llvm-project/mlir/lib/Transforms/Inliner.cpp

787 lines
30 KiB
C++

//===- Inliner.cpp - Pass to inline function calls ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a basic inlining algorithm that operates bottom up over
// the Strongly Connect Components(SCCs) of the CallGraph. This enables a more
// incremental propagation of inlining decisions from the leafs to the roots of
// the callgraph.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Analysis/CallGraph.h"
#include "mlir/IR/Threading.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/InliningUtils.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "inlining"
using namespace mlir;
/// This function implements the default inliner optimization pipeline.
static void defaultInlinerOptPipeline(OpPassManager &pm) {
pm.addPass(createCanonicalizerPass());
}
//===----------------------------------------------------------------------===//
// Symbol Use Tracking
//===----------------------------------------------------------------------===//
/// Walk all of the used symbol callgraph nodes referenced with the given op.
static void walkReferencedSymbolNodes(
Operation *op, CallGraph &cg, SymbolTableCollection &symbolTable,
DenseMap<Attribute, CallGraphNode *> &resolvedRefs,
function_ref<void(CallGraphNode *, Operation *)> callback) {
auto symbolUses = SymbolTable::getSymbolUses(op);
assert(symbolUses && "expected uses to be valid");
Operation *symbolTableOp = op->getParentOp();
for (const SymbolTable::SymbolUse &use : *symbolUses) {
auto refIt = resolvedRefs.insert({use.getSymbolRef(), nullptr});
CallGraphNode *&node = refIt.first->second;
// If this is the first instance of this reference, try to resolve a
// callgraph node for it.
if (refIt.second) {
auto *symbolOp = symbolTable.lookupNearestSymbolFrom(symbolTableOp,
use.getSymbolRef());
auto callableOp = dyn_cast_or_null<CallableOpInterface>(symbolOp);
if (!callableOp)
continue;
node = cg.lookupNode(callableOp.getCallableRegion());
}
if (node)
callback(node, use.getUser());
}
}
//===----------------------------------------------------------------------===//
// CGUseList
namespace {
/// This struct tracks the uses of callgraph nodes that can be dropped when
/// use_empty. It directly tracks and manages a use-list for all of the
/// call-graph nodes. This is necessary because many callgraph nodes are
/// referenced by SymbolRefAttr, which has no mechanism akin to the SSA `Use`
/// class.
struct CGUseList {
/// This struct tracks the uses of callgraph nodes within a specific
/// operation.
struct CGUser {
/// Any nodes referenced in the top-level attribute list of this user. We
/// use a set here because the number of references does not matter.
DenseSet<CallGraphNode *> topLevelUses;
/// Uses of nodes referenced by nested operations.
DenseMap<CallGraphNode *, int> innerUses;
};
CGUseList(Operation *op, CallGraph &cg, SymbolTableCollection &symbolTable);
/// Drop uses of nodes referred to by the given call operation that resides
/// within 'userNode'.
void dropCallUses(CallGraphNode *userNode, Operation *callOp, CallGraph &cg);
/// Remove the given node from the use list.
void eraseNode(CallGraphNode *node);
/// Returns true if the given callgraph node has no uses and can be pruned.
bool isDead(CallGraphNode *node) const;
/// Returns true if the given callgraph node has a single use and can be
/// discarded.
bool hasOneUseAndDiscardable(CallGraphNode *node) const;
/// Recompute the uses held by the given callgraph node.
void recomputeUses(CallGraphNode *node, CallGraph &cg);
/// Merge the uses of 'lhs' with the uses of the 'rhs' after inlining a copy
/// of 'lhs' into 'rhs'.
void mergeUsesAfterInlining(CallGraphNode *lhs, CallGraphNode *rhs);
private:
/// Decrement the uses of discardable nodes referenced by the given user.
void decrementDiscardableUses(CGUser &uses);
/// A mapping between a discardable callgraph node (that is a symbol) and the
/// number of uses for this node.
DenseMap<CallGraphNode *, int> discardableSymNodeUses;
/// A mapping between a callgraph node and the symbol callgraph nodes that it
/// uses.
DenseMap<CallGraphNode *, CGUser> nodeUses;
/// A symbol table to use when resolving call lookups.
