the nearest base. Returns null if no method was found.
/// The Bases are expected to be sorted in a base-to-derived order.
static const CXXMethodDecl *
FindNearestOverriddenMethod(const CXXMethodDecl *MD,
BasesSetVectorTy &Bases) {
OverriddenMethodsSetTy OverriddenMethods;
ComputeAllOverriddenMethods(MD, OverriddenMethods);
for (int I = Bases.size(), E = 0; I != E; --I) {
const CXXRecordDecl *PrimaryBase = Bases[I - 1];
// Now check the overridden methods.
for (OverriddenMethodsSetTy::const_iterator I = OverriddenMethods.begin(),
E = OverriddenMethods.end(); I != E; ++I) {
const CXXMethodDecl *OverriddenMD = *I;
// We found our overridden method.
if (OverriddenMD->getParent() == PrimaryBase)
return OverriddenMD;
}
}
return 0;
}
void
VTableBuilder::AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
CharUnits FirstBaseOffsetInLayoutClass,
PrimaryBasesSetVectorTy &PrimaryBases) {
// Itanium C++ ABI 2.5.2:
// The order of the virtual function pointers in a virtual table is the
// order of declaration of the corresponding member functions in the class.
//
// There is an entry for any virtual function declared in a class,
// whether it is a new function or overrides a base class function,
// unless it overrides a function from the primary base, and conversion
// between their return types does not require an adjustment.
const CXXRecordDecl *RD = Base.getBase();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
CharUnits PrimaryBaseOffset;
CharUnits PrimaryBaseOffsetInLayoutClass;
if (Layout.isPrimaryBaseVirtual()) {
assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
"Primary vbase should have a zero offset!");
const ASTRecordLayout &MostDerivedClassLayout =
Context.getASTRecordLayout(MostDerivedClass);
PrimaryBaseOffset =
MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
const ASTRecordLayout &LayoutClassLayout =
Context.getASTRecordLayout(LayoutClass);
PrimaryBaseOffsetInLayoutClass =
LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
} else {
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
"Primary base should have a zero offset!");
PrimaryBaseOffset = Base.getBaseOffset();
PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
}
AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
FirstBaseOffsetInLayoutClass, PrimaryBases);
if (!PrimaryBases.insert(PrimaryBase))
llvm_unreachable("Found a duplicate primary base!");
}
const CXXDestructorDecl *ImplicitVirtualDtor = 0;
typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
NewVirtualFunctionsTy NewVirtualFunctions;
// Now go through all virtual member functions and add them.
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
E = RD->method_end(); I != E; ++I) {
const CXXMethodDecl *MD = *I;
if (!MD->isVirtual())
continue;
// Get the final overrider.
FinalOverriders::OverriderInfo Overrider =
Overriders.getOverrider(MD, Base.getBaseOffset());
// Check if this virtual member function overrides a method in a primary
// base. If this is the case, and the return type doesn't require adjustment
// then we can just use the member function from the primary base.
if (const CXXMethodDecl *OverriddenMD =
FindNearestOverriddenMethod(MD, PrimaryBases)) {
if (ComputeReturnAdjustmentBaseOffset(Context, MD,
OverriddenMD).isEmpty()) {
// Replace the method info of the overridden method with our own
// method.
assert(MethodInfoMap.count(OverriddenMD) &&
"Did not find the overridden method!");
MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
OverriddenMethodInfo.VTableIndex);
assert(!MethodInfoMap.count(MD) &&
"Should not have method info for this method yet!");
MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
MethodInfoMap.erase(OverriddenMD);
// If the overridden method exists in a virtual base class or a direct
// or indirect base class of a virtual base class, we need to emit a
// thunk if we ever have a class hierarchy where the base class is not
// a primary base in the complete object.
if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
// Compute the this adjustment.
ThisAdjustment ThisAdjustment =
ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
Overrider);
if (ThisAdjustment.VCallOffsetOffset &&
Overrider.Method->getParent() == MostDerivedClass) {
// There's no return adjustment from OverriddenMD and MD,
// but that doesn't mean there isn't one between MD and
// the final overrider.
BaseOffset ReturnAdjustmentOffset =
ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
ReturnAdjustment ReturnAdjustment =
ComputeReturnAdjustment(ReturnAdjustmentOffset);
// This is a virtual thunk for the most derived class, add it.
AddThunk(Overrider.Method,
ThunkInfo(ThisAdjustment, ReturnAdjustment));
}
}
continue;
}
}
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
if (MD->isImplicit()) {
// Itanium C++ ABI 2.5.2:
// If a class has an implicitly-defined virtual destructor,
// its entries come after the declared virtual function pointers.
assert(!ImplicitVirtualDtor &&
"Did already see an implicit virtual dtor!");
ImplicitVirtualDtor = DD;
continue;
}
}
NewVirtualFunctions.push_back(MD);
}
if (ImplicitVirtualDtor)
NewVirtualFunctions.push_back(ImplicitVirtualDtor);
for (NewVirtualFunctionsTy::const_iterator I = NewVirtualFunctions.begin(),
E = NewVirtualFunctions.end(); I != E; ++I) {
const CXXMethodDecl *MD = *I;
// Get the final overrider.
FinalOverriders::OverriderInfo Overrider =
Overriders.getOverrider(MD, Base.getBaseOffset());
// Insert the method info for this method.
MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
Components.size());
assert(!MethodInfoMap.count(MD) &&
"Should not have method info for this method yet!");
MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
// Check if this overrider is going to be used.
const CXXMethodDecl *OverriderMD = Overrider.Method;
if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
FirstBaseInPrimaryBaseChain,
FirstBaseOffsetInLayoutClass)) {
Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
continue;
}
// Check if this overrider needs a return adjustment.
// We don't want to do this for pure virtual member functions.
BaseOffset ReturnAdjustmentOffset;
if (!OverriderMD->isPure()) {
ReturnAdjustmentOffset =
ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
}
ReturnAdjustment ReturnAdjustment =
ComputeReturnAdjustment(ReturnAdjustmentOffset);
AddMethod(Overrider.Method, ReturnAdjustment);
}
}
void VTableBuilder::LayoutVTable() {
LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
CharUnits::Zero()),
/*BaseIsMorallyVirtual=*/false,
MostDerivedClassIsVirtual,
MostDerivedClassOffset);
VisitedVirtualBasesSetTy VBases;
// Determine the primary virtual bases.
DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
VBases);
VBases.clear();
LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
// -fapple-kext adds an extra entry at end of vtbl.
bool IsAppleKext = Context.getLangOpts().AppleKext;
if (IsAppleKext)
Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
}
void
VTableBuilder::LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
bool BaseIsMorallyVirtual,
bool BaseIsVirtualInLayoutClass,
CharUnits OffsetInLayoutClass) {
assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
// Add vcall and vbase offsets for this vtable.
VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
Base, BaseIsVirtualInLayoutClass,
OffsetInLayoutClass);
Components.append(Builder.components_begin(), Builder.components_end());
// Check if we need to add these vcall offsets.
if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
if (VCallOffsets.empty())
VCallOffsets = Builder.getVCallOffsets();
}
// If we're laying out the most derived class we want to keep track of the
// virtual base class offset offsets.
if (Base.getBase() == MostDerivedClass)
VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
// FIXME: Should probably add a layer of abstraction for vtable generation.
if (!isMicrosoftABI()) {
// Add the offset to top.
CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
// Next, add the RTTI.
Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
} else {
// FIXME: unclear what to do with RTTI in MS ABI as emitting it anywhere
// breaks the vftable layout. Just skip RTTI for now, can't mangle anyway.
}
uint64_t AddressPoint = Components.size();
// Now go through all virtual member functions and add them.
PrimaryBasesSetVectorTy PrimaryBases;
AddMethods(Base, OffsetInLayoutClass,
Base.getBase(), OffsetInLayoutClass,
PrimaryBases);
const CXXRecordDecl *RD = Base.getBase();
if (RD == MostDerivedClass) {
assert(MethodVTableIndices.empty());
for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
E = MethodInfoMap.end(); I != E; ++I) {
const CXXMethodDecl *MD = I->first;
const MethodInfo &MI = I->second;
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
// FIXME: Should probably add a layer of abstraction for vtable generation.
if (!isMicrosoftABI()) {
MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
= MI.VTableIndex - AddressPoint;
MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
= MI.VTableIndex + 1 - AddressPoint;
} else {
MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
= MI.VTableIndex - AddressPoint;
}
} else {
MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
}
}
}
// Compute 'this' pointer adjustments.
ComputeThisAdjustments();
// Add all address points.
while (true) {
AddressPoints.insert(std::make_pair(
BaseSubobject(RD, OffsetInLayoutClass),
AddressPoint));
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
if (!PrimaryBase)
break;
if (Layout.isPrimaryBaseVirtual()) {
// Check if this virtual primary base is a primary base in the layout
// class. If it's not, we don't want to add it.
const ASTRecordLayout &LayoutClassLayout =
Context.getASTRecordLayout(LayoutClass);
if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
OffsetInLayoutClass) {
// We don't want to add this class (or any of its primary bases).
break;
}
}
RD = PrimaryBase;
}
// Layout secondary vtables.
LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
}
void VTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
bool BaseIsMorallyVirtual,
CharUnits OffsetInLayoutClass) {
// Itanium C++ ABI 2.5.2:
// Following the primary virtual table of a derived class are secondary
// virtual tables for each of its proper base classes, except any primary
// base(s) with which it shares its primary virtual table.
const CXXRecordDecl *RD = Base.getBase();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
// Ignore virtual bases, we'll emit them later.
if (I->isVirtual())
continue;
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
// Ignore bases that don't have a vtable.
if (!BaseDecl->isDynamicClass())
continue;
if (isBuildingConstructorVTable()) {
// Itanium C++ ABI 2.6.4:
// Some of the base class subobjects may not need construction virtual
// tables, which will therefore not be present in the construction
// virtual table group, even though the subobject virtual tables are
// present in the main virtual table group for the complete object.
if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
continue;
}
// Get the base offset of this base.
CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
CharUnits BaseOffsetInLayoutClass =
OffsetInLayoutClass + RelativeBaseOffset;
// Don't emit a secondary vtable for a primary base. We might however want
// to emit secondary vtables for other bases of this base.
if (BaseDecl == PrimaryBase) {
LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
continue;
}
// Layout the primary vtable (and any secondary vtables) for this base.
LayoutPrimaryAndSecondaryVTables(
BaseSubobject(BaseDecl, BaseOffset),
BaseIsMorallyVirtual,
/*BaseIsVirtualInLayoutClass=*/false,
BaseOffsetInLayoutClass);
}
}
void
VTableBuilder::DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
CharUnits OffsetInLayoutClass,
VisitedVirtualBasesSetTy &VBases) {
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
// Check if this base has a primary base.
if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
// Check if it's virtual.
if (Layout.isPrimaryBaseVirtual()) {
bool IsPrimaryVirtualBase = true;
if (isBuildingConstructorVTable()) {
// Check if the base is actually a primary base in the class we use for
// layout.
const ASTRecordLayout &LayoutClassLayout =
Context.getASTRecordLayout(LayoutClass);
CharUnits PrimaryBaseOffsetInLayoutClass =
LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
// We know that the base is not a primary base in the layout class if
// the base offsets are different.
if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
IsPrimaryVirtualBase = false;
}
if (IsPrimaryVirtualBase)
PrimaryVirtualBases.insert(PrimaryBase);
}
}
// Traverse bases, looking for more primary virtual bases.
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
CharUnits BaseOffsetInLayoutClass;
if (I->isVirtual()) {
if (!VBases.insert(BaseDecl))
continue;
const ASTRecordLayout &LayoutClassLayout =
Context.getASTRecordLayout(LayoutClass);
BaseOffsetInLayoutClass =
LayoutClassLayout.getVBaseClassOffset(BaseDecl);
} else {
BaseOffsetInLayoutClass =
OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
}
DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
}
}
void
VTableBuilder::LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
VisitedVirtualBasesSetTy &VBases) {
// Itanium C++ ABI 2.5.2:
// Then come the virtual base virtual tables, also in inheritance graph
// order, and again excluding primary bases (which share virtual tables with
// the classes for which they are primary).
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
E = RD->bases_end(); I != E; ++I) {
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
// Check if this base needs a vtable. (If it's virtual, not a primary base
// of some other class, and we haven't visited it before).
if (I->isVirtual() && BaseDecl->isDynamicClass() &&
!PrimaryVirtualBases.count(BaseDecl) && VBases.insert(BaseDecl)) {
const ASTRecordLayout &MostDerivedClassLayout =
Context.getASTRecordLayout(MostDerivedClass);
CharUnits BaseOffset =
MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
const ASTRecordLayout &LayoutClassLayout =
Context.getASTRecordLayout(LayoutClass);
CharUnits BaseOffsetInLayoutClass =
LayoutClassLayout.getVBaseClassOffset(BaseDecl);
LayoutPrimaryAndSecondaryVTables(
BaseSubobject(BaseDecl, BaseOffset),
/*BaseIsMorallyVirtual=*/true,
/*BaseIsVirtualInLayoutClass=*/true,
BaseOffsetInLayoutClass);
}
// We only need to check the base for virtual base vtables if it actually
// has virtual bases.
if (BaseDecl->getNumVBases())
LayoutVTablesForVirtualBases(BaseDecl, VBases);
}
}
/// dumpLayout - Dump the vtable layout.
void VTableBuilder::dumpLayout(raw_ostream& Out) {
// FIXME: write more tests that actually use the dumpLayout output to prevent
// VTableBuilder regressions.
if (isBuildingConstructorVTable()) {
Out << "Construction vtable for ('";
Out << MostDerivedClass->getQualifiedNameAsString() << "', ";
Out << MostDerivedClassOffset.getQuantity() << ") in '";
Out << LayoutClass->getQualifiedNameAsString();
} else {
Out << "Vtable for '";
Out << MostDerivedClass->getQualifiedNameAsString();
}
Out << "' (" << Components.size() << " entries).\n";
// Iterate through the address points and insert them into a new map where
// they are keyed by the index and not the base object.
