llvm-project/clang/lib/Serialization/ASTReader.cpp

4149 lines
145 KiB
C++

//===--- ASTReader.cpp - AST File Reader ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTReader class, which reads AST files.
//
//===----------------------------------------------------------------------===//
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTDeserializationListener.h"
#include "ASTCommon.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/Utils.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/Scope.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Basic/OnDiskHashTable.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceManagerInternals.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitstreamReader.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/System/Path.h"
#include <algorithm>
#include <iterator>
#include <cstdio>
#include <sys/stat.h>
using namespace clang;
using namespace clang::serialization;
//===----------------------------------------------------------------------===//
// PCH validator implementation
//===----------------------------------------------------------------------===//
ASTReaderListener::~ASTReaderListener() {}
bool
PCHValidator::ReadLanguageOptions(const LangOptions &LangOpts) {
const LangOptions &PPLangOpts = PP.getLangOptions();
#define PARSE_LANGOPT_BENIGN(Option)
#define PARSE_LANGOPT_IMPORTANT(Option, DiagID) \
if (PPLangOpts.Option != LangOpts.Option) { \
Reader.Diag(DiagID) << LangOpts.Option << PPLangOpts.Option; \
return true; \
}
PARSE_LANGOPT_BENIGN(Trigraphs);
PARSE_LANGOPT_BENIGN(BCPLComment);
PARSE_LANGOPT_BENIGN(DollarIdents);
PARSE_LANGOPT_BENIGN(AsmPreprocessor);
PARSE_LANGOPT_IMPORTANT(GNUMode, diag::warn_pch_gnu_extensions);
PARSE_LANGOPT_IMPORTANT(GNUKeywords, diag::warn_pch_gnu_keywords);
PARSE_LANGOPT_BENIGN(ImplicitInt);
PARSE_LANGOPT_BENIGN(Digraphs);
PARSE_LANGOPT_BENIGN(HexFloats);
PARSE_LANGOPT_IMPORTANT(C99, diag::warn_pch_c99);
PARSE_LANGOPT_IMPORTANT(Microsoft, diag::warn_pch_microsoft_extensions);
PARSE_LANGOPT_IMPORTANT(CPlusPlus, diag::warn_pch_cplusplus);
PARSE_LANGOPT_IMPORTANT(CPlusPlus0x, diag::warn_pch_cplusplus0x);
PARSE_LANGOPT_BENIGN(CXXOperatorName);
PARSE_LANGOPT_IMPORTANT(ObjC1, diag::warn_pch_objective_c);
PARSE_LANGOPT_IMPORTANT(ObjC2, diag::warn_pch_objective_c2);
PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI, diag::warn_pch_nonfragile_abi);
PARSE_LANGOPT_IMPORTANT(ObjCNonFragileABI2, diag::warn_pch_nonfragile_abi2);
PARSE_LANGOPT_IMPORTANT(NoConstantCFStrings,
diag::warn_pch_no_constant_cfstrings);
PARSE_LANGOPT_BENIGN(PascalStrings);
PARSE_LANGOPT_BENIGN(WritableStrings);
PARSE_LANGOPT_IMPORTANT(LaxVectorConversions,
diag::warn_pch_lax_vector_conversions);
PARSE_LANGOPT_IMPORTANT(AltiVec, diag::warn_pch_altivec);
PARSE_LANGOPT_IMPORTANT(Exceptions, diag::warn_pch_exceptions);
PARSE_LANGOPT_IMPORTANT(SjLjExceptions, diag::warn_pch_sjlj_exceptions);
PARSE_LANGOPT_IMPORTANT(NeXTRuntime, diag::warn_pch_objc_runtime);
PARSE_LANGOPT_IMPORTANT(Freestanding, diag::warn_pch_freestanding);
PARSE_LANGOPT_IMPORTANT(NoBuiltin, diag::warn_pch_builtins);
PARSE_LANGOPT_IMPORTANT(ThreadsafeStatics,
diag::warn_pch_thread_safe_statics);
PARSE_LANGOPT_IMPORTANT(POSIXThreads, diag::warn_pch_posix_threads);
PARSE_LANGOPT_IMPORTANT(Blocks, diag::warn_pch_blocks);
PARSE_LANGOPT_BENIGN(EmitAllDecls);
PARSE_LANGOPT_IMPORTANT(MathErrno, diag::warn_pch_math_errno);
PARSE_LANGOPT_BENIGN(getSignedOverflowBehavior());
PARSE_LANGOPT_IMPORTANT(HeinousExtensions,
diag::warn_pch_heinous_extensions);
// FIXME: Most of the options below are benign if the macro wasn't
// used. Unfortunately, this means that a PCH compiled without
// optimization can't be used with optimization turned on, even
// though the only thing that changes is whether __OPTIMIZE__ was
// defined... but if __OPTIMIZE__ never showed up in the header, it
// doesn't matter. We could consider making this some special kind
// of check.
PARSE_LANGOPT_IMPORTANT(Optimize, diag::warn_pch_optimize);
PARSE_LANGOPT_IMPORTANT(OptimizeSize, diag::warn_pch_optimize_size);
PARSE_LANGOPT_IMPORTANT(Static, diag::warn_pch_static);
PARSE_LANGOPT_IMPORTANT(PICLevel, diag::warn_pch_pic_level);
PARSE_LANGOPT_IMPORTANT(GNUInline, diag::warn_pch_gnu_inline);
PARSE_LANGOPT_IMPORTANT(NoInline, diag::warn_pch_no_inline);
PARSE_LANGOPT_IMPORTANT(AccessControl, diag::warn_pch_access_control);
PARSE_LANGOPT_IMPORTANT(CharIsSigned, diag::warn_pch_char_signed);
PARSE_LANGOPT_IMPORTANT(ShortWChar, diag::warn_pch_short_wchar);
if ((PPLangOpts.getGCMode() != 0) != (LangOpts.getGCMode() != 0)) {
Reader.Diag(diag::warn_pch_gc_mode)
<< LangOpts.getGCMode() << PPLangOpts.getGCMode();
return true;
}
PARSE_LANGOPT_BENIGN(getVisibilityMode());
PARSE_LANGOPT_IMPORTANT(getStackProtectorMode(),
diag::warn_pch_stack_protector);
PARSE_LANGOPT_BENIGN(InstantiationDepth);
PARSE_LANGOPT_IMPORTANT(OpenCL, diag::warn_pch_opencl);
PARSE_LANGOPT_BENIGN(CatchUndefined);
PARSE_LANGOPT_IMPORTANT(ElideConstructors, diag::warn_pch_elide_constructors);
PARSE_LANGOPT_BENIGN(SpellChecking);
#undef PARSE_LANGOPT_IMPORTANT
#undef PARSE_LANGOPT_BENIGN
return false;
}
bool PCHValidator::ReadTargetTriple(llvm::StringRef Triple) {
if (Triple == PP.getTargetInfo().getTriple().str())
return false;
Reader.Diag(diag::warn_pch_target_triple)
<< Triple << PP.getTargetInfo().getTriple().str();
return true;
}
struct EmptyStringRef {
bool operator ()(llvm::StringRef r) const { return r.empty(); }
};
struct EmptyBlock {
bool operator ()(const PCHPredefinesBlock &r) const { return r.Data.empty(); }
};
static bool EqualConcatenations(llvm::SmallVector<llvm::StringRef, 2> L,
PCHPredefinesBlocks R) {
// First, sum up the lengths.
unsigned LL = 0, RL = 0;
for (unsigned I = 0, N = L.size(); I != N; ++I) {
LL += L[I].size();
}
for (unsigned I = 0, N = R.size(); I != N; ++I) {
RL += R[I].Data.size();
}
if (LL != RL)
return false;
if (LL == 0 && RL == 0)
return true;
// Kick out empty parts, they confuse the algorithm below.
L.erase(std::remove_if(L.begin(), L.end(), EmptyStringRef()), L.end());
R.erase(std::remove_if(R.begin(), R.end(), EmptyBlock()), R.end());
// Do it the hard way. At this point, both vectors must be non-empty.
llvm::StringRef LR = L[0], RR = R[0].Data;
unsigned LI = 0, RI = 0, LN = L.size(), RN = R.size();
(void) RN;
for (;;) {
// Compare the current pieces.
if (LR.size() == RR.size()) {
// If they're the same length, it's pretty easy.
if (LR != RR)
return false;
// Both pieces are done, advance.