SymbolTableCollection &symbolTable;
};
} // namespace
CGUseList::CGUseList(Operation *op, CallGraph &cg,
SymbolTableCollection &symbolTable)
: symbolTable(symbolTable) {
/// A set of callgraph nodes that are always known to be live during inlining.
DenseMap<Attribute, CallGraphNode *> alwaysLiveNodes;
// Walk each of the symbol tables looking for discardable callgraph nodes.
auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) {
for (Operation &op : symbolTableOp->getRegion(0).getOps()) {
// If this is a callgraph operation, check to see if it is discardable.
if (auto callable = dyn_cast<CallableOpInterface>(&op)) {
if (auto *node = cg.lookupNode(callable.getCallableRegion())) {
SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(&op);
if (symbol && (allUsesVisible || symbol.isPrivate()) &&
symbol.canDiscardOnUseEmpty()) {
discardableSymNodeUses.try_emplace(node, 0);
}
continue;
}
}
// Otherwise, check for any referenced nodes. These will be always-live.
walkReferencedSymbolNodes(&op, cg, symbolTable, alwaysLiveNodes,
[](CallGraphNode *, Operation *) {});
}
};
SymbolTable::walkSymbolTables(op, /*allSymUsesVisible=*/!op->getBlock(),
walkFn);
// Drop the use information for any discardable nodes that are always live.
for (auto &it : alwaysLiveNodes)
discardableSymNodeUses.erase(it.second);
// Compute the uses for each of the callable nodes in the graph.
for (CallGraphNode *node : cg)
recomputeUses(node, cg);
}
void CGUseList::dropCallUses(CallGraphNode *userNode, Operation *callOp,
CallGraph &cg) {
auto &userRefs = nodeUses[userNode].innerUses;
auto walkFn = [&](CallGraphNode *node, Operation *user) {
auto parentIt = userRefs.find(node);
if (parentIt == userRefs.end())
return;
--parentIt->second;
--discardableSymNodeUses[node];
};
DenseMap<Attribute, CallGraphNode *> resolvedRefs;
walkReferencedSymbolNodes(callOp, cg, symbolTable, resolvedRefs, walkFn);
}
void CGUseList::eraseNode(CallGraphNode *node) {
// Drop all child nodes.
for (auto &edge : *node)
if (edge.isChild())
eraseNode(edge.getTarget());
// Drop the uses held by this node and erase it.
auto useIt = nodeUses.find(node);
assert(useIt != nodeUses.end() && "expected node to be valid");
decrementDiscardableUses(useIt->getSecond());
nodeUses.erase(useIt);
discardableSymNodeUses.erase(node);
}
bool CGUseList::isDead(CallGraphNode *node) const {
// If the parent operation isn't a symbol, simply check normal SSA deadness.
Operation *nodeOp = node->getCallableRegion()->getParentOp();
if (!isa<SymbolOpInterface>(nodeOp))
return MemoryEffectOpInterface::hasNoEffect(nodeOp) && nodeOp->use_empty();
// Otherwise, check the number of symbol uses.
auto symbolIt = discardableSymNodeUses.find(node);
return symbolIt != discardableSymNodeUses.end() && symbolIt->second == 0;
}
bool CGUseList::hasOneUseAndDiscardable(CallGraphNode *node) const {
// If this isn't a symbol node, check for side-effects and SSA use count.
Operation *nodeOp = node->getCallableRegion()->getParentOp();
if (!isa<SymbolOpInterface>(nodeOp))
return MemoryEffectOpInterface::hasNoEffect(nodeOp) && nodeOp->hasOneUse();
// Otherwise, check the number of symbol uses.
auto symbolIt = discardableSymNodeUses.find(node);
return symbolIt != discardableSymNodeUses.end() && symbolIt->second == 1;
}
void CGUseList::recomputeUses(CallGraphNode *node, CallGraph &cg) {
Operation *parentOp = node->getCallableRegion()->getParentOp();
CGUser &uses = nodeUses[node];
decrementDiscardableUses(uses);
// Collect the new discardable uses within this node.