// Since an address point can be shared by multiple subobjects, we use an
// STL multimap.
std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
for (AddressPointsMapTy::const_iterator I = AddressPoints.begin(),
E = AddressPoints.end(); I != E; ++I) {
const BaseSubobject& Base = I->first;
uint64_t Index = I->second;
AddressPointsByIndex.insert(std::make_pair(Index, Base));
}
for (unsigned I = 0, E = Components.size(); I != E; ++I) {
uint64_t Index = I;
Out << llvm::format("%4d | ", I);
const VTableComponent &Component = Components[I];
// Dump the component.
switch (Component.getKind()) {
case VTableComponent::CK_VCallOffset:
Out << "vcall_offset ("
<< Component.getVCallOffset().getQuantity()
<< ")";
break;
case VTableComponent::CK_VBaseOffset:
Out << "vbase_offset ("
<< Component.getVBaseOffset().getQuantity()
<< ")";
break;
case VTableComponent::CK_OffsetToTop:
Out << "offset_to_top ("
<< Component.getOffsetToTop().getQuantity()
<< ")";
break;
case VTableComponent::CK_RTTI:
Out << Component.getRTTIDecl()->getQualifiedNameAsString() << " RTTI";
break;
case VTableComponent::CK_FunctionPointer: {
const CXXMethodDecl *MD = Component.getFunctionDecl();
std::string Str =
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
MD);
Out << Str;
if (MD->isPure())
Out << " [pure]";
if (MD->isDeleted())
Out << " [deleted]";
ThunkInfo Thunk = VTableThunks.lookup(I);
if (!Thunk.isEmpty()) {
// If this function pointer has a return adjustment, dump it.
if (!Thunk.Return.isEmpty()) {
Out << "\n [return adjustment: ";
Out << Thunk.Return.NonVirtual << " non-virtual";
if (Thunk.Return.VBaseOffsetOffset) {
Out << ", " << Thunk.Return.VBaseOffsetOffset;
Out << " vbase offset offset";
}
Out << ']';
}
// If this function pointer has a 'this' pointer adjustment, dump it.
if (!Thunk.This.isEmpty()) {
Out << "\n [this adjustment: ";
Out << Thunk.This.NonVirtual << " non-virtual";
if (Thunk.This.VCallOffsetOffset) {
Out << ", " << Thunk.This.VCallOffsetOffset;
Out << " vcall offset offset";
}
Out << ']';
}
}
break;
}
case VTableComponent::CK_CompleteDtorPointer:
case VTableComponent::CK_DeletingDtorPointer: {
bool IsComplete =
Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
const CXXDestructorDecl *DD = Component.getDestructorDecl();
Out << DD->getQualifiedNameAsString();
if (IsComplete)
Out << "() [complete]";
else if (isMicrosoftABI())
Out << "() [scalar deleting]";
else
Out << "() [deleting]";
if (DD->isPure())
Out << " [pure]";
ThunkInfo Thunk = VTableThunks.lookup(I);
if (!Thunk.isEmpty()) {
// If this destructor has a 'this' pointer adjustment, dump it.
if (!Thunk.This.isEmpty()) {
Out << "\n [this adjustment: ";
Out << Thunk.This.NonVirtual << " non-virtual";
if (Thunk.This.VCallOffsetOffset) {
Out << ", " << Thunk.This.VCallOffsetOffset;
Out << " vcall offset offset";
}
Out << ']';
}
}
break;
}
case VTableComponent::CK_UnusedFunctionPointer: {
const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
std::string Str =
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
MD);
Out << "[unused] " << Str;
if (MD->isPure())
Out << " [pure]";
}
}
Out << '\n';
// Dump the next address point.
uint64_t NextIndex = Index + 1;
if (AddressPointsByIndex.count(NextIndex)) {
if (AddressPointsByIndex.count(NextIndex) == 1) {
const BaseSubobject &Base =
AddressPointsByIndex.find(NextIndex)->second;
Out << " -- (" << Base.getBase()->getQualifiedNameAsString();
Out << ", " << Base.getBaseOffset().getQuantity();
Out << ") vtable address --\n";
} else {
CharUnits BaseOffset =
AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
// We store the class names in a set to get a stable order.
std::set<std::string> ClassNames;
for (std::multimap<uint64_t, BaseSubobject>::const_iterator I =
AddressPointsByIndex.lower_bound(NextIndex), E =
AddressPointsByIndex.upper_bound(NextIndex); I != E; ++I) {
assert(I->second.getBaseOffset() == BaseOffset &&
"Invalid base offset!");
const CXXRecordDecl *RD = I->second.getBase();
ClassNames.insert(RD->getQualifiedNameAsString());
}
for (std::set<std::string>::const_iterator I = ClassNames.begin(),
E = ClassNames.end(); I != E; ++I) {
Out << " -- (" << *I;
Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
}
}
}
}
Out << '\n';
if (isBuildingConstructorVTable())
return;
if (MostDerivedClass->getNumVBases()) {
// We store the virtual base class names and their offsets in a map to get
// a stable order.
std::map<std::string, CharUnits> ClassNamesAndOffsets;
for (VBaseOffsetOffsetsMapTy::const_iterator I = VBaseOffsetOffsets.begin(),
E = VBaseOffsetOffsets.end(); I != E; ++I) {
std::string ClassName = I->first->getQualifiedNameAsString();
CharUnits OffsetOffset = I->second;
ClassNamesAndOffsets.insert(
std::make_pair(ClassName, OffsetOffset));
}
Out << "Virtual base offset offsets for '";
Out << MostDerivedClass->getQualifiedNameAsString() << "' (";
Out << ClassNamesAndOffsets.size();
Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
for (std::map<std::string, CharUnits>::const_iterator I =
ClassNamesAndOffsets.begin(), E = ClassNamesAndOffsets.end();
I != E; ++I)
Out << " " << I->first << " | " << I->second.getQuantity() << '\n';
Out << "\n";
}
if (!Thunks.empty()) {
// We store the method names in a map to get a stable order.
std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
I != E; ++I) {
const CXXMethodDecl *MD = I->first;
std::string MethodName =
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
MD);
MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
}
for (std::map<std::string, const CXXMethodDecl *>::const_iterator I =
MethodNamesAndDecls.begin(), E = MethodNamesAndDecls.end();
I != E; ++I) {
const std::string &MethodName = I->first;
const CXXMethodDecl *MD = I->second;
ThunkInfoVectorTy ThunksVector = Thunks[MD];
std::sort(ThunksVector.begin(), ThunksVector.end());
Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
const ThunkInfo &Thunk = ThunksVector[I];
Out << llvm::format("%4d | ", I);
// If this function pointer has a return pointer adjustment, dump it.
if (!Thunk.Return.isEmpty()) {
Out << "return adjustment: " << Thunk.Return.NonVirtual;
Out << " non-virtual";
if (Thunk.Return.VBaseOffsetOffset) {
Out << ", " << Thunk.Return.VBaseOffsetOffset;
Out << " vbase offset offset";
}
if (!Thunk.This.isEmpty())
Out << "\n ";
}
// If this function pointer has a 'this' pointer adjustment, dump it.
if (!Thunk.This.isEmpty()) {
Out << "this adjustment: ";
Out << Thunk.This.NonVirtual << " non-virtual";
if (Thunk.This.VCallOffsetOffset) {
Out << ", " << Thunk.This.VCallOffsetOffset;
Out << " vcall offset offset";
}
}
Out << '\n';
}
Out << '\n';
}
}
// Compute the vtable indices for all the member functions.