++LI;
++RI;
// If either string is done, they're both done, since they're the same
// length.
if (LI == LN) {
assert(RI == RN && "Strings not the same length after all?");
return true;
}
LR = L[LI];
RR = R[RI].Data;
} else if (LR.size() < RR.size()) {
// Right piece is longer.
if (!RR.startswith(LR))
return false;
++LI;
assert(LI != LN && "Strings not the same length after all?");
RR = RR.substr(LR.size());
LR = L[LI];
} else {
// Left piece is longer.
if (!LR.startswith(RR))
return false;
++RI;
assert(RI != RN && "Strings not the same length after all?");
LR = LR.substr(RR.size());
RR = R[RI].Data;
}
}
}
static std::pair<FileID, llvm::StringRef::size_type>
FindMacro(const PCHPredefinesBlocks &Buffers, llvm::StringRef MacroDef) {
std::pair<FileID, llvm::StringRef::size_type> Res;
for (unsigned I = 0, N = Buffers.size(); I != N; ++I) {
Res.second = Buffers[I].Data.find(MacroDef);
if (Res.second != llvm::StringRef::npos) {
Res.first = Buffers[I].BufferID;
break;
}
}
return Res;
}
bool PCHValidator::ReadPredefinesBuffer(const PCHPredefinesBlocks &Buffers,
llvm::StringRef OriginalFileName,
std::string &SuggestedPredefines) {
// We are in the context of an implicit include, so the predefines buffer will
// have a #include entry for the PCH file itself (as normalized by the
// preprocessor initialization). Find it and skip over it in the checking
// below.
llvm::SmallString<256> PCHInclude;
PCHInclude += "#include \"";
PCHInclude += NormalizeDashIncludePath(OriginalFileName);
PCHInclude += "\"\n";
std::pair<llvm::StringRef,llvm::StringRef> Split =
llvm::StringRef(PP.getPredefines()).split(PCHInclude.str());
llvm::StringRef Left = Split.first, Right = Split.second;
if (Left == PP.getPredefines()) {
Error("Missing PCH include entry!");
return true;
}
// If the concatenation of all the PCH buffers is equal to the adjusted
// command line, we're done.
llvm::SmallVector<llvm::StringRef, 2> CommandLine;
CommandLine.push_back(Left);
CommandLine.push_back(Right);
if (EqualConcatenations(CommandLine, Buffers))
return false;
SourceManager &SourceMgr = PP.getSourceManager();
// The predefines buffers are different. Determine what the differences are,
// and whether they require us to reject the PCH file.
llvm::SmallVector<llvm::StringRef, 8> PCHLines;
for (unsigned I = 0, N = Buffers.size(); I != N; ++I)
Buffers[I].Data.split(PCHLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false);
llvm::SmallVector<llvm::StringRef, 8> CmdLineLines;
Left.split(CmdLineLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false);
Right.split(CmdLineLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false);
// Sort both sets of predefined buffer lines, since we allow some extra
// definitions and they may appear at any point in the output.
std::sort(CmdLineLines.begin(), CmdLineLines.end());
std::sort(PCHLines.begin(), PCHLines.end());
// Determine which predefines that were used to build the PCH file are missing
// from the command line.
std::vector<llvm::StringRef> MissingPredefines;
std::set_difference(PCHLines.begin(), PCHLines.end(),
CmdLineLines.begin(), CmdLineLines.end(),
std::back_inserter(MissingPredefines));
bool MissingDefines = false;
bool ConflictingDefines = false;
for (unsigned I = 0, N = MissingPredefines.size(); I != N; ++I) {
llvm::StringRef Missing = MissingPredefines[I];
if (!Missing.startswith("#define ")) {
Reader.Diag(diag::warn_pch_compiler_options_mismatch);
return true;
}
// This is a macro definition. Determine the name of the macro we're
// defining.
std::string::size_type StartOfMacroName = strlen("#define ");
std::string::size_type EndOfMacroName
= Missing.find_first_of("( \n\r", StartOfMacroName);
assert(EndOfMacroName != std::string::npos &&
"Couldn't find the end of the macro name");
llvm::StringRef MacroName = Missing.slice(StartOfMacroName, EndOfMacroName);
// Determine whether this macro was given a different definition on the
// command line.
std::string MacroDefStart = "#define " + MacroName.str();
std::string::size_type MacroDefLen = MacroDefStart.size();
llvm::SmallVector<llvm::StringRef, 8>::iterator ConflictPos
= std::lower_bound(CmdLineLines.begin(), CmdLineLines.end(),
MacroDefStart);
for (; ConflictPos != CmdLineLines.end(); ++ConflictPos) {
if (!ConflictPos->startswith(MacroDefStart)) {
// Different macro; we're done.
ConflictPos = CmdLineLines.end();
break;
}
assert(ConflictPos->size() > MacroDefLen &&
"Invalid #define in predefines buffer?");
if ((*ConflictPos)[MacroDefLen] != ' ' &&
(*ConflictPos)[MacroDefLen] != '(')
continue; // Longer macro name; keep trying.
// We found a conflicting macro definition.
break;
}
if (ConflictPos != CmdLineLines.end()) {
Reader.Diag(diag::warn_cmdline_conflicting_macro_def)
<< MacroName;
// Show the definition of this macro within the PCH file.
std::pair<FileID, llvm::StringRef::size_type> MacroLoc =
FindMacro(Buffers, Missing);
assert(MacroLoc.second!=llvm::StringRef::npos && "Unable to find macro!");
SourceLocation PCHMissingLoc =
SourceMgr.getLocForStartOfFile(MacroLoc.first)
.getFileLocWithOffset(MacroLoc.second);
Reader.Diag(PCHMissingLoc, diag::note_pch_macro_defined_as) << MacroName;
ConflictingDefines = true;
continue;
}
// If the macro doesn't conflict, then we'll just pick up the macro
// definition from the PCH file. Warn the user that they made a mistake.
if (ConflictingDefines)
continue; // Don't complain if there are already conflicting defs
if (!MissingDefines) {
Reader.Diag(diag::warn_cmdline_missing_macro_defs);
MissingDefines = true;
}
// Show the definition of this macro within the PCH file.
std::pair<FileID, llvm::StringRef::size_type> MacroLoc =
FindMacro(Buffers, Missing);
assert(MacroLoc.second!=llvm::StringRef::npos && "Unable to find macro!");
SourceLocation PCHMissingLoc =
SourceMgr.getLocForStartOfFile(MacroLoc.first)
.getFileLocWithOffset(MacroLoc.second);
Reader.Diag(PCHMissingLoc, diag::note_using_macro_def_from_pch);
}
if (ConflictingDefines)
return true;
// Determine what predefines were introduced based on command-line
// parameters that were not present when building the PCH
// file. Extra #defines are okay, so long as the identifiers being
// defined were not used within the precompiled header.
std::vector<llvm::StringRef> ExtraPredefines;
std::set_difference(CmdLineLines.begin(), CmdLineLines.end(),
PCHLines.begin(), PCHLines.end(),
std::back_inserter(ExtraPredefines));
for (unsigned I = 0, N = ExtraPredefines.size(); I != N; ++I) {
llvm::StringRef &Extra = ExtraPredefines[I];
if (!Extra.startswith("#define ")) {
Reader.Diag(diag::warn_pch_compiler_options_mismatch);
return true;
}
// This is an extra macro definition. Determine the name of the
// macro we're defining.
std::string::size_type StartOfMacroName = strlen("#define ");
std::string::size_type EndOfMacroName
= Extra.find_first_of("( \n\r", StartOfMacroName);
assert(EndOfMacroName != std::string::npos &&
"Couldn't find the end of the macro name");
llvm::StringRef MacroName = Extra.slice(StartOfMacroName, EndOfMacroName);
// Check whether this name was used somewhere in the PCH file. If
// so, defining it as a macro could change behavior, so we reject
// the PCH file.
if (IdentifierInfo *II = Reader.get(MacroName)) {
Reader.Diag(diag::warn_macro_name_used_in_pch) << II;
return true;
}
// Add this definition to the suggested predefines buffer.
SuggestedPredefines += Extra;
SuggestedPredefines += '\n';
}
// If we get here, it's because the predefines buffer had compatible
// contents. Accept the PCH file.
return false;
}
void PCHValidator::ReadHeaderFileInfo(const HeaderFileInfo &HFI,
unsigned ID) {
PP.getHeaderSearchInfo().setHeaderFileInfoForUID(HFI, ID);
++NumHeaderInfos;
}
void PCHValidator::ReadCounter(unsigned Value) {
PP.setCounterValue(Value);
}
//===----------------------------------------------------------------------===//
// AST reader implementation
//===----------------------------------------------------------------------===//
void
ASTReader::setDeserializationListener(ASTDeserializationListener *Listener) {
DeserializationListener = Listener;
if (DeserializationListener)
DeserializationListener->SetReader(this);
}
namespace {
class ASTSelectorLookupTrait {
ASTReader &Reader;
public:
struct data_type {
SelectorID ID;
ObjCMethodList Instance, Factory;
};
typedef Selector external_key_type;
typedef external_key_type internal_key_type;
explicit ASTSelectorLookupTrait(ASTReader &Reader) : Reader(Reader) { }
static bool EqualKey(const internal_key_type& a,
const internal_key_type& b) {
return a == b;
}
static unsigned ComputeHash(Selector Sel) {
return serialization::ComputeHash(Sel);
}
// This hopefully will just get inlined and removed by the optimizer.
static const internal_key_type&
GetInternalKey(const external_key_type& x) { return x; }
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
using namespace clang::io;
unsigned KeyLen = ReadUnalignedLE16(d);
unsigned DataLen = ReadUnalignedLE16(d);
return std::make_pair(KeyLen, DataLen);
}
internal_key_type ReadKey(const unsigned char* d, unsigned) {
using namespace clang::io;
SelectorTable &SelTable = Reader.getContext()->Selectors;
unsigned N = ReadUnalignedLE16(d);
IdentifierInfo *FirstII
= Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d));
if (N == 0)
return SelTable.getNullarySelector(FirstII);
else if (N == 1)
return SelTable.getUnarySelector(FirstII);
llvm::SmallVector<IdentifierInfo *, 16> Args;
Args.push_back(FirstII);
for (unsigned I = 1; I != N; ++I)
Args.push_back(Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d)));
return SelTable.getSelector(N, Args.data());
}
data_type ReadData(Selector, const unsigned char* d, unsigned DataLen) {
using namespace clang::io;
data_type Result;
Result.ID = ReadUnalignedLE32(d);
unsigned NumInstanceMethods = ReadUnalignedLE16(d);
unsigned NumFactoryMethods = ReadUnalignedLE16(d);
// Load instance methods
ObjCMethodList *Prev = 0;
for (unsigned I = 0; I != NumInstanceMethods; ++I) {
ObjCMethodDecl *Method
= cast<ObjCMethodDecl>(Reader.GetDecl(ReadUnalignedLE32(d)));
if (!Result.Instance.Method) {
// This is the first method, which is the easy case.