uses = CGUser();
DenseMap<Attribute, CallGraphNode *> resolvedRefs;
auto walkFn = [&](CallGraphNode *refNode, Operation *user) {
auto discardSymIt = discardableSymNodeUses.find(refNode);
if (discardSymIt == discardableSymNodeUses.end())
return;
if (user != parentOp)
++uses.innerUses[refNode];
else if (!uses.topLevelUses.insert(refNode).second)
return;
++discardSymIt->second;
};
walkReferencedSymbolNodes(parentOp, cg, symbolTable, resolvedRefs, walkFn);
}
void CGUseList::mergeUsesAfterInlining(CallGraphNode *lhs, CallGraphNode *rhs) {
auto &lhsUses = nodeUses[lhs], &rhsUses = nodeUses[rhs];
for (auto &useIt : lhsUses.innerUses) {
rhsUses.innerUses[useIt.first] += useIt.second;
discardableSymNodeUses[useIt.first] += useIt.second;
}
}
void CGUseList::decrementDiscardableUses(CGUser &uses) {
for (CallGraphNode *node : uses.topLevelUses)
--discardableSymNodeUses[node];
for (auto &it : uses.innerUses)
discardableSymNodeUses[it.first] -= it.second;
}
//===----------------------------------------------------------------------===//
// CallGraph traversal
//===----------------------------------------------------------------------===//
namespace {
/// This class represents a specific callgraph SCC.
class CallGraphSCC {
public:
CallGraphSCC(llvm::scc_iterator<const CallGraph *> &parentIterator)
: parentIterator(parentIterator) {}
/// Return a range over the nodes within this SCC.
std::vector<CallGraphNode *>::iterator begin() { return nodes.begin(); }
std::vector<CallGraphNode *>::iterator end() { return nodes.end(); }
/// Reset the nodes of this SCC with those provided.
void reset(const std::vector<CallGraphNode *> &newNodes) { nodes = newNodes; }
/// Remove the given node from this SCC.
void remove(CallGraphNode *node) {
auto it = llvm::find(nodes, node);
if (it != nodes.end()) {
nodes.erase(it);
parentIterator.ReplaceNode(node, nullptr);
}
}
private:
std::vector<CallGraphNode *> nodes;
llvm::scc_iterator<const CallGraph *> &parentIterator;
};
} // namespace
/// Run a given transformation over the SCCs of the callgraph in a bottom up
/// traversal.
static LogicalResult runTransformOnCGSCCs(
const CallGraph &cg,
function_ref<LogicalResult(CallGraphSCC &)> sccTransformer) {
llvm::scc_iterator<const CallGraph *> cgi = llvm::scc_begin(&cg);
CallGraphSCC currentSCC(cgi);
while (!cgi.isAtEnd()) {
// Copy the current SCC and increment so that the transformer can modify the
// SCC without invalidating our iterator.
currentSCC.reset(*cgi);
++cgi;
if (failed(sccTransformer(currentSCC)))
return failure();
}
return success();
}
namespace {
/// This struct represents a resolved call to a given callgraph node. Given that
/// the call does not actually contain a direct reference to the
/// Region(CallGraphNode) that it is dispatching to, we need to resolve them
/// explicitly.
struct ResolvedCall {
ResolvedCall(CallOpInterface call, CallGraphNode *sourceNode,
CallGraphNode *targetNode)
: call(call), sourceNode(sourceNode), targetNode(targetNode) {}
CallOpInterface call;
CallGraphNode *sourceNode, *targetNode;
};
} // namespace
/// Collect all of the callable operations within the given range of blocks. If
/// `traverseNestedCGNodes` is true, this will also collect call operations
/// inside of nested callgraph nodes.
static void collectCallOps(iterator_range<Region::iterator> blocks,
CallGraphNode *sourceNode, CallGraph &cg,
SymbolTableCollection &symbolTable,
SmallVectorImpl<ResolvedCall> &calls,
bool traverseNestedCGNodes) {
SmallVector<std::pair<Block *, CallGraphNode *>, 8> worklist;
auto addToWorklist = [&](CallGraphNode *node,
iterator_range<Region::iterator> blocks) {
for (Block &block : blocks)
worklist.emplace_back(&block, node);
};
addToWorklist(sourceNode, blocks);
while (!worklist.empty()) {
Block *block;
std::tie(block, sourceNode) = worklist.pop_back_val();
for (Operation &op : *block) {
if (auto call = dyn_cast<CallOpInterface>(op)) {
// TODO: Support inlining nested call references.