// Store them in a map keyed by the index so we'll get a sorted table.
std::map<uint64_t, std::string> IndicesMap;
for (CXXRecordDecl::method_iterator i = MostDerivedClass->method_begin(),
e = MostDerivedClass->method_end(); i != e; ++i) {
const CXXMethodDecl *MD = *i;
// We only want virtual member functions.
if (!MD->isVirtual())
continue;
std::string MethodName =
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
MD);
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
// FIXME: Should add a layer of abstraction for vtable generation.
if (!isMicrosoftABI()) {
GlobalDecl GD(DD, Dtor_Complete);
assert(MethodVTableIndices.count(GD));
uint64_t VTableIndex = MethodVTableIndices[GD];
IndicesMap[VTableIndex] = MethodName + " [complete]";
IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
} else {
GlobalDecl GD(DD, Dtor_Deleting);
assert(MethodVTableIndices.count(GD));
IndicesMap[MethodVTableIndices[GD]] = MethodName + " [scalar deleting]";
}
} else {
assert(MethodVTableIndices.count(MD));
IndicesMap[MethodVTableIndices[MD]] = MethodName;
}
}
// Print the vtable indices for all the member functions.
if (!IndicesMap.empty()) {
Out << "VTable indices for '";
Out << MostDerivedClass->getQualifiedNameAsString();
Out << "' (" << IndicesMap.size() << " entries).\n";
for (std::map<uint64_t, std::string>::const_iterator I = IndicesMap.begin(),
E = IndicesMap.end(); I != E; ++I) {
uint64_t VTableIndex = I->first;
const std::string &MethodName = I->second;
Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
<< '\n';
}
}
Out << '\n';
}
}
VTableLayout::VTableLayout(uint64_t NumVTableComponents,
const VTableComponent *VTableComponents,
uint64_t NumVTableThunks,
const VTableThunkTy *VTableThunks,
const AddressPointsMapTy &AddressPoints,
bool IsMicrosoftABI)
: NumVTableComponents(NumVTableComponents),
VTableComponents(new VTableComponent[NumVTableComponents]),
NumVTableThunks(NumVTableThunks),
VTableThunks(new VTableThunkTy[NumVTableThunks]),
AddressPoints(AddressPoints),
IsMicrosoftABI(IsMicrosoftABI) {
std::copy(VTableComponents, VTableComponents+NumVTableComponents,
this->VTableComponents.get());
std::copy(VTableThunks, VTableThunks+NumVTableThunks,
this->VTableThunks.get());
}
VTableLayout::~VTableLayout() { }
VTableContext::VTableContext(ASTContext &Context)
: IsMicrosoftABI(Context.getTargetInfo().getCXXABI().isMicrosoft()) {
}
VTableContext::~VTableContext() {
llvm::DeleteContainerSeconds(VTableLayouts);
}
uint64_t VTableContext::getMethodVTableIndex(GlobalDecl GD) {
MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
if (I != MethodVTableIndices.end())
return I->second;
const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
computeVTableRelatedInformation(RD);
I = MethodVTableIndices.find(GD);
assert(I != MethodVTableIndices.end() && "Did not find index!");
return I->second;
}
CharUnits
VTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
const CXXRecordDecl *VBase) {
ClassPairTy ClassPair(RD, VBase);
VirtualBaseClassOffsetOffsetsMapTy::iterator I =
VirtualBaseClassOffsetOffsets.find(ClassPair);
if (I != VirtualBaseClassOffsetOffsets.end())
return I->second;
VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/0,
BaseSubobject(RD, CharUnits::Zero()),
/*BaseIsVirtual=*/false,
/*OffsetInLayoutClass=*/CharUnits::Zero());
for (VCallAndVBaseOffsetBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
Builder.getVBaseOffsetOffsets().begin(),
E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
// Insert all types.
ClassPairTy ClassPair(RD, I->first);
VirtualBaseClassOffsetOffsets.insert(
std::make_pair(ClassPair, I->second));
}
I = VirtualBaseClassOffsetOffsets.find(ClassPair);
assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
return I->second;
}
static VTableLayout *CreateVTableLayout(const VTableBuilder &Builder) {
SmallVector<VTableLayout::VTableThunkTy, 1>
VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
std::sort(VTableThunks.begin(), VTableThunks.end());
return new VTableLayout(Builder.getNumVTableComponents(),
Builder.vtable_component_begin(),
VTableThunks.size(),
VTableThunks.data(),
Builder.getAddressPoints(),
Builder.isMicrosoftABI());
}
void VTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
const VTableLayout *&Entry = VTableLayouts[RD];
// Check if we've computed this information before.
if (Entry)
return;
VTableBuilder Builder(*this, RD, CharUnits::Zero(),
/*MostDerivedClassIsVirtual=*/0, RD);
Entry = CreateVTableLayout(Builder);
MethodVTableIndices.insert(Builder.vtable_indices_begin(),
Builder.vtable_indices_end());
// Add the known thunks.
Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
// If we don't have the vbase information for this class, insert it.
// getVirtualBaseOffsetOffset will compute it separately without computing
// the rest of the vtable related information.
if (!RD->getNumVBases())
return;
const CXXRecordDecl *VBase =
RD->vbases_begin()->getType()->getAsCXXRecordDecl();
if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
return;
for (VTableBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
Builder.getVBaseOffsetOffsets().begin(),
E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
// Insert all types.
ClassPairTy ClassPair(RD, I->first);
VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I->second));
}
}
VTableLayout *VTableContext::createConstructionVTableLayout(
const CXXRecordDecl *MostDerivedClass,
CharUnits MostDerivedClassOffset,
bool MostDerivedClassIsVirtual,
const CXXRecordDecl *LayoutClass) {
VTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
MostDerivedClassIsVirtual, LayoutClass);
return CreateVTableLayout(Builder);
}
unsigned clang::GetVBTableIndex(const CXXRecordDecl *Derived,
const CXXRecordDecl *VBase) {
unsigned VBTableIndex = 1; // Start with one to skip the self entry.
for (CXXRecordDecl::base_class_const_iterator I = Derived->vbases_begin(),
E = Derived->vbases_end(); I != E; ++I) {
if (I->getType()->getAsCXXRecordDecl() == VBase)
return VBTableIndex;
++VBTableIndex;
}
llvm_unreachable("VBase must be a vbase of Derived");
}
namespace {
// Vtables in the Microsoft ABI are different from the Itanium ABI.
//
// The main differences are:
// 1. Separate vftable and vbtable.
//
// 2. Each subobject with a vfptr gets its own vftable rather than an address
// point in a single vtable shared between all the subobjects.
// Each vftable is represented by a separate section and virtual calls
// must be done using the vftable which has a slot for the function to be
// called.
//
// 3. Virtual method definitions expect their 'this' parameter to point to the
// first vfptr whose table provides a compatible overridden method. In many
// cases, this permits the original vf-table entry to directly call
// the method instead of passing through a thunk.
//
// A compatible overridden method is one which does not have a non-trivial
// covariant-return adjustment.