Result.Instance.Method = Method;
Prev = &Result.Instance;
continue;
}
ObjCMethodList *Mem =
Reader.getSema()->BumpAlloc.Allocate<ObjCMethodList>();
Prev->Next = new (Mem) ObjCMethodList(Method, 0);
Prev = Prev->Next;
}
// Load factory methods
Prev = 0;
for (unsigned I = 0; I != NumFactoryMethods; ++I) {
ObjCMethodDecl *Method
= cast<ObjCMethodDecl>(Reader.GetDecl(ReadUnalignedLE32(d)));
if (!Result.Factory.Method) {
// This is the first method, which is the easy case.
Result.Factory.Method = Method;
Prev = &Result.Factory;
continue;
}
ObjCMethodList *Mem =
Reader.getSema()->BumpAlloc.Allocate<ObjCMethodList>();
Prev->Next = new (Mem) ObjCMethodList(Method, 0);
Prev = Prev->Next;
}
return Result;
}
};
} // end anonymous namespace
/// \brief The on-disk hash table used for the global method pool.
typedef OnDiskChainedHashTable<ASTSelectorLookupTrait>
ASTSelectorLookupTable;
namespace {
class ASTIdentifierLookupTrait {
ASTReader &Reader;
llvm::BitstreamCursor &Stream;
// If we know the IdentifierInfo in advance, it is here and we will
// not build a new one. Used when deserializing information about an
// identifier that was constructed before the AST file was read.
IdentifierInfo *KnownII;
public:
typedef IdentifierInfo * data_type;
typedef const std::pair<const char*, unsigned> external_key_type;
typedef external_key_type internal_key_type;
ASTIdentifierLookupTrait(ASTReader &Reader, llvm::BitstreamCursor &Stream,
IdentifierInfo *II = 0)
: Reader(Reader), Stream(Stream), KnownII(II) { }
static bool EqualKey(const internal_key_type& a,
const internal_key_type& b) {
return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0
: false;
}
static unsigned ComputeHash(const internal_key_type& a) {
return llvm::HashString(llvm::StringRef(a.first, a.second));
}
// This hopefully will just get inlined and removed by the optimizer.
static const internal_key_type&
GetInternalKey(const external_key_type& x) { return x; }
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
using namespace clang::io;
unsigned DataLen = ReadUnalignedLE16(d);
unsigned KeyLen = ReadUnalignedLE16(d);
return std::make_pair(KeyLen, DataLen);
}
static std::pair<const char*, unsigned>
ReadKey(const unsigned char* d, unsigned n) {
assert(n >= 2 && d[n-1] == '\0');
return std::make_pair((const char*) d, n-1);
}
IdentifierInfo *ReadData(const internal_key_type& k,
const unsigned char* d,
unsigned DataLen) {
using namespace clang::io;
IdentID ID = ReadUnalignedLE32(d);
bool IsInteresting = ID & 0x01;
// Wipe out the "is interesting" bit.
ID = ID >> 1;
if (!IsInteresting) {
// For uninteresting identifiers, just build the IdentifierInfo
// and associate it with the persistent ID.
IdentifierInfo *II = KnownII;
if (!II)
II = &Reader.getIdentifierTable().getOwn(k.first, k.first + k.second);
Reader.SetIdentifierInfo(ID, II);
II->setIsFromAST();
return II;
}
unsigned Bits = ReadUnalignedLE16(d);
bool CPlusPlusOperatorKeyword = Bits & 0x01;
Bits >>= 1;
bool HasRevertedTokenIDToIdentifier = Bits & 0x01;
Bits >>= 1;
bool Poisoned = Bits & 0x01;
Bits >>= 1;
bool ExtensionToken = Bits & 0x01;
Bits >>= 1;
bool hasMacroDefinition = Bits & 0x01;
Bits >>= 1;
unsigned ObjCOrBuiltinID = Bits & 0x3FF;
Bits >>= 10;
assert(Bits == 0 && "Extra bits in the identifier?");
DataLen -= 6;
// Build the IdentifierInfo itself and link the identifier ID with
// the new IdentifierInfo.
IdentifierInfo *II = KnownII;
if (!II)
II = &Reader.getIdentifierTable().getOwn(k.first, k.first + k.second);
Reader.SetIdentifierInfo(ID, II);
// Set or check the various bits in the IdentifierInfo structure.
// Token IDs are read-only.
if (HasRevertedTokenIDToIdentifier)
II->RevertTokenIDToIdentifier();
II->setObjCOrBuiltinID(ObjCOrBuiltinID);
assert(II->isExtensionToken() == ExtensionToken &&
"Incorrect extension token flag");
(void)ExtensionToken;
II->setIsPoisoned(Poisoned);
assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword &&
"Incorrect C++ operator keyword flag");
(void)CPlusPlusOperatorKeyword;
// If this identifier is a macro, deserialize the macro
// definition.
if (hasMacroDefinition) {
uint32_t Offset = ReadUnalignedLE32(d);
Reader.ReadMacroRecord(Stream, Offset);
DataLen -= 4;
}
// Read all of the declarations visible at global scope with this
// name.
if (Reader.getContext() == 0) return II;
if (DataLen > 0) {
llvm::SmallVector<uint32_t, 4> DeclIDs;
for (; DataLen > 0; DataLen -= 4)
DeclIDs.push_back(ReadUnalignedLE32(d));
Reader.SetGloballyVisibleDecls(II, DeclIDs);
}
II->setIsFromAST();
return II;
}
};
} // end anonymous namespace
/// \brief The on-disk hash table used to contain information about
/// all of the identifiers in the program.
typedef OnDiskChainedHashTable<ASTIdentifierLookupTrait>
ASTIdentifierLookupTable;
namespace {
class ASTDeclContextNameLookupTrait {
ASTReader &Reader;
public:
/// \brief Pair of begin/end iterators for DeclIDs.
typedef std::pair<DeclID *, DeclID *> data_type;
/// \brief Special internal key for declaration names.
/// The hash table creates keys for comparison; we do not create
/// a DeclarationName for the internal key to avoid deserializing types.
struct DeclNameKey {
DeclarationName::NameKind Kind;
uint64_t Data;
DeclNameKey() : Kind((DeclarationName::NameKind)0), Data(0) { }
};
typedef DeclarationName external_key_type;
typedef DeclNameKey internal_key_type;
explicit ASTDeclContextNameLookupTrait(ASTReader &Reader) : Reader(Reader) { }
static bool EqualKey(const internal_key_type& a,
const internal_key_type& b) {
return a.Kind == b.Kind && a.Data == b.Data;
}
unsigned ComputeHash(const DeclNameKey &Key) const {
llvm::FoldingSetNodeID ID;
ID.AddInteger(Key.Kind);
switch (Key.Kind) {
case DeclarationName::Identifier:
case DeclarationName::CXXLiteralOperatorName:
ID.AddString(((IdentifierInfo*)Key.Data)->getName());
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
ID.AddInteger(serialization::ComputeHash(Selector(Key.Data)));
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
ID.AddInteger((TypeID)Key.Data);
break;
case DeclarationName::CXXOperatorName:
ID.AddInteger((OverloadedOperatorKind)Key.Data);
break;
case DeclarationName::CXXUsingDirective:
break;
}
return ID.ComputeHash();
}
internal_key_type GetInternalKey(const external_key_type& Name) const {
DeclNameKey Key;
Key.Kind = Name.getNameKind();
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
Key.Data = (uint64_t)Name.getAsIdentifierInfo();
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
Key.Data = (uint64_t)Name.getObjCSelector().getAsOpaquePtr();
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
Key.Data = Reader.GetTypeID(Name.getCXXNameType());
break;
case DeclarationName::CXXOperatorName:
Key.Data = Name.getCXXOverloadedOperator();
break;
case DeclarationName::CXXLiteralOperatorName:
Key.Data = (uint64_t)Name.getCXXLiteralIdentifier();
break;
case DeclarationName::CXXUsingDirective:
break;
}
return Key;
}
external_key_type GetExternalKey(const internal_key_type& Key) const {
ASTContext *Context = Reader.getContext();
switch (Key.Kind) {
case DeclarationName::Identifier:
return DeclarationName((IdentifierInfo*)Key.Data);
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return DeclarationName(Selector(Key.Data));
case DeclarationName::CXXConstructorName:
return Context->DeclarationNames.getCXXConstructorName(
Context->getCanonicalType(Reader.GetType(Key.Data)));
case DeclarationName::CXXDestructorName:
return Context->DeclarationNames.getCXXDestructorName(
Context->getCanonicalType(Reader.GetType(Key.Data)));
case DeclarationName::CXXConversionFunctionName:
return Context->DeclarationNames.getCXXConversionFunctionName(
Context->getCanonicalType(Reader.GetType(Key.Data)));
case DeclarationName::CXXOperatorName:
return Context->DeclarationNames.getCXXOperatorName(
(OverloadedOperatorKind)Key.Data);
case DeclarationName::CXXLiteralOperatorName:
return Context->DeclarationNames.getCXXLiteralOperatorName(
(IdentifierInfo*)Key.Data);
case DeclarationName::CXXUsingDirective:
return DeclarationName::getUsingDirectiveName();
}
llvm_unreachable("Invalid Name Kind ?");
}
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
using namespace clang::io;
unsigned KeyLen = ReadUnalignedLE16(d);
unsigned DataLen = ReadUnalignedLE16(d);
return std::make_pair(KeyLen, DataLen);
}
internal_key_type ReadKey(const unsigned char* d, unsigned) {
using namespace clang::io;
DeclNameKey Key;
Key.Kind = (DeclarationName::NameKind)*d++;
switch (Key.Kind) {
case DeclarationName::Identifier:
Key.Data = (uint64_t)Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d));
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
Key.Data =
(uint64_t)Reader.DecodeSelector(ReadUnalignedLE32(d)).getAsOpaquePtr();
break;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
Key.Data = ReadUnalignedLE32(d); // TypeID
break;
case DeclarationName::CXXOperatorName:
Key.Data = *d++; // OverloadedOperatorKind
break;
case DeclarationName::CXXLiteralOperatorName:
Key.Data = (uint64_t)Reader.DecodeIdentifierInfo(ReadUnalignedLE32(d));
break;
case DeclarationName::CXXUsingDirective:
break;
}
return Key;
}
data_type ReadData(internal_key_type, const unsigned char* d,
unsigned DataLen) {
using namespace clang::io;
unsigned NumDecls = ReadUnalignedLE16(d);
DeclID *Start = (DeclID *)d;
return std::make_pair(Start, Start + NumDecls);
}
};
} // end anonymous namespace
/// \brief The on-disk hash table used for the DeclContext's Name lookup table.