CallInterfaceCallable callable = call.getCallableForCallee();
if (SymbolRefAttr symRef = callable.dyn_cast<SymbolRefAttr>()) {
if (!symRef.isa<FlatSymbolRefAttr>())
continue;
}
CallGraphNode *targetNode = cg.resolveCallable(call, symbolTable);
if (!targetNode->isExternal())
calls.emplace_back(call, sourceNode, targetNode);
continue;
}
// If this is not a call, traverse the nested regions. If
// `traverseNestedCGNodes` is false, then don't traverse nested call graph
// regions.
for (auto &nestedRegion : op.getRegions()) {
CallGraphNode *nestedNode = cg.lookupNode(&nestedRegion);
if (traverseNestedCGNodes || !nestedNode)
addToWorklist(nestedNode ? nestedNode : sourceNode, nestedRegion);
}
}
}
}
//===----------------------------------------------------------------------===//
// Inliner
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a specialization of the main inlining interface.
struct Inliner : public InlinerInterface {
Inliner(MLIRContext *context, CallGraph &cg,
SymbolTableCollection &symbolTable)
: InlinerInterface(context), cg(cg), symbolTable(symbolTable) {}
/// Process a set of blocks that have been inlined. This callback is invoked
/// *before* inlined terminator operations have been processed.
void
processInlinedBlocks(iterator_range<Region::iterator> inlinedBlocks) final {
// Find the closest callgraph node from the first block.
CallGraphNode *node;
Region *region = inlinedBlocks.begin()->getParent();
while (!(node = cg.lookupNode(region))) {
region = region->getParentRegion();
assert(region && "expected valid parent node");
}
collectCallOps(inlinedBlocks, node, cg, symbolTable, calls,
/*traverseNestedCGNodes=*/true);
}
/// Mark the given callgraph node for deletion.
void markForDeletion(CallGraphNode *node) { deadNodes.insert(node); }
/// This method properly disposes of callables that became dead during
/// inlining. This should not be called while iterating over the SCCs.
void eraseDeadCallables() {
for (CallGraphNode *node : deadNodes)
node->getCallableRegion()->getParentOp()->erase();
}
/// The set of callables known to be dead.
SmallPtrSet<CallGraphNode *, 8> deadNodes;
/// The current set of call instructions to consider for inlining.
SmallVector<ResolvedCall, 8> calls;
/// The callgraph being operated on.
CallGraph &cg;
/// A symbol table to use when resolving call lookups.
SymbolTableCollection &symbolTable;
};
} // namespace
/// Returns true if the given call should be inlined.
static bool shouldInline(ResolvedCall &resolvedCall) {
// Don't allow inlining terminator calls. We currently don't support this
// case.
if (resolvedCall.call->hasTrait<OpTrait::IsTerminator>())
return false;
// Don't allow inlining if the target is an ancestor of the call. This
// prevents inlining recursively.
if (resolvedCall.targetNode->getCallableRegion()->isAncestor(
resolvedCall.call->getParentRegion()))
return false;
// Otherwise, inline.
return true;
}
/// Attempt to inline calls within the given scc. This function returns
/// success if any calls were inlined, failure otherwise.
static LogicalResult inlineCallsInSCC(Inliner &inliner, CGUseList &useList,
CallGraphSCC &currentSCC) {
CallGraph &cg = inliner.cg;
auto &calls = inliner.calls;
// A set of dead nodes to remove after inlining.
llvm::SmallSetVector<CallGraphNode *, 1> deadNodes;
// Collect all of the direct calls within the nodes of the current SCC. We
// don't traverse nested callgraph nodes, because they are handled separately
// likely within a different SCC.
for (CallGraphNode *node : currentSCC) {
if (node->isExternal())
continue;
// Don't collect calls if the node is already dead.
if (useList.isDead(node)) {
deadNodes.insert(node);
} else {
collectCallOps(*node->getCallableRegion(), node, cg, inliner.symbolTable,
calls, /*traverseNestedCGNodes=*/false);
}
}
// Try to inline each of the call operations. Don't cache the end iterator
// here as more calls may be added during inlining.