//
// The first vfptr is the one with the lowest offset in the complete-object
// layout of the defining class, and the method definition will subtract
// that constant offset from the parameter value to get the real 'this'
// value. Therefore, if the offset isn't really constant (e.g. if a virtual
// function defined in a virtual base is overridden in a more derived
// virtual base and these bases have a reverse order in the complete
// object), the vf-table may require a this-adjustment thunk.
//
// 4. vftables do not contain new entries for overrides that merely require
// this-adjustment. Together with #3, this keeps vf-tables smaller and
// eliminates the need for this-adjustment thunks in many cases, at the cost
// of often requiring redundant work to adjust the "this" pointer.
//
// 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
// Vtordisps are emitted into the class layout if a class has
// a) a user-defined ctor/dtor
// and
// b) a method overriding a method in a virtual base.
class VFTableBuilder {
public:
typedef MicrosoftVFTableContext::MethodVFTableLocation MethodVFTableLocation;
typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
MethodVFTableLocationsTy;
private:
/// Context - The ASTContext which we will use for layout information.
ASTContext &Context;
/// MostDerivedClass - The most derived class for which we're building this
/// vtable.
const CXXRecordDecl *MostDerivedClass;
const ASTRecordLayout &MostDerivedClassLayout;
VFPtrInfo WhichVFPtr;
/// FinalOverriders - The final overriders of the most derived class.
const FinalOverriders Overriders;
/// Components - The components of the vftable being built.
SmallVector<VTableComponent, 64> Components;
MethodVFTableLocationsTy MethodVFTableLocations;
/// MethodInfo - Contains information about a method in a vtable.
/// (Used for computing 'this' pointer adjustment thunks.
struct MethodInfo {
/// VBTableIndex - The nonzero index in the vbtable that
/// this method's base has, or zero.
const uint64_t VBTableIndex;
/// VBase - If nonnull, holds the last vbase which contains the vfptr that
/// the method definition is adjusted to.
const CXXRecordDecl *VBase;
/// VFTableIndex - The index in the vftable that this method has.
const uint64_t VFTableIndex;
/// Shadowed - Indicates if this vftable slot is shadowed by
/// a slot for a covariant-return override. If so, it shouldn't be printed
/// or used for vcalls in the most derived class.
bool Shadowed;
MethodInfo(uint64_t VBTableIndex, const CXXRecordDecl *VBase,
uint64_t VFTableIndex)
: VBTableIndex(VBTableIndex), VBase(VBase), VFTableIndex(VFTableIndex),
Shadowed(false) {}
MethodInfo()
: VBTableIndex(0), VBase(0), VFTableIndex(0), Shadowed(false) {}
};
typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
/// MethodInfoMap - The information for all methods in the vftable we're
/// currently building.
MethodInfoMapTy MethodInfoMap;
typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
/// VTableThunks - The thunks by vftable index in the vftable currently being
/// built.
VTableThunksMapTy VTableThunks;
typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
/// Thunks - A map that contains all the thunks needed for all methods in the
/// most derived class for which the vftable is currently being built.
ThunksMapTy Thunks;
/// AddThunk - Add a thunk for the given method.
void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
// Check if we have this thunk already.
if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
ThunksVector.end())
return;
ThunksVector.push_back(Thunk);
}
/// ComputeThisOffset - Returns the 'this' argument offset for the given
/// method in the given subobject, relative to the beginning of the
/// MostDerivedClass.
CharUnits ComputeThisOffset(const CXXMethodDecl *MD,
BaseSubobject Base,
FinalOverriders::OverriderInfo Overrider);
/// AddMethod - Add a single virtual member function to the vftable
/// components vector.
void AddMethod(const CXXMethodDecl *MD, ThisAdjustment ThisAdjustment,
ReturnAdjustment ReturnAdjustment) {
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
assert(ReturnAdjustment.isEmpty() &&
"Destructor can't have return adjustment!");
Components.push_back(VTableComponent::MakeDeletingDtor(DD));
} else {
// Add the return adjustment if necessary.
if (!ReturnAdjustment.isEmpty() || !ThisAdjustment.isEmpty()) {
VTableThunks[Components.size()].Return = ReturnAdjustment;
VTableThunks[Components.size()].This = ThisAdjustment;
}
Components.push_back(VTableComponent::MakeFunction(MD));
}
}
/// AddMethods - Add the methods of this base subobject and the relevant
/// subbases to the vftable we're currently laying out.
void AddMethods(BaseSubobject Base, unsigned BaseDepth,
const CXXRecordDecl *LastVBase,
BasesSetVectorTy &VisitedBases);
void LayoutVFTable() {
// FIXME: add support for RTTI when we have proper LLVM support for symbols
// pointing to the middle of a section.
BasesSetVectorTy VisitedBases;
AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, 0,
VisitedBases);
assert(MethodVFTableLocations.empty());
for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
E = MethodInfoMap.end(); I != E; ++I) {
const CXXMethodDecl *MD = I->first;
const MethodInfo &MI = I->second;
// Skip the methods that the MostDerivedClass didn't override
// and the entries shadowed by return adjusting thunks.
if (MD->getParent() != MostDerivedClass || MI.Shadowed)
continue;
MethodVFTableLocation Loc(MI.VBTableIndex, MI.VBase,
WhichVFPtr.VFPtrOffset, MI.VFTableIndex);
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
} else {
MethodVFTableLocations[MD] = Loc;
}
}
}
void ErrorUnsupported(StringRef Feature, SourceLocation Location) {
clang::DiagnosticsEngine &Diags = Context.getDiagnostics();
unsigned DiagID = Diags.getCustomDiagID(
DiagnosticsEngine::Error, "v-table layout for %0 is not supported yet");
Diags.Report(Context.getFullLoc(Location), DiagID) << Feature;
}
public:
VFTableBuilder(const CXXRecordDecl *MostDerivedClass, VFPtrInfo Which)
: Context(MostDerivedClass->getASTContext()),
MostDerivedClass(MostDerivedClass),
MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
WhichVFPtr(Which),
Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
LayoutVFTable();
if (Context.getLangOpts().DumpVTableLayouts)
dumpLayout(llvm::errs());
}
uint64_t getNumThunks() const { return Thunks.size(); }
ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
MethodVFTableLocationsTy::const_iterator vtable_indices_begin() const {
return MethodVFTableLocations.begin();
}
MethodVFTableLocationsTy::const_iterator vtable_indices_end() const {
return MethodVFTableLocations.end();
}
uint64_t getNumVTableComponents() const { return Components.size(); }
const VTableComponent *vtable_component_begin() const {
return Components.begin();
}
const VTableComponent *vtable_component_end() const {
return Components.end();
}
VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
return VTableThunks.begin();
}
VTableThunksMapTy::const_iterator vtable_thunks_end() const {
return VTableThunks.end();
}
void dumpLayout(raw_ostream &);
};
/// InitialOverriddenDefinitionCollector - Finds the set of least derived bases
/// that define the given method.
struct InitialOverriddenDefinitionCollector {
BasesSetVectorTy Bases;
OverriddenMethodsSetTy VisitedOverriddenMethods;
bool visit(const CXXMethodDecl *OverriddenMD) {
if (OverriddenMD->size_overridden_methods() == 0)
Bases.insert(OverriddenMD->getParent());
// Don't recurse on this method if we've already collected it.
return VisitedOverriddenMethods.insert(OverriddenMD);
}
};
static bool BaseInSet(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path, void *BasesSet) {
BasesSetVectorTy *Bases = (BasesSetVectorTy *)BasesSet;
return Bases->count(Specifier->getType()->getAsCXXRecordDecl());
}
CharUnits
VFTableBuilder::ComputeThisOffset(const CXXMethodDecl *MD,
BaseSubobject Base,
FinalOverriders::OverriderInfo Overrider) {
// Complete object virtual destructors are always emitted in the most derived
// class, thus don't have this offset.
if (isa<CXXDestructorDecl>(MD))
return CharUnits();
InitialOverriddenDefinitionCollector Collector;
visitAllOverriddenMethods(MD, Collector);
CXXBasePaths Paths;
Base.getBase()->lookupInBases(BaseInSet, &Collector.Bases, Paths);
// This will hold the smallest this offset among overridees of MD.