typedef OnDiskChainedHashTable<ASTDeclContextNameLookupTrait>
ASTDeclContextNameLookupTable;
bool ASTReader::ReadDeclContextStorage(llvm::BitstreamCursor &Cursor,
const std::pair<uint64_t, uint64_t> &Offsets,
DeclContextInfo &Info) {
SavedStreamPosition SavedPosition(Cursor);
// First the lexical decls.
if (Offsets.first != 0) {
Cursor.JumpToBit(Offsets.first);
RecordData Record;
const char *Blob;
unsigned BlobLen;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.ReadRecord(Code, Record, &Blob, &BlobLen);
if (RecCode != DECL_CONTEXT_LEXICAL) {
Error("Expected lexical block");
return true;
}
Info.LexicalDecls = reinterpret_cast<const DeclID*>(Blob);
Info.NumLexicalDecls = BlobLen / sizeof(DeclID);
} else {
Info.LexicalDecls = 0;
Info.NumLexicalDecls = 0;
}
// Now the lookup table.
if (Offsets.second != 0) {
Cursor.JumpToBit(Offsets.second);
RecordData Record;
const char *Blob;
unsigned BlobLen;
unsigned Code = Cursor.ReadCode();
unsigned RecCode = Cursor.ReadRecord(Code, Record, &Blob, &BlobLen);
if (RecCode != DECL_CONTEXT_VISIBLE) {
Error("Expected visible lookup table block");
return true;
}
Info.NameLookupTableData
= ASTDeclContextNameLookupTable::Create(
(const unsigned char *)Blob + Record[0],
(const unsigned char *)Blob,
ASTDeclContextNameLookupTrait(*this));
} else {
Info.NameLookupTableData = 0;
}
return false;
}
void ASTReader::Error(const char *Msg) {
Diag(diag::err_fe_pch_malformed) << Msg;
}
/// \brief Tell the AST listener about the predefines buffers in the chain.
bool ASTReader::CheckPredefinesBuffers() {
if (Listener)
return Listener->ReadPredefinesBuffer(PCHPredefinesBuffers,
ActualOriginalFileName,
SuggestedPredefines);
return false;
}
//===----------------------------------------------------------------------===//
// Source Manager Deserialization
//===----------------------------------------------------------------------===//
/// \brief Read the line table in the source manager block.
/// \returns true if ther was an error.
bool ASTReader::ParseLineTable(llvm::SmallVectorImpl<uint64_t> &Record) {
unsigned Idx = 0;
LineTableInfo &LineTable = SourceMgr.getLineTable();
// Parse the file names
std::map<int, int> FileIDs;
for (int I = 0, N = Record[Idx++]; I != N; ++I) {
// Extract the file name
unsigned FilenameLen = Record[Idx++];
std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen);
Idx += FilenameLen;
MaybeAddSystemRootToFilename(Filename);
FileIDs[I] = LineTable.getLineTableFilenameID(Filename.c_str(),
Filename.size());
}
// Parse the line entries
std::vector<LineEntry> Entries;
while (Idx < Record.size()) {
int FID = Record[Idx++];
// Extract the line entries
unsigned NumEntries = Record[Idx++];
assert(NumEntries && "Numentries is 00000");
Entries.clear();
Entries.reserve(NumEntries);
for (unsigned I = 0; I != NumEntries; ++I) {
unsigned FileOffset = Record[Idx++];
unsigned LineNo = Record[Idx++];
int FilenameID = FileIDs[Record[Idx++]];
SrcMgr::CharacteristicKind FileKind
= (SrcMgr::CharacteristicKind)Record[Idx++];
unsigned IncludeOffset = Record[Idx++];
Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID,
FileKind, IncludeOffset));
}
LineTable.AddEntry(FID, Entries);
}
return false;
}
namespace {
class ASTStatData {
public:
const bool hasStat;
const ino_t ino;
const dev_t dev;
const mode_t mode;
const time_t mtime;
const off_t size;
ASTStatData(ino_t i, dev_t d, mode_t mo, time_t m, off_t s)
: hasStat(true), ino(i), dev(d), mode(mo), mtime(m), size(s) {}
ASTStatData()
: hasStat(false), ino(0), dev(0), mode(0), mtime(0), size(0) {}
};
class ASTStatLookupTrait {
public:
typedef const char *external_key_type;
typedef const char *internal_key_type;
typedef ASTStatData data_type;
static unsigned ComputeHash(const char *path) {
return llvm::HashString(path);
}
static internal_key_type GetInternalKey(const char *path) { return path; }
static bool EqualKey(internal_key_type a, internal_key_type b) {
return strcmp(a, b) == 0;
}
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char*& d) {
unsigned KeyLen = (unsigned) clang::io::ReadUnalignedLE16(d);
unsigned DataLen = (unsigned) *d++;
return std::make_pair(KeyLen + 1, DataLen);
}
static internal_key_type ReadKey(const unsigned char *d, unsigned) {
return (const char *)d;
}
static data_type ReadData(const internal_key_type, const unsigned char *d,
unsigned /*DataLen*/) {
using namespace clang::io;
if (*d++ == 1)
return data_type();
ino_t ino = (ino_t) ReadUnalignedLE32(d);
dev_t dev = (dev_t) ReadUnalignedLE32(d);
mode_t mode = (mode_t) ReadUnalignedLE16(d);
time_t mtime = (time_t) ReadUnalignedLE64(d);
off_t size = (off_t) ReadUnalignedLE64(d);
return data_type(ino, dev, mode, mtime, size);
}
};
/// \brief stat() cache for precompiled headers.
///
/// This cache is very similar to the stat cache used by pretokenized
/// headers.
class ASTStatCache : public StatSysCallCache {
typedef OnDiskChainedHashTable<ASTStatLookupTrait> CacheTy;
CacheTy *Cache;
unsigned &NumStatHits, &NumStatMisses;
public:
ASTStatCache(const unsigned char *Buckets,
const unsigned char *Base,
unsigned &NumStatHits,
unsigned &NumStatMisses)
: Cache(0), NumStatHits(NumStatHits), NumStatMisses(NumStatMisses) {
Cache = CacheTy::Create(Buckets, Base);
}
~ASTStatCache() { delete Cache; }
int stat(const char *path, struct stat *buf) {
// Do the lookup for the file's data in the AST file.
CacheTy::iterator I = Cache->find(path);
// If we don't get a hit in the AST file just forward to 'stat'.
if (I == Cache->end()) {
++NumStatMisses;
return StatSysCallCache::stat(path, buf);
}
++NumStatHits;
ASTStatData Data = *I;
if (!Data.hasStat)
return 1;
buf->st_ino = Data.ino;
buf->st_dev = Data.dev;
buf->st_mtime = Data.mtime;
buf->st_mode = Data.mode;
buf->st_size = Data.size;
return 0;
}
};
} // end anonymous namespace
/// \brief Read a source manager block
ASTReader::ASTReadResult ASTReader::ReadSourceManagerBlock(PerFileData &F) {
using namespace SrcMgr;
llvm::BitstreamCursor &SLocEntryCursor = F.SLocEntryCursor;
// Set the source-location entry cursor to the current position in
// the stream. This cursor will be used to read the contents of the
// source manager block initially, and then lazily read
// source-location entries as needed.