bool inlinedAnyCalls = false;
for (unsigned i = 0; i != calls.size(); ++i) {
if (deadNodes.contains(calls[i].sourceNode))
continue;
ResolvedCall it = calls[i];
bool doInline = shouldInline(it);
CallOpInterface call = it.call;
LLVM_DEBUG({
if (doInline)
llvm::dbgs() << "* Inlining call: " << call << "\n";
else
llvm::dbgs() << "* Not inlining call: " << call << "\n";
});
if (!doInline)
continue;
Region *targetRegion = it.targetNode->getCallableRegion();
// If this is the last call to the target node and the node is discardable,
// then inline it in-place and delete the node if successful.
bool inlineInPlace = useList.hasOneUseAndDiscardable(it.targetNode);
LogicalResult inlineResult = inlineCall(
inliner, call, cast<CallableOpInterface>(targetRegion->getParentOp()),
targetRegion, /*shouldCloneInlinedRegion=*/!inlineInPlace);
if (failed(inlineResult)) {
LLVM_DEBUG(llvm::dbgs() << "** Failed to inline\n");
continue;
}
inlinedAnyCalls = true;
// If the inlining was successful, Merge the new uses into the source node.
useList.dropCallUses(it.sourceNode, call.getOperation(), cg);
useList.mergeUsesAfterInlining(it.targetNode, it.sourceNode);
// then erase the call.
call.erase();
// If we inlined in place, mark the node for deletion.
if (inlineInPlace) {
useList.eraseNode(it.targetNode);
deadNodes.insert(it.targetNode);
}
}
for (CallGraphNode *node : deadNodes) {
currentSCC.remove(node);
inliner.markForDeletion(node);
}
calls.clear();
return success(inlinedAnyCalls);
}
//===----------------------------------------------------------------------===//
// InlinerPass
//===----------------------------------------------------------------------===//
namespace {
class InlinerPass : public InlinerBase<InlinerPass> {
public:
InlinerPass();
InlinerPass(const InlinerPass &) = default;
InlinerPass(std::function<void(OpPassManager &)> defaultPipeline);
InlinerPass(std::function<void(OpPassManager &)> defaultPipeline,
llvm::StringMap<OpPassManager> opPipelines);
void runOnOperation() override;
private:
/// Attempt to inline calls within the given scc, and run simplifications,
/// until a fixed point is reached. This allows for the inlining of newly
/// devirtualized calls. Returns failure if there was a fatal error during
/// inlining.
LogicalResult inlineSCC(Inliner &inliner, CGUseList &useList,
CallGraphSCC &currentSCC, MLIRContext *context);
/// Optimize the nodes within the given SCC with one of the held optimization
/// pass pipelines. Returns failure if an error occurred during the
/// optimization of the SCC, success otherwise.
LogicalResult optimizeSCC(CallGraph &cg, CGUseList &useList,
CallGraphSCC &currentSCC, MLIRContext *context);
/// Optimize the nodes within the given SCC in parallel. Returns failure if an
/// error occurred during the optimization of the SCC, success otherwise.
LogicalResult optimizeSCCAsync(MutableArrayRef<CallGraphNode *> nodesToVisit,
MLIRContext *context);
/// Optimize the given callable node with one of the pass managers provided
/// with `pipelines`, or the default pipeline. Returns failure if an error
/// occurred during the optimization of the callable, success otherwise.
LogicalResult optimizeCallable(CallGraphNode *node,
llvm::StringMap<OpPassManager> &pipelines);
/// Attempt to initialize the options of this pass from the given string.
/// Derived classes may override this method to hook into the point at which
/// options are initialized, but should generally always invoke this base
/// class variant.
LogicalResult initializeOptions(StringRef options) override;
/// An optional function that constructs a default optimization pipeline for
/// a given operation.
std::function<void(OpPassManager &)> defaultPipeline;
/// A map of operation names to pass pipelines to use when optimizing
/// callable operations of these types. This provides a specialized pipeline
/// instead of the default. The vector size is the number of threads used
/// during optimization.