// This implies that an offset of a non-virtual base will dominate an offset
// of a virtual base to potentially reduce the number of thunks required
// in the derived classes that inherit this method.
CharUnits Ret;
bool First = true;
for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
I != E; ++I) {
const CXXBasePath &Path = (*I);
CharUnits ThisOffset = Base.getBaseOffset();
// For each path from the overrider to the parents of the overridden methods,
// traverse the path, calculating the this offset in the most derived class.
for (int J = 0, F = Path.size(); J != F; ++J) {
const CXXBasePathElement &Element = Path[J];
QualType CurTy = Element.Base->getType();
const CXXRecordDecl *PrevRD = Element.Class,
*CurRD = CurTy->getAsCXXRecordDecl();
const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
if (Element.Base->isVirtual()) {
if (Overrider.Method->getParent() == PrevRD) {
// This one's interesting. If the final overrider is in a vbase B of the
// most derived class and it overrides a method of the B's own vbase A,
// it uses A* as "this". In its prologue, it can cast A* to B* with
// a static offset. This offset is used regardless of the actual
// offset of A from B in the most derived class, requiring an
// this-adjusting thunk in the vftable if A and B are laid out
// differently in the most derived class.
ThisOffset += Layout.getVBaseClassOffset(CurRD);
} else {
ThisOffset = MostDerivedClassLayout.getVBaseClassOffset(CurRD);
}
} else {
ThisOffset += Layout.getBaseClassOffset(CurRD);
}
}
if (Ret > ThisOffset || First) {
First = false;
Ret = ThisOffset;
}
}
assert(!First && "Method not found in the given subobject?");
return Ret;
}
static const CXXMethodDecl*
FindDirectlyOverriddenMethodInBases(const CXXMethodDecl *MD,
BasesSetVectorTy &Bases) {
// We can't just iterate over the overridden methods and return the first one
// which has its parent in Bases, e.g. this doesn't work when we have
// multiple subobjects of the same type that have its virtual function
// overridden.
for (int I = Bases.size(), E = 0; I != E; --I) {
const CXXRecordDecl *CurrentBase = Bases[I - 1];
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
E = MD->end_overridden_methods(); I != E; ++I) {
const CXXMethodDecl *OverriddenMD = *I;
if (OverriddenMD->getParent() == CurrentBase)
return OverriddenMD;
}
}
return 0;
}
void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
const CXXRecordDecl *LastVBase,
BasesSetVectorTy &VisitedBases) {
const CXXRecordDecl *RD = Base.getBase();
if (!RD->isPolymorphic())
return;
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
// See if this class expands a vftable of the base we look at, which is either
// the one defined by the vfptr base path or the primary base of the current class.
const CXXRecordDecl *NextBase = 0, *NextLastVBase = LastVBase;
CharUnits NextBaseOffset;
if (BaseDepth < WhichVFPtr.PathToBaseWithVFPtr.size()) {
NextBase = WhichVFPtr.PathToBaseWithVFPtr[BaseDepth];
if (Layout.getVBaseOffsetsMap().count(NextBase)) {
NextLastVBase = NextBase;
NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
} else {
NextBaseOffset =
Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
}
} else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
assert(!Layout.isPrimaryBaseVirtual() &&
"No primary virtual bases in this ABI");
NextBase = PrimaryBase;
NextBaseOffset = Base.getBaseOffset();
}
if (NextBase) {
AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
NextLastVBase, VisitedBases);
if (!VisitedBases.insert(NextBase))
llvm_unreachable("Found a duplicate primary base!");
}
// Now go through all virtual member functions and add them to the current
// vftable. This is done by
// - replacing overridden methods in their existing slots, as long as they
// don't require return adjustment; calculating This adjustment if needed.
// - adding new slots for methods of the current base not present in any
// sub-bases;
// - adding new slots for methods that require Return adjustment.
// We keep track of the methods visited in the sub-bases in MethodInfoMap.
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
E = RD->method_end(); I != E; ++I) {
const CXXMethodDecl *MD = *I;
if (!MD->isVirtual())
continue;
FinalOverriders::OverriderInfo Overrider =
Overriders.getOverrider(MD, Base.getBaseOffset());
ThisAdjustment ThisAdjustmentOffset;
// Check if this virtual member function overrides
// a method in one of the visited bases.
if (const CXXMethodDecl *OverriddenMD =
FindDirectlyOverriddenMethodInBases(MD, VisitedBases)) {
MethodInfoMapTy::iterator OverriddenMDIterator =
MethodInfoMap.find(OverriddenMD);
// If the overridden method went to a different vftable, skip it.
if (OverriddenMDIterator == MethodInfoMap.end())
continue;
MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
// Create a this-adjusting thunk if needed.
CharUnits TI = ComputeThisOffset(MD, Base, Overrider);
if (TI != WhichVFPtr.VFPtrFullOffset) {
ThisAdjustmentOffset.NonVirtual =
(TI - WhichVFPtr.VFPtrFullOffset).getQuantity();
VTableThunks[OverriddenMethodInfo.VFTableIndex].This =
ThisAdjustmentOffset;
AddThunk(MD, VTableThunks[OverriddenMethodInfo.VFTableIndex]);
}
if (ComputeReturnAdjustmentBaseOffset(Context, MD, OverriddenMD)
.isEmpty()) {
// No return adjustment needed - just replace the overridden method info
// with the current info.
MethodInfo MI(OverriddenMethodInfo.VBTableIndex,
OverriddenMethodInfo.VBase,
OverriddenMethodInfo.VFTableIndex);
MethodInfoMap.erase(OverriddenMDIterator);
assert(!MethodInfoMap.count(MD) &&
"Should not have method info for this method yet!");
MethodInfoMap.insert(std::make_pair(MD, MI));
continue;
} else {
// In case we need a return adjustment, we'll add a new slot for
// the overrider and put a return-adjusting thunk where the overridden
// method was in the vftable.
// For now, just mark the overriden method as shadowed by a new slot.