SLocEntryCursor = F.Stream;
// The stream itself is going to skip over the source manager block.
if (F.Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
// Enter the source manager block.
if (SLocEntryCursor.EnterSubBlock(SOURCE_MANAGER_BLOCK_ID)) {
Error("malformed source manager block record in AST file");
return Failure;
}
RecordData Record;
while (true) {
unsigned Code = SLocEntryCursor.ReadCode();
if (Code == llvm::bitc::END_BLOCK) {
if (SLocEntryCursor.ReadBlockEnd()) {
Error("error at end of Source Manager block in AST file");
return Failure;
}
return Success;
}
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
SLocEntryCursor.ReadSubBlockID();
if (SLocEntryCursor.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
SLocEntryCursor.ReadAbbrevRecord();
continue;
}
// Read a record.
const char *BlobStart;
unsigned BlobLen;
Record.clear();
switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) {
default: // Default behavior: ignore.
break;
case SM_LINE_TABLE:
if (ParseLineTable(Record))
return Failure;
break;
case SM_SLOC_FILE_ENTRY:
case SM_SLOC_BUFFER_ENTRY:
case SM_SLOC_INSTANTIATION_ENTRY:
// Once we hit one of the source location entries, we're done.
return Success;
}
}
}
/// \brief Get a cursor that's correctly positioned for reading the source
/// location entry with the given ID.
llvm::BitstreamCursor &ASTReader::SLocCursorForID(unsigned ID) {
assert(ID != 0 && ID <= TotalNumSLocEntries &&
"SLocCursorForID should only be called for real IDs.");
ID -= 1;
PerFileData *F = 0;
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
F = Chain[N - I - 1];
if (ID < F->LocalNumSLocEntries)
break;
ID -= F->LocalNumSLocEntries;
}
assert(F && F->LocalNumSLocEntries > ID && "Chain corrupted");
F->SLocEntryCursor.JumpToBit(F->SLocOffsets[ID]);
return F->SLocEntryCursor;
}
/// \brief Read in the source location entry with the given ID.
ASTReader::ASTReadResult ASTReader::ReadSLocEntryRecord(unsigned ID) {
if (ID == 0)
return Success;
if (ID > TotalNumSLocEntries) {
Error("source location entry ID out-of-range for AST file");
return Failure;
}
llvm::BitstreamCursor &SLocEntryCursor = SLocCursorForID(ID);
++NumSLocEntriesRead;
unsigned Code = SLocEntryCursor.ReadCode();
if (Code == llvm::bitc::END_BLOCK ||
Code == llvm::bitc::ENTER_SUBBLOCK ||
Code == llvm::bitc::DEFINE_ABBREV) {
Error("incorrectly-formatted source location entry in AST file");
return Failure;
}
RecordData Record;
const char *BlobStart;
unsigned BlobLen;
switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) {
default:
Error("incorrectly-formatted source location entry in AST file");
return Failure;
case SM_SLOC_FILE_ENTRY: {
std::string Filename(BlobStart, BlobStart + BlobLen);
MaybeAddSystemRootToFilename(Filename);
const FileEntry *File = FileMgr.getFile(Filename);
if (File == 0) {
std::string ErrorStr = "could not find file '";
ErrorStr += Filename;
ErrorStr += "' referenced by AST file";
Error(ErrorStr.c_str());
return Failure;
}
if (Record.size() < 10) {
Error("source location entry is incorrect");
return Failure;
}
if (!DisableValidation &&
((off_t)Record[4] != File->getSize()
#if !defined(LLVM_ON_WIN32)
// In our regression testing, the Windows file system seems to
// have inconsistent modification times that sometimes
// erroneously trigger this error-handling path.
|| (time_t)Record[5] != File->getModificationTime()
#endif
)) {
Diag(diag::err_fe_pch_file_modified)
<< Filename;
return Failure;
}
FileID FID = SourceMgr.createFileID(File,
SourceLocation::getFromRawEncoding(Record[1]),
(SrcMgr::CharacteristicKind)Record[2],
ID, Record[0]);
if (Record[3])
const_cast<SrcMgr::FileInfo&>(SourceMgr.getSLocEntry(FID).getFile())
.setHasLineDirectives();
// Reconstruct header-search information for this file.
HeaderFileInfo HFI;
HFI.isImport = Record[6];
HFI.DirInfo = Record[7];
HFI.NumIncludes = Record[8];
HFI.ControllingMacroID = Record[9];
if (Listener)
Listener->ReadHeaderFileInfo(HFI, File->getUID());
break;
}
case SM_SLOC_BUFFER_ENTRY: {
const char *Name = BlobStart;
unsigned Offset = Record[0];
unsigned Code = SLocEntryCursor.ReadCode();
Record.clear();
unsigned RecCode
= SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen);
if (RecCode != SM_SLOC_BUFFER_BLOB) {
Error("AST record has invalid code");
return Failure;
}
llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBuffer(llvm::StringRef(BlobStart, BlobLen - 1),
Name);
FileID BufferID = SourceMgr.createFileIDForMemBuffer(Buffer, ID, Offset);
if (strcmp(Name, "<built-in>") == 0) {
PCHPredefinesBlock Block = {
BufferID,
llvm::StringRef(BlobStart, BlobLen - 1)
};
PCHPredefinesBuffers.push_back(Block);
}
break;
}
case SM_SLOC_INSTANTIATION_ENTRY: {
SourceLocation SpellingLoc
= SourceLocation::getFromRawEncoding(Record[1]);
SourceMgr.createInstantiationLoc(SpellingLoc,
SourceLocation::getFromRawEncoding(Record[2]),
SourceLocation::getFromRawEncoding(Record[3]),
Record[4],
ID,
Record[0]);
break;
}
}
return Success;
}
/// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the
/// specified cursor. Read the abbreviations that are at the top of the block
/// and then leave the cursor pointing into the block.
bool ASTReader::ReadBlockAbbrevs(llvm::BitstreamCursor &Cursor,
unsigned BlockID) {
if (Cursor.EnterSubBlock(BlockID)) {
Error("malformed block record in AST file");
return Failure;
}
while (true) {
unsigned Code = Cursor.ReadCode();
// We expect all abbrevs to be at the start of the block.
if (Code != llvm::bitc::DEFINE_ABBREV)
return false;
Cursor.ReadAbbrevRecord();
}
}
void ASTReader::ReadMacroRecord(llvm::BitstreamCursor &Stream, uint64_t Offset){
assert(PP && "Forgot to set Preprocessor ?");
// Keep track of where we are in the stream, then jump back there
// after reading this macro.
SavedStreamPosition SavedPosition(Stream);
Stream.JumpToBit(Offset);
RecordData Record;
llvm::SmallVector<IdentifierInfo*, 16> MacroArgs;
MacroInfo *Macro = 0;
while (true) {
unsigned Code = Stream.ReadCode();
switch (Code) {
case llvm::bitc::END_BLOCK:
return;
case llvm::bitc::ENTER_SUBBLOCK:
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return;
}
continue;
case llvm::bitc::DEFINE_ABBREV:
Stream.ReadAbbrevRecord();
continue;
default: break;
}
// Read a record.
Record.clear();
PreprocessorRecordTypes RecType =
(PreprocessorRecordTypes)Stream.ReadRecord(Code, Record);
switch (RecType) {
case PP_MACRO_OBJECT_LIKE:
case PP_MACRO_FUNCTION_LIKE: {
// If we already have a macro, that means that we've hit the end
// of the definition of the macro we were looking for. We're
// done.
if (Macro)
return;
IdentifierInfo *II = DecodeIdentifierInfo(Record[0]);
if (II == 0) {
Error("macro must have a name in AST file");
return;
}
SourceLocation Loc = SourceLocation::getFromRawEncoding(Record[1]);
bool isUsed = Record[2];
MacroInfo *MI = PP->AllocateMacroInfo(Loc);
MI->setIsUsed(isUsed);
MI->setIsFromAST();
unsigned NextIndex = 3;
if (RecType == PP_MACRO_FUNCTION_LIKE) {
// Decode function-like macro info.
bool isC99VarArgs = Record[3];
bool isGNUVarArgs = Record[4];
MacroArgs.clear();
unsigned NumArgs = Record[5];
NextIndex = 6 + NumArgs;
for (unsigned i = 0; i != NumArgs; ++i)
MacroArgs.push_back(DecodeIdentifierInfo(Record[6+i]));
// Install function-like macro info.
MI->setIsFunctionLike();
if (isC99VarArgs) MI->setIsC99Varargs();
if (isGNUVarArgs) MI->setIsGNUVarargs();
MI->setArgumentList(MacroArgs.data(), MacroArgs.size(),
PP->getPreprocessorAllocator());
}
// Finally, install the macro.
PP->setMacroInfo(II, MI);
// Remember that we saw this macro last so that we add the tokens that
// form its body to it.
Macro = MI;
if (NextIndex + 1 == Record.size() && PP->getPreprocessingRecord()) {
// We have a macro definition. Load it now.