SmallVector<llvm::StringMap<OpPassManager>, 8> opPipelines;
};
} // namespace
InlinerPass::InlinerPass() : InlinerPass(defaultInlinerOptPipeline) {}
InlinerPass::InlinerPass(std::function<void(OpPassManager &)> defaultPipeline)
: defaultPipeline(std::move(defaultPipeline)) {
opPipelines.push_back({});
// Initialize the pass options with the provided arguments.
if (defaultPipeline) {
OpPassManager fakePM("__mlir_fake_pm_op");
defaultPipeline(fakePM);
llvm::raw_string_ostream strStream(defaultPipelineStr);
fakePM.printAsTextualPipeline(strStream);
}
}
InlinerPass::InlinerPass(std::function<void(OpPassManager &)> defaultPipeline,
llvm::StringMap<OpPassManager> opPipelines)
: InlinerPass(std::move(defaultPipeline)) {
if (opPipelines.empty())
return;
// Update the option for the op specific optimization pipelines.
for (auto &it : opPipelines) {
std::string pipeline;
llvm::raw_string_ostream pipelineOS(pipeline);
pipelineOS << it.getKey() << "(";
it.second.printAsTextualPipeline(pipelineOS);
pipelineOS << ")";
opPipelineStrs.addValue(pipeline);
}
this->opPipelines.emplace_back(std::move(opPipelines));
}
void InlinerPass::runOnOperation() {
CallGraph &cg = getAnalysis<CallGraph>();
auto *context = &getContext();
// The inliner should only be run on operations that define a symbol table,
// as the callgraph will need to resolve references.
Operation *op = getOperation();
if (!op->hasTrait<OpTrait::SymbolTable>()) {
op->emitOpError() << " was scheduled to run under the inliner, but does "
"not define a symbol table";
return signalPassFailure();
}
// Run the inline transform in post-order over the SCCs in the callgraph.
SymbolTableCollection symbolTable;
Inliner inliner(context, cg, symbolTable);
CGUseList useList(getOperation(), cg, symbolTable);
LogicalResult result = runTransformOnCGSCCs(cg, [&](CallGraphSCC &scc) {
return inlineSCC(inliner, useList, scc, context);
});
if (failed(result))
return signalPassFailure();
// After inlining, make sure to erase any callables proven to be dead.
inliner.eraseDeadCallables();
}
LogicalResult InlinerPass::inlineSCC(Inliner &inliner, CGUseList &useList,
CallGraphSCC &currentSCC,
MLIRContext *context) {
// Continuously simplify and inline until we either reach a fixed point, or
// hit the maximum iteration count. Simplifying early helps to refine the cost
// model, and in future iterations may devirtualize new calls.
unsigned iterationCount = 0;
do {
if (failed(optimizeSCC(inliner.cg, useList, currentSCC, context)))
return failure();
if (failed(inlineCallsInSCC(inliner, useList, currentSCC)))
break;
} while (++iterationCount < maxInliningIterations);
return success();
}
LogicalResult InlinerPass::optimizeSCC(CallGraph &cg, CGUseList &useList,
CallGraphSCC &currentSCC,
MLIRContext *context) {
// Collect the sets of nodes to simplify.
SmallVector<CallGraphNode *, 4> nodesToVisit;
for (auto *node : currentSCC) {
if (node->isExternal())
continue;
// Don't simplify nodes with children. Nodes with children require special
// handling as we may remove the node during simplification. In the future,
// we should be able to handle this case with proper node deletion tracking.
if (node->hasChildren())
continue;
// We also won't apply simplifications to nodes that can't have passes
// scheduled on them.
auto *region = node->getCallableRegion();
if (!region->getParentOp()->hasTrait<OpTrait::IsIsolatedFromAbove>())
continue;
nodesToVisit.push_back(node);
}
if (nodesToVisit.empty())
return success();
// Optimize each of the nodes within the SCC in parallel.
if (failed(optimizeSCCAsync(nodesToVisit, context)))
return failure();
// Recompute the uses held by each of the nodes.
for (CallGraphNode *node : nodesToVisit)
useList.recomputeUses(node, cg);
return success();
}
LogicalResult
InlinerPass::optimizeSCCAsync(MutableArrayRef<CallGraphNode *> nodesToVisit,
MLIRContext *ctx) {
// We must maintain a fixed pool of pass managers which is at least as large
// as the maximum parallelism of the failableParallelForEach below.