OverriddenMethodInfo.Shadowed = true;
// Also apply this adjustment to the shadowed slots.
if (!ThisAdjustmentOffset.isEmpty()) {
// FIXME: this is O(N^2), can be O(N).
const CXXMethodDecl *SubOverride = OverriddenMD;
while ((SubOverride =
FindDirectlyOverriddenMethodInBases(SubOverride, VisitedBases))) {
MethodInfoMapTy::iterator SubOverrideIterator =
MethodInfoMap.find(SubOverride);
if (SubOverrideIterator == MethodInfoMap.end())
break;
MethodInfo &SubOverrideMI = SubOverrideIterator->second;
assert(SubOverrideMI.Shadowed);
VTableThunks[SubOverrideMI.VFTableIndex].This =
ThisAdjustmentOffset;
AddThunk(MD, VTableThunks[SubOverrideMI.VFTableIndex]);
}
}
}
} else if (Base.getBaseOffset() != WhichVFPtr.VFPtrFullOffset ||
MD->size_overridden_methods()) {
// Skip methods that don't belong to the vftable of the current class,
// e.g. each method that wasn't seen in any of the visited sub-bases
// but overrides multiple methods of other sub-bases.
continue;
}
// If we got here, MD is a method not seen in any of the sub-bases or
// it requires return adjustment. Insert the method info for this method.
unsigned VBIndex =
LastVBase ? GetVBTableIndex(MostDerivedClass, LastVBase) : 0;
MethodInfo MI(VBIndex, LastVBase, Components.size());
assert(!MethodInfoMap.count(MD) &&
"Should not have method info for this method yet!");
MethodInfoMap.insert(std::make_pair(MD, MI));
const CXXMethodDecl *OverriderMD = Overrider.Method;
// Check if this overrider needs a return adjustment.
// We don't want to do this for pure virtual member functions.
BaseOffset ReturnAdjustmentOffset;
ReturnAdjustment ReturnAdjustment;
if (!OverriderMD->isPure()) {
ReturnAdjustmentOffset =
ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
}
if (!ReturnAdjustmentOffset.isEmpty()) {
ReturnAdjustment.NonVirtual =
ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
if (ReturnAdjustmentOffset.VirtualBase) {
// FIXME: We might want to create a VBIndex alias for VBaseOffsetOffset
// in the ReturnAdjustment struct.
ReturnAdjustment.VBaseOffsetOffset =
GetVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
ReturnAdjustmentOffset.VirtualBase);
}
}
AddMethod(Overrider.Method, ThisAdjustmentOffset, ReturnAdjustment);
}
}
void PrintBasePath(const VFPtrInfo::BasePath &Path, raw_ostream &Out) {
for (VFPtrInfo::BasePath::const_reverse_iterator I = Path.rbegin(),
E = Path.rend(); I != E; ++I) {
Out << "'" << (*I)->getQualifiedNameAsString() << "' in ";
}
}
void VFTableBuilder::dumpLayout(raw_ostream &Out) {
Out << "VFTable for ";
PrintBasePath(WhichVFPtr.PathToBaseWithVFPtr, Out);
Out << "'" << MostDerivedClass->getQualifiedNameAsString();
Out << "' (" << Components.size() << " entries).\n";
for (unsigned I = 0, E = Components.size(); I != E; ++I) {
Out << llvm::format("%4d | ", I);
const VTableComponent &Component = Components[I];
// Dump the component.
switch (Component.getKind()) {
case VTableComponent::CK_RTTI:
Out << Component.getRTTIDecl()->getQualifiedNameAsString() << " RTTI";
break;
case VTableComponent::CK_FunctionPointer: {
const CXXMethodDecl *MD = Component.getFunctionDecl();
std::string Str = PredefinedExpr::ComputeName(
PredefinedExpr::PrettyFunctionNoVirtual, MD);
Out << Str;
if (MD->isPure())
Out << " [pure]";
if (MD->isDeleted()) {
ErrorUnsupported("deleted methods", MD->getLocation());
Out << " [deleted]";
}
ThunkInfo Thunk = VTableThunks.lookup(I);
if (!Thunk.isEmpty()) {
// If this function pointer has a return adjustment, dump it.
if (!Thunk.Return.isEmpty()) {
Out << "\n [return adjustment: ";
if (Thunk.Return.VBaseOffsetOffset)
Out << "vbase #" << Thunk.Return.VBaseOffsetOffset << ", ";
Out << Thunk.Return.NonVirtual << " non-virtual]";
}
// If this function pointer has a 'this' pointer adjustment, dump it.
if (!Thunk.This.isEmpty()) {
assert(!Thunk.This.VCallOffsetOffset &&
"No virtual this adjustment in this ABI");
Out << "\n [this adjustment: " << Thunk.This.NonVirtual
<< " non-virtual]";
}
}
break;
}
case VTableComponent::CK_DeletingDtorPointer: {
const CXXDestructorDecl *DD = Component.getDestructorDecl();
Out << DD->getQualifiedNameAsString();
Out << "() [scalar deleting]";
if (DD->isPure())
Out << " [pure]";
ThunkInfo Thunk = VTableThunks.lookup(I);
if (!Thunk.isEmpty()) {
assert(Thunk.Return.isEmpty() &&
"No return adjustment needed for destructors!");
// If this destructor has a 'this' pointer adjustment, dump it.
if (!Thunk.This.isEmpty()) {
assert(!Thunk.This.VCallOffsetOffset &&
"No virtual this adjustment in this ABI");
Out << "\n [this adjustment: " << Thunk.This.NonVirtual
<< " non-virtual]";
}
}
break;
}
default:
DiagnosticsEngine &Diags = Context.getDiagnostics();
unsigned DiagID = Diags.getCustomDiagID(
DiagnosticsEngine::Error,
"Unexpected vftable component type %0 for component number %1");
Diags.Report(MostDerivedClass->getLocation(), DiagID)
<< I << Component.getKind();
}
Out << '\n';
}
Out << '\n';
if (!Thunks.empty()) {
// We store the method names in a map to get a stable order.
std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
I != E; ++I) {
const CXXMethodDecl *MD = I->first;
std::string MethodName = PredefinedExpr::ComputeName(
PredefinedExpr::PrettyFunctionNoVirtual, MD);
MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
}
for (std::map<std::string, const CXXMethodDecl *>::const_iterator
I = MethodNamesAndDecls.begin(),
E = MethodNamesAndDecls.end();
I != E; ++I) {
const std::string &MethodName = I->first;
const CXXMethodDecl *MD = I->second;
ThunkInfoVectorTy ThunksVector = Thunks[MD];
std::sort(ThunksVector.begin(), ThunksVector.end());
Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
const ThunkInfo &Thunk = ThunksVector[I];
Out << llvm::format("%4d | ", I);
// If this function pointer has a return pointer adjustment, dump it.
if (!Thunk.Return.isEmpty()) {
Out << "return adjustment: ";
if (Thunk.Return.VBaseOffsetOffset)
Out << "vbase #" << Thunk.Return.VBaseOffsetOffset << ", ";
Out << Thunk.Return.NonVirtual << " non-virtual";
if (!Thunk.This.isEmpty())
Out << "\n ";
}
// If this function pointer has a 'this' pointer adjustment, dump it.