PP->getPreprocessingRecord()->RegisterMacroDefinition(Macro,
getMacroDefinition(Record[NextIndex]));
}
++NumMacrosRead;
break;
}
case PP_TOKEN: {
// If we see a TOKEN before a PP_MACRO_*, then the file is
// erroneous, just pretend we didn't see this.
if (Macro == 0) break;
Token Tok;
Tok.startToken();
Tok.setLocation(SourceLocation::getFromRawEncoding(Record[0]));
Tok.setLength(Record[1]);
if (IdentifierInfo *II = DecodeIdentifierInfo(Record[2]))
Tok.setIdentifierInfo(II);
Tok.setKind((tok::TokenKind)Record[3]);
Tok.setFlag((Token::TokenFlags)Record[4]);
Macro->AddTokenToBody(Tok);
break;
}
case PP_MACRO_INSTANTIATION: {
// If we already have a macro, that means that we've hit the end
// of the definition of the macro we were looking for. We're
// done.
if (Macro)
return;
if (!PP->getPreprocessingRecord()) {
Error("missing preprocessing record in AST file");
return;
}
PreprocessingRecord &PPRec = *PP->getPreprocessingRecord();
if (PPRec.getPreprocessedEntity(Record[0]))
return;
MacroInstantiation *MI
= new (PPRec) MacroInstantiation(DecodeIdentifierInfo(Record[3]),
SourceRange(
SourceLocation::getFromRawEncoding(Record[1]),
SourceLocation::getFromRawEncoding(Record[2])),
getMacroDefinition(Record[4]));
PPRec.SetPreallocatedEntity(Record[0], MI);
return;
}
case PP_MACRO_DEFINITION: {
// If we already have a macro, that means that we've hit the end
// of the definition of the macro we were looking for. We're
// done.
if (Macro)
return;
if (!PP->getPreprocessingRecord()) {
Error("missing preprocessing record in AST file");
return;
}
PreprocessingRecord &PPRec = *PP->getPreprocessingRecord();
if (PPRec.getPreprocessedEntity(Record[0]))
return;
if (Record[1] >= MacroDefinitionsLoaded.size()) {
Error("out-of-bounds macro definition record");
return;
}
MacroDefinition *MD
= new (PPRec) MacroDefinition(DecodeIdentifierInfo(Record[4]),
SourceLocation::getFromRawEncoding(Record[5]),
SourceRange(
SourceLocation::getFromRawEncoding(Record[2]),
SourceLocation::getFromRawEncoding(Record[3])));
PPRec.SetPreallocatedEntity(Record[0], MD);
MacroDefinitionsLoaded[Record[1]] = MD;
return;
}
}
}
}
void ASTReader::ReadDefinedMacros() {
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
llvm::BitstreamCursor &MacroCursor = Chain[N - I - 1]->MacroCursor;
// If there was no preprocessor block, skip this file.
if (!MacroCursor.getBitStreamReader())
continue;
llvm::BitstreamCursor Cursor = MacroCursor;
if (Cursor.EnterSubBlock(PREPROCESSOR_BLOCK_ID)) {
Error("malformed preprocessor block record in AST file");
return;
}
RecordData Record;
while (true) {
unsigned Code = Cursor.ReadCode();
if (Code == llvm::bitc::END_BLOCK) {
if (Cursor.ReadBlockEnd()) {
Error("error at end of preprocessor block in AST file");
return;
}
break;
}
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Cursor.ReadSubBlockID();
if (Cursor.SkipBlock()) {
Error("malformed block record in AST file");
return;
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Cursor.ReadAbbrevRecord();
continue;
}
// Read a record.
const char *BlobStart;
unsigned BlobLen;
Record.clear();
switch (Cursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) {
default: // Default behavior: ignore.
break;
case PP_MACRO_OBJECT_LIKE:
case PP_MACRO_FUNCTION_LIKE:
DecodeIdentifierInfo(Record[0]);
break;
case PP_TOKEN:
// Ignore tokens.
break;
case PP_MACRO_INSTANTIATION:
case PP_MACRO_DEFINITION:
// Read the macro record.
ReadMacroRecord(Chain[N - I - 1]->Stream, Cursor.GetCurrentBitNo());
break;
}
}
}
}
MacroDefinition *ASTReader::getMacroDefinition(MacroID ID) {
if (ID == 0 || ID >= MacroDefinitionsLoaded.size())
return 0;
if (!MacroDefinitionsLoaded[ID]) {
unsigned Index = ID;
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
PerFileData &F = *Chain[N - I - 1];
if (Index < F.LocalNumMacroDefinitions) {
ReadMacroRecord(F.Stream, F.MacroDefinitionOffsets[Index]);
break;
}
Index -= F.LocalNumMacroDefinitions;
}
assert(MacroDefinitionsLoaded[ID] && "Broken chain");
}
return MacroDefinitionsLoaded[ID];
}
/// \brief If we are loading a relocatable PCH file, and the filename is
/// not an absolute path, add the system root to the beginning of the file
/// name.
void ASTReader::MaybeAddSystemRootToFilename(std::string &Filename) {
// If this is not a relocatable PCH file, there's nothing to do.
if (!RelocatablePCH)
return;
if (Filename.empty() || llvm::sys::Path(Filename).isAbsolute())
return;
if (isysroot == 0) {
// If no system root was given, default to '/'
Filename.insert(Filename.begin(), '/');
return;
}
unsigned Length = strlen(isysroot);
if (isysroot[Length - 1] != '/')
Filename.insert(Filename.begin(), '/');
Filename.insert(Filename.begin(), isysroot, isysroot + Length);
}
ASTReader::ASTReadResult
ASTReader::ReadASTBlock(PerFileData &F) {
llvm::BitstreamCursor &Stream = F.Stream;
if (Stream.EnterSubBlock(AST_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
// Read all of the records and blocks for the ASt file.
RecordData Record;
bool First = true;
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code == llvm::bitc::END_BLOCK) {
if (Stream.ReadBlockEnd()) {
Error("error at end of module block in AST file");
return Failure;
}
return Success;
}
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
case DECLTYPES_BLOCK_ID:
// We lazily load the decls block, but we want to set up the
// DeclsCursor cursor to point into it. Clone our current bitcode
// cursor to it, enter the block and read the abbrevs in that block.
// With the main cursor, we just skip over it.
F.DeclsCursor = Stream;
if (Stream.SkipBlock() || // Skip with the main cursor.
// Read the abbrevs.
ReadBlockAbbrevs(F.DeclsCursor, DECLTYPES_BLOCK_ID)) {
Error("malformed block record in AST file");
return Failure;
}
break;
case PREPROCESSOR_BLOCK_ID:
F.MacroCursor = Stream;
if (PP)
PP->setExternalSource(this);
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
break;
case SOURCE_MANAGER_BLOCK_ID:
switch (ReadSourceManagerBlock(F)) {
case Success:
break;
case Failure:
Error("malformed source manager block in AST file");
return Failure;
case IgnorePCH:
return IgnorePCH;
}
break;
}
First = false;
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
// Read and process a record.
Record.clear();
const char *BlobStart = 0;
unsigned BlobLen = 0;
switch ((ASTRecordTypes)Stream.ReadRecord(Code, Record,
&BlobStart, &BlobLen)) {
default: // Default behavior: ignore.
break;
case METADATA: {
if (Record[0] != VERSION_MAJOR && !DisableValidation) {
Diag(Record[0] < VERSION_MAJOR? diag::warn_pch_version_too_old
: diag::warn_pch_version_too_new);
return IgnorePCH;
}
RelocatablePCH = Record[4];
if (Listener) {
std::string TargetTriple(BlobStart, BlobLen);
if (Listener->ReadTargetTriple(TargetTriple))
return IgnorePCH;
}
break;
}
case CHAINED_METADATA: {
if (!First) {
Error("CHAINED_METADATA is not first record in block");
return Failure;
}
if (Record[0] != VERSION_MAJOR && !DisableValidation) {
Diag(Record[0] < VERSION_MAJOR? diag::warn_pch_version_too_old
: diag::warn_pch_version_too_new);
return IgnorePCH;
}
// Load the chained file.
switch(ReadASTCore(llvm::StringRef(BlobStart, BlobLen))) {
case Failure: return Failure;
// If we have to ignore the dependency, we'll have to ignore this too.
case IgnorePCH: return IgnorePCH;
case Success: break;
}
break;
}
case TYPE_OFFSET:
if (F.LocalNumTypes != 0) {
Error("duplicate TYPE_OFFSET record in AST file");
return Failure;
}
F.TypeOffsets = (const uint32_t *)BlobStart;
F.LocalNumTypes = Record[0];
break;
case DECL_OFFSET:
if (F.LocalNumDecls != 0) {
Error("duplicate DECL_OFFSET record in AST file");
return Failure;
}
F.DeclOffsets = (const uint32_t *)BlobStart;
F.LocalNumDecls = Record[0];
break;
case TU_UPDATE_LEXICAL: {
DeclContextInfo Info = {
/* No visible information */ 0,
reinterpret_cast<const DeclID *>(BlobStart),
BlobLen / sizeof(DeclID)
};
DeclContextOffsets[Context->getTranslationUnitDecl()].push_back(Info);
break;
}
case UPDATE_VISIBLE: {
serialization::DeclID ID = Record[0];
void *Table = ASTDeclContextNameLookupTable::Create(
(const unsigned char *)BlobStart + Record[1],
(const unsigned char *)BlobStart,
ASTDeclContextNameLookupTrait(*this));
if (ID == 1) { // Is it the TU?
DeclContextInfo Info = {
Table, /* No lexical inforamtion */ 0, 0
};
DeclContextOffsets[Context->getTranslationUnitDecl()].push_back(Info);
} else
PendingVisibleUpdates[ID].push_back(Table);
break;
}
case REDECLS_UPDATE_LATEST: {
assert(Record.size() % 2 == 0 && "Expected pairs of DeclIDs");
for (unsigned i = 0, e = Record.size(); i < e; i += 2) {
DeclID First = Record[i], Latest = Record[i+1];
assert((FirstLatestDeclIDs.find(First) == FirstLatestDeclIDs.end() ||
Latest > FirstLatestDeclIDs[First]) &&
"The new latest is supposed to come after the previous latest");
FirstLatestDeclIDs[First] = Latest;
}
break;
}
case LANGUAGE_OPTIONS:
if (ParseLanguageOptions(Record) && !DisableValidation)
return IgnorePCH;
break;
case IDENTIFIER_TABLE:
F.IdentifierTableData = BlobStart;
if (Record[0]) {
F.IdentifierLookupTable
= ASTIdentifierLookupTable::Create(
(const unsigned char *)F.IdentifierTableData + Record[0],
(const unsigned char *)F.IdentifierTableData,
ASTIdentifierLookupTrait(*this, F.Stream));
if (PP)
PP->getIdentifierTable().setExternalIdentifierLookup(this);
}
break;
case IDENTIFIER_OFFSET:
if (F.LocalNumIdentifiers != 0) {
Error("duplicate IDENTIFIER_OFFSET record in AST file");
return Failure;
}
F.IdentifierOffsets = (const uint32_t *)BlobStart;
F.LocalNumIdentifiers = Record[0];
break;
case EXTERNAL_DEFINITIONS:
// Optimization for the first block.
if (ExternalDefinitions.empty())
ExternalDefinitions.swap(Record);
else
ExternalDefinitions.insert(ExternalDefinitions.end(),
Record.begin(), Record.end());
break;
case SPECIAL_TYPES:
// Optimization for the first block
if (SpecialTypes.empty())
SpecialTypes.swap(Record);
else
SpecialTypes.insert(SpecialTypes.end(), Record.begin(), Record.end());
break;
case STATISTICS:
TotalNumStatements += Record[0];
TotalNumMacros += Record[1];
TotalLexicalDeclContexts += Record[2];
TotalVisibleDeclContexts += Record[3];
break;
case TENTATIVE_DEFINITIONS:
// Optimization for the first block.
if (TentativeDefinitions.empty())
TentativeDefinitions.swap(Record);
else
TentativeDefinitions.insert(TentativeDefinitions.end(),
Record.begin(), Record.end());
break;
case UNUSED_FILESCOPED_DECLS:
// Optimization for the first block.
if (UnusedFileScopedDecls.empty())
UnusedFileScopedDecls.swap(Record);
else
UnusedFileScopedDecls.insert(UnusedFileScopedDecls.end(),
Record.begin(), Record.end());
break;
case WEAK_UNDECLARED_IDENTIFIERS:
// Later blocks overwrite earlier ones.
WeakUndeclaredIdentifiers.swap(Record);
break;
case LOCALLY_SCOPED_EXTERNAL_DECLS:
// Optimization for the first block.
if (LocallyScopedExternalDecls.empty())
LocallyScopedExternalDecls.swap(Record);
else
LocallyScopedExternalDecls.insert(LocallyScopedExternalDecls.end(),
Record.begin(), Record.end());
break;
case SELECTOR_OFFSETS:
F.SelectorOffsets = (const uint32_t *)BlobStart;
F.LocalNumSelectors = Record[0];
break;
case METHOD_POOL:
F.SelectorLookupTableData = (const unsigned char *)BlobStart;
if (Record[0])
F.SelectorLookupTable
= ASTSelectorLookupTable::Create(
F.SelectorLookupTableData + Record[0],
F.SelectorLookupTableData,
ASTSelectorLookupTrait(*this));
TotalNumMethodPoolEntries += Record[1];
break;
case REFERENCED_SELECTOR_POOL: {
ReferencedSelectorsData.insert(ReferencedSelectorsData.end(),
Record.begin(), Record.end());
break;
}
case PP_COUNTER_VALUE:
if (!Record.empty() && Listener)
Listener->ReadCounter(Record[0]);
break;
case SOURCE_LOCATION_OFFSETS:
F.SLocOffsets = (const uint32_t *)BlobStart;
F.LocalNumSLocEntries = Record[0];
// We cannot delay this until the entire chain is loaded, because then
// source location preloads would also have to be delayed.
// FIXME: Is there a reason not to do that?
TotalNumSLocEntries += F.LocalNumSLocEntries;
SourceMgr.PreallocateSLocEntries(this, TotalNumSLocEntries, Record[1]);
break;
case SOURCE_LOCATION_PRELOADS:
for (unsigned I = 0, N = Record.size(); I != N; ++I) {
ASTReadResult Result = ReadSLocEntryRecord(Record[I]);
if (Result != Success)
return Result;
}
break;
case STAT_CACHE: {
ASTStatCache *MyStatCache =
new ASTStatCache((const unsigned char *)BlobStart + Record[0],
(const unsigned char *)BlobStart,
NumStatHits, NumStatMisses);
FileMgr.addStatCache(MyStatCache);
F.StatCache = MyStatCache;
break;
}
case EXT_VECTOR_DECLS:
// Optimization for the first block.
if (ExtVectorDecls.empty())
ExtVectorDecls.swap(Record);
else
ExtVectorDecls.insert(ExtVectorDecls.end(),
Record.begin(), Record.end());
break;
case VTABLE_USES:
// Later tables overwrite earlier ones.
VTableUses.swap(Record);
break;
case DYNAMIC_CLASSES:
// Optimization for the first block.
if (DynamicClasses.empty())
DynamicClasses.swap(Record);
else
DynamicClasses.insert(DynamicClasses.end(),
Record.begin(), Record.end());
break;
case PENDING_IMPLICIT_INSTANTIATIONS:
// Optimization for the first block.
if (PendingInstantiations.empty())
PendingInstantiations.swap(Record);
else
PendingInstantiations.insert(PendingInstantiations.end(),
Record.begin(), Record.end());
break;
case SEMA_DECL_REFS:
// Later tables overwrite earlier ones.
SemaDeclRefs.swap(Record);
break;
case ORIGINAL_FILE_NAME:
// The primary AST will be the last to get here, so it will be the one
// that's used.
ActualOriginalFileName.assign(BlobStart, BlobLen);
OriginalFileName = ActualOriginalFileName;
MaybeAddSystemRootToFilename(OriginalFileName);
break;
case VERSION_CONTROL_BRANCH_REVISION: {
const std::string &CurBranch = getClangFullRepositoryVersion();
llvm::StringRef ASTBranch(BlobStart, BlobLen);
if (llvm::StringRef(CurBranch) != ASTBranch && !DisableValidation) {
Diag(diag::warn_pch_different_branch) << ASTBranch << CurBranch;
return IgnorePCH;
}
break;
}
case MACRO_DEFINITION_OFFSETS:
F.MacroDefinitionOffsets = (const uint32_t *)BlobStart;
F.NumPreallocatedPreprocessingEntities = Record[0];
F.LocalNumMacroDefinitions = Record[1];
break;
case DECL_REPLACEMENTS: {
if (Record.size() % 2 != 0) {
Error("invalid DECL_REPLACEMENTS block in AST file");
return Failure;
}
for (unsigned I = 0, N = Record.size(); I != N; I += 2)
ReplacedDecls[static_cast<DeclID>(Record[I])] =
std::make_pair(&F, Record[I+1]);
break;
}
case ADDITIONAL_TEMPLATE_SPECIALIZATIONS: {
AdditionalTemplateSpecializations &ATS =
AdditionalTemplateSpecializationsPending[Record[0]];
ATS.insert(ATS.end(), Record.begin()+1, Record.end());
break;
}
}
First = false;
}
Error("premature end of bitstream in AST file");
return Failure;
}
ASTReader::ASTReadResult ASTReader::ReadAST(const std::string &FileName) {
switch(ReadASTCore(FileName)) {
case Failure: return Failure;
case IgnorePCH: return IgnorePCH;
case Success: break;
}
// Here comes stuff that we only do once the entire chain is loaded.
// Allocate space for loaded identifiers, decls and types.
unsigned TotalNumIdentifiers = 0, TotalNumTypes = 0, TotalNumDecls = 0,
TotalNumPreallocatedPreprocessingEntities = 0, TotalNumMacroDefs = 0,
TotalNumSelectors = 0;
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
TotalNumIdentifiers += Chain[I]->LocalNumIdentifiers;
TotalNumTypes += Chain[I]->LocalNumTypes;
TotalNumDecls += Chain[I]->LocalNumDecls;
TotalNumPreallocatedPreprocessingEntities +=
Chain[I]->NumPreallocatedPreprocessingEntities;
TotalNumMacroDefs += Chain[I]->LocalNumMacroDefinitions;
TotalNumSelectors += Chain[I]->LocalNumSelectors;
}
IdentifiersLoaded.resize(TotalNumIdentifiers);
TypesLoaded.resize(TotalNumTypes);
DeclsLoaded.resize(TotalNumDecls);
MacroDefinitionsLoaded.resize(TotalNumMacroDefs);
if (PP) {
if (TotalNumIdentifiers > 0)
PP->getHeaderSearchInfo().SetExternalLookup(this);
if (TotalNumPreallocatedPreprocessingEntities > 0) {
if (!PP->getPreprocessingRecord())
PP->createPreprocessingRecord();
PP->getPreprocessingRecord()->SetExternalSource(*this,
TotalNumPreallocatedPreprocessingEntities);
}
}
SelectorsLoaded.resize(TotalNumSelectors);
// Check the predefines buffers.
if (!DisableValidation && CheckPredefinesBuffers())
return IgnorePCH;
if (PP) {
// Initialization of keywords and pragmas occurs before the
// AST file is read, so there may be some identifiers that were
// loaded into the IdentifierTable before we intercepted the
// creation of identifiers. Iterate through the list of known
// identifiers and determine whether we have to establish
// preprocessor definitions or top-level identifier declaration
// chains for those identifiers.
//
// We copy the IdentifierInfo pointers to a small vector first,
// since de-serializing declarations or macro definitions can add
// new entries into the identifier table, invalidating the
// iterators.
llvm::SmallVector<IdentifierInfo *, 128> Identifiers;
for (IdentifierTable::iterator Id = PP->getIdentifierTable().begin(),
IdEnd = PP->getIdentifierTable().end();
Id != IdEnd; ++Id)
Identifiers.push_back(Id->second);
// We need to search the tables in all files.
for (unsigned J = 0, M = Chain.size(); J != M; ++J) {
ASTIdentifierLookupTable *IdTable
= (ASTIdentifierLookupTable *)Chain[J]->IdentifierLookupTable;
// Not all AST files necessarily have identifier tables, only the useful
// ones.
if (!IdTable)
continue;
for (unsigned I = 0, N = Identifiers.size(); I != N; ++I) {
IdentifierInfo *II = Identifiers[I];
// Look in the on-disk hash tables for an entry for this identifier
ASTIdentifierLookupTrait Info(*this, Chain[J]->Stream, II);
std::pair<const char*,unsigned> Key(II->getNameStart(),II->getLength());
ASTIdentifierLookupTable::iterator Pos = IdTable->find(Key, &Info);
if (Pos == IdTable->end())
continue;
// Dereferencing the iterator has the effect of populating the
// IdentifierInfo node with the various declarations it needs.
(void)*Pos;
}
}
}
if (Context)
InitializeContext(*Context);
return Success;
}
ASTReader::ASTReadResult ASTReader::ReadASTCore(llvm::StringRef FileName) {
Chain.push_back(new PerFileData());
PerFileData &F = *Chain.back();
// Set the AST file name.
F.FileName = FileName;
// Open the AST file.
//
// FIXME: This shouldn't be here, we should just take a raw_ostream.
std::string ErrStr;
F.Buffer.reset(llvm::MemoryBuffer::getFileOrSTDIN(FileName, &ErrStr));
if (!F.Buffer) {
Error(ErrStr.c_str());
return IgnorePCH;
}
// Initialize the stream
F.StreamFile.init((const unsigned char *)F.Buffer->getBufferStart(),
(const unsigned char *)F.Buffer->getBufferEnd());
llvm::BitstreamCursor &Stream = F.Stream;
Stream.init(F.StreamFile);
F.SizeInBits = F.Buffer->getBufferSize() * 8;
// Sniff for the signature.
if (Stream.Read(8) != 'C' ||
Stream.Read(8) != 'P' ||
Stream.Read(8) != 'C' ||
Stream.Read(8) != 'H') {
Diag(diag::err_not_a_pch_file) << FileName;
return Failure;
}
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code != llvm::bitc::ENTER_SUBBLOCK) {
Error("invalid record at top-level of AST file");
return Failure;
}
unsigned BlockID = Stream.ReadSubBlockID();
// We only know the AST subblock ID.
switch (BlockID) {
case llvm::bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock()) {
Error("malformed BlockInfoBlock in AST file");
return Failure;
}
break;
case AST_BLOCK_ID:
switch (ReadASTBlock(F)) {
case Success:
break;
case Failure:
return Failure;
case IgnorePCH:
// FIXME: We could consider reading through to the end of this
// AST block, skipping subblocks, to see if there are other
// AST blocks elsewhere.
// Clear out any preallocated source location entries, so that
// the source manager does not try to resolve them later.
SourceMgr.ClearPreallocatedSLocEntries();
// Remove the stat cache.
if (F.StatCache)
FileMgr.removeStatCache((ASTStatCache*)F.StatCache);
return IgnorePCH;
}
break;
default:
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return Failure;
}
break;
}
}
return Success;
}
void ASTReader::setPreprocessor(Preprocessor &pp) {
PP = &pp;
unsigned TotalNum = 0;
for (unsigned I = 0, N = Chain.size(); I != N; ++I)
TotalNum += Chain[I]->NumPreallocatedPreprocessingEntities;
if (TotalNum) {
if (!PP->getPreprocessingRecord())
PP->createPreprocessingRecord();
PP->getPreprocessingRecord()->SetExternalSource(*this, TotalNum);
}
}
void ASTReader::InitializeContext(ASTContext &Ctx) {
Context = &Ctx;
assert(Context && "Passed null context!");
assert(PP && "Forgot to set Preprocessor ?");
PP->getIdentifierTable().setExternalIdentifierLookup(this);
PP->getHeaderSearchInfo().SetExternalLookup(this);
PP->setExternalSource(this);
// Load the translation unit declaration
GetTranslationUnitDecl();
// Load the special types.
Context->setBuiltinVaListType(
GetType(SpecialTypes[SPECIAL_TYPE_BUILTIN_VA_LIST]));
if (unsigned Id = SpecialTypes[SPECIAL_TYPE_OBJC_ID])
Context->setObjCIdType(GetType(Id));
if (unsigned Sel = SpecialTypes[SPECIAL_TYPE_OBJC_SELECTOR])
Context->setObjCSelType(GetType(Sel));
if (unsigned Proto = SpecialTypes[SPECIAL_TYPE_OBJC_PROTOCOL])
Context->setObjCProtoType(GetType(Proto));
if (unsigned Class = SpecialTypes[SPECIAL_TYPE_OBJC_CLASS])
Context->setObjCClassType(GetType(Class));
if (unsigned String = SpecialTypes[SPECIAL_TYPE_CF_CONSTANT_STRING])
Context->setCFConstantStringType(GetType(String));
if (unsigned FastEnum
= SpecialTypes[SPECIAL_TYPE_OBJC_FAST_ENUMERATION_STATE])
Context->setObjCFastEnumerationStateType(GetType(FastEnum));
if (unsigned File = SpecialTypes[SPECIAL_TYPE_FILE]) {
QualType FileType = GetType(File);
if (FileType.isNull()) {
Error("FILE type is NULL");
return;
}
if (const TypedefType *Typedef = FileType->getAs<TypedefType>())
Context->setFILEDecl(Typedef->getDecl());
else {
const TagType *Tag = FileType->getAs<TagType>();
if (!Tag) {
Error("Invalid FILE type in AST file");
return;
}
Context->setFILEDecl(Tag->getDecl());
}
}
if (unsigned Jmp_buf = SpecialTypes[SPECIAL_TYPE_jmp_buf]) {
QualType Jmp_bufType = GetType(Jmp_buf);
if (Jmp_bufType.isNull()) {
Error("jmp_bug type is NULL");
return;
}
if (const TypedefType *Typedef = Jmp_bufType->getAs<TypedefType>())
Context->setjmp_bufDecl(Typedef->getDecl());
else {
const TagType *Tag = Jmp_bufType->getAs<TagType>();
if (!Tag) {
Error("Invalid jmp_buf type in AST file");
return;
}
Context->setjmp_bufDecl(Tag->getDecl());
}
}
if (unsigned Sigjmp_buf = SpecialTypes[SPECIAL_TYPE_sigjmp_buf]) {
QualType Sigjmp_bufType = GetType(Sigjmp_buf);
if (Sigjmp_bufType.isNull()) {
Error("sigjmp_buf type is NULL");
return;
}
if (const TypedefType *Typedef = Sigjmp_bufType->getAs<TypedefType>())
Context->setsigjmp_bufDecl(Typedef->getDecl());
else {
const TagType *Tag = Sigjmp_bufType->getAs<TagType>();
assert(Tag && "Invalid sigjmp_buf type in AST file");
Context->setsigjmp_bufDecl(Tag->getDecl());
}
}
if (unsigned ObjCIdRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_ID_REDEFINITION])
Context->ObjCIdRedefinitionType = GetType(ObjCIdRedef);
if (unsigned ObjCClassRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_CLASS_REDEFINITION])
Context->ObjCClassRedefinitionType = GetType(ObjCClassRedef);
if (unsigned String = SpecialTypes[SPECIAL_TYPE_BLOCK_DESCRIPTOR])
Context->setBlockDescriptorType(GetType(String));
if (unsigned String
= SpecialTypes[SPECIAL_TYPE_BLOCK_EXTENDED_DESCRIPTOR])
Context->setBlockDescriptorExtendedType(GetType(String));
if (unsigned ObjCSelRedef
= SpecialTypes[SPECIAL_TYPE_OBJC_SEL_REDEFINITION])
Context->ObjCSelRedefinitionType = GetType(ObjCSelRedef);
if (unsigned String = SpecialTypes[SPECIAL_TYPE_NS_CONSTANT_STRING])
Context->setNSConstantStringType(GetType(String));
if (SpecialTypes[SPECIAL_TYPE_INT128_INSTALLED])
Context->setInt128Installed();
}
/// \brief Retrieve the name of the original source file name
/// directly from the AST file, without actually loading the AST
/// file.
std::string ASTReader::getOriginalSourceFile(const std::string &ASTFileName,
Diagnostic &Diags) {
// Open the AST file.
std::string ErrStr;
llvm::OwningPtr<llvm::MemoryBuffer> Buffer;
Buffer.reset(llvm::MemoryBuffer::getFile(ASTFileName.c_str(), &ErrStr));
if (!Buffer) {
Diags.Report(diag::err_fe_unable_to_read_pch_file) << ErrStr;
return std::string();
}
// Initialize the stream
llvm::BitstreamReader StreamFile;
llvm::BitstreamCursor Stream;
StreamFile.init((const unsigned char *)Buffer->getBufferStart(),
(const unsigned char *)Buffer->getBufferEnd());
Stream.init(StreamFile);
// Sniff for the signature.
if (Stream.Read(8) != 'C' ||
Stream.Read(8) != 'P' ||
Stream.Read(8) != 'C' ||
Stream.Read(8) != 'H') {
Diags.Report(diag::err_fe_not_a_pch_file) << ASTFileName