// Note: The number of pass managers here needs to remain constant
// to prevent issues with pass instrumentations that rely on having the same
// pass manager for the main thread.
size_t numThreads = ctx->getNumThreads();
if (opPipelines.size() < numThreads) {
// Reserve before resizing so that we can use a reference to the first
// element.
opPipelines.reserve(numThreads);
opPipelines.resize(numThreads, opPipelines.front());
}
// Ensure an analysis manager has been constructed for each of the nodes.
// This prevents thread races when running the nested pipelines.
for (CallGraphNode *node : nodesToVisit)
getAnalysisManager().nest(node->getCallableRegion()->getParentOp());
// An atomic failure variable for the async executors.
std::vector<std::atomic<bool>> activePMs(opPipelines.size());
std::fill(activePMs.begin(), activePMs.end(), false);
return failableParallelForEach(ctx, nodesToVisit, [&](CallGraphNode *node) {
// Find a pass manager for this operation.
auto it = llvm::find_if(activePMs, [](std::atomic<bool> &isActive) {
bool expectedInactive = false;
return isActive.compare_exchange_strong(expectedInactive, true);
});
assert(it != activePMs.end() &&
"could not find inactive pass manager for thread");
unsigned pmIndex = it - activePMs.begin();
// Optimize this callable node.
LogicalResult result = optimizeCallable(node, opPipelines[pmIndex]);
// Reset the active bit for this pass manager.
activePMs[pmIndex].store(false);
return result;
});
}
LogicalResult
InlinerPass::optimizeCallable(CallGraphNode *node,
llvm::StringMap<OpPassManager> &pipelines) {
Operation *callable = node->getCallableRegion()->getParentOp();
StringRef opName = callable->getName().getStringRef();
auto pipelineIt = pipelines.find(opName);
if (pipelineIt == pipelines.end()) {
// If a pipeline didn't exist, use the default if possible.
if (!defaultPipeline)
return success();
OpPassManager defaultPM(opName);
defaultPipeline(defaultPM);
pipelineIt = pipelines.try_emplace(opName, std::move(defaultPM)).first;
}
return runPipeline(pipelineIt->second, callable);
}
LogicalResult InlinerPass::initializeOptions(StringRef options) {
if (failed(Pass::initializeOptions(options)))
return failure();
// Initialize the default pipeline builder to use the option string.
if (!defaultPipelineStr.empty()) {
std::string defaultPipelineCopy = defaultPipelineStr;
defaultPipeline = [=](OpPassManager &pm) {
(void)parsePassPipeline(defaultPipelineCopy, pm);
};
} else if (defaultPipelineStr.getNumOccurrences()) {
defaultPipeline = nullptr;
}
// Initialize the op specific pass pipelines.
llvm::StringMap<OpPassManager> pipelines;
for (StringRef pipeline : opPipelineStrs) {
// Skip empty pipelines.
if (pipeline.empty())
continue;
// Pipelines are expected to be of the form `<op-name>(<pipeline>)`.
size_t pipelineStart = pipeline.find_first_of('(');
if (pipelineStart == StringRef::npos || !pipeline.consume_back(")"))
return failure();
StringRef opName = pipeline.take_front(pipelineStart);
OpPassManager pm(opName);
if (failed(parsePassPipeline(pipeline.drop_front(1 + pipelineStart), pm)))
return failure();
pipelines.try_emplace(opName, std::move(pm));
}
opPipelines.assign({std::move(pipelines)});
return success();
}
std::unique_ptr<Pass> mlir::createInlinerPass() {
return std::make_unique<InlinerPass>();
}
std::unique_ptr<Pass>
mlir::createInlinerPass(llvm::StringMap<OpPassManager> opPipelines) {
return std::make_unique<InlinerPass>(defaultInlinerOptPipeline,
std::move(opPipelines));
}
std::unique_ptr<Pass> mlir::createInlinerPass(
llvm::StringMap<OpPassManager> opPipelines,
std::function<void(OpPassManager &)> defaultPipelineBuilder) {
return std::make_unique<InlinerPass>(std::move(defaultPipelineBuilder),
std::move(opPipelines));
}