if (!Thunk.This.isEmpty()) {
assert(!Thunk.This.VCallOffsetOffset &&
"No virtual this adjustment in this ABI");
Out << "this adjustment: ";
Out << Thunk.This.NonVirtual << " non-virtual";
}
Out << '\n';
}
Out << '\n';
}
}
}
}
static void EnumerateVFPtrs(
ASTContext &Context, const CXXRecordDecl *MostDerivedClass,
const ASTRecordLayout &MostDerivedClassLayout,
BaseSubobject Base, const CXXRecordDecl *LastVBase,
const VFPtrInfo::BasePath &PathFromCompleteClass,
BasesSetVectorTy &VisitedVBases,
MicrosoftVFTableContext::VFPtrListTy &Result) {
const CXXRecordDecl *CurrentClass = Base.getBase();
CharUnits OffsetInCompleteClass = Base.getBaseOffset();
const ASTRecordLayout &CurrentClassLayout =
Context.getASTRecordLayout(CurrentClass);
if (CurrentClassLayout.hasOwnVFPtr()) {
if (LastVBase) {
uint64_t VBIndex = GetVBTableIndex(MostDerivedClass, LastVBase);
assert(VBIndex > 0 && "vbases must have vbindex!");
CharUnits VFPtrOffset =
OffsetInCompleteClass -
MostDerivedClassLayout.getVBaseClassOffset(LastVBase);
Result.push_back(VFPtrInfo(VBIndex, LastVBase, VFPtrOffset,
PathFromCompleteClass, OffsetInCompleteClass));
} else {
Result.push_back(VFPtrInfo(OffsetInCompleteClass, PathFromCompleteClass));
}
}
for (CXXRecordDecl::base_class_const_iterator I = CurrentClass->bases_begin(),
E = CurrentClass->bases_end(); I != E; ++I) {
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
CharUnits NextBaseOffset;
const CXXRecordDecl *NextLastVBase;
if (I->isVirtual()) {
if (VisitedVBases.count(BaseDecl))
continue;
VisitedVBases.insert(BaseDecl);
NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
NextLastVBase = BaseDecl;
} else {
NextBaseOffset = OffsetInCompleteClass +
CurrentClassLayout.getBaseClassOffset(BaseDecl);
NextLastVBase = LastVBase;
}
VFPtrInfo::BasePath NewPath = PathFromCompleteClass;
NewPath.push_back(BaseDecl);
BaseSubobject NextBase(BaseDecl, NextBaseOffset);
EnumerateVFPtrs(Context, MostDerivedClass, MostDerivedClassLayout, NextBase,
NextLastVBase, NewPath, VisitedVBases, Result);
}
}
static void EnumerateVFPtrs(ASTContext &Context, const CXXRecordDecl *ForClass,
MicrosoftVFTableContext::VFPtrListTy &Result) {
Result.clear();
const ASTRecordLayout &ClassLayout = Context.getASTRecordLayout(ForClass);
BasesSetVectorTy VisitedVBases;
EnumerateVFPtrs(Context, ForClass, ClassLayout,
BaseSubobject(ForClass, CharUnits::Zero()), 0,
VFPtrInfo::BasePath(), VisitedVBases, Result);
}
void MicrosoftVFTableContext::computeVTableRelatedInformation(
const CXXRecordDecl *RD) {
assert(RD->isDynamicClass());
// Check if we've computed this information before.
if (VFPtrLocations.count(RD))
return;
const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
VFPtrListTy &VFPtrs = VFPtrLocations[RD];
EnumerateVFPtrs(Context, RD, VFPtrs);
MethodVFTableLocationsTy NewMethodLocations;
for (VFPtrListTy::iterator I = VFPtrs.begin(), E = VFPtrs.end();
I != E; ++I) {
VFTableBuilder Builder(RD, *I);
VFTableIdTy id(RD, I->VFPtrFullOffset);
assert(VFTableLayouts.count(id) == 0);
SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
std::sort(VTableThunks.begin(), VTableThunks.end());
VFTableLayouts[id] = new VTableLayout(
Builder.getNumVTableComponents(), Builder.vtable_component_begin(),
VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true);
NewMethodLocations.insert(Builder.vtable_indices_begin(),
Builder.vtable_indices_end());
Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
}
MethodVFTableLocations.insert(NewMethodLocations.begin(),
NewMethodLocations.end());
if (Context.getLangOpts().DumpVTableLayouts)
dumpMethodLocations(RD, NewMethodLocations, llvm::errs());
}
void MicrosoftVFTableContext::dumpMethodLocations(
const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
raw_ostream &Out) {
// Compute the vtable indices for all the member functions.
// Store them in a map keyed by the location so we'll get a sorted table.
std::map<MethodVFTableLocation, std::string> IndicesMap;
bool HasNonzeroOffset = false;
for (MethodVFTableLocationsTy::const_iterator I = NewMethods.begin(),
E = NewMethods.end(); I != E; ++I) {
const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I->first.getDecl());
assert(MD->isVirtual());
std::string MethodName = PredefinedExpr::ComputeName(
PredefinedExpr::PrettyFunctionNoVirtual, MD);
if (isa<CXXDestructorDecl>(MD)) {
IndicesMap[I->second] = MethodName + " [scalar deleting]";
} else {
IndicesMap[I->second] = MethodName;
}
if (!I->second.VFTableOffset.isZero() || I->second.VBTableIndex != 0)
HasNonzeroOffset = true;
}
// Print the vtable indices for all the member functions.
if (!IndicesMap.empty()) {
Out << "VFTable indices for ";
Out << "'" << RD->getQualifiedNameAsString();
Out << "' (" << IndicesMap.size() << " entries).\n";
CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
uint64_t LastVBIndex = 0;
for (std::map<MethodVFTableLocation, std::string>::const_iterator
I = IndicesMap.begin(),
E = IndicesMap.end();
I != E; ++I) {
CharUnits VFPtrOffset = I->first.VFTableOffset;
uint64_t VBIndex = I->first.VBTableIndex;
if (HasNonzeroOffset &&
(VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
Out << " -- accessible via ";
if (VBIndex)
Out << "vbtable index " << VBIndex << ", ";
Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
LastVFPtrOffset = VFPtrOffset;
LastVBIndex = VBIndex;
}
uint64_t VTableIndex = I->first.Index;
const std::string &MethodName = I->second;
Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
}
Out << '\n';
}
}
const MicrosoftVFTableContext::VFPtrListTy &
MicrosoftVFTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
computeVTableRelatedInformation(RD);
assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
return VFPtrLocations[RD];
}
const VTableLayout &
MicrosoftVFTableContext::getVFTableLayout(const CXXRecordDecl *RD,
CharUnits VFPtrOffset) {
computeVTableRelatedInformation(RD);
VFTableIdTy id(RD, VFPtrOffset);
assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
return *VFTableLayouts[id];
}
const MicrosoftVFTableContext::MethodVFTableLocation &
MicrosoftVFTableContext::getMethodVFTableLocation(GlobalDecl GD) {
assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
"Only use this method for virtual methods or dtors");
if (isa<CXXDestructorDecl>(GD.getDecl()))
assert(GD.getDtorType() == Dtor_Deleting);
MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
if (I != MethodVFTableLocations.end())
return I->second;
const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
computeVTableRelatedInformation(RD);
I = MethodVFTableLocations.find(GD);
assert(I != MethodVFTableLocations.end() && "Did not find index!");
return I->second;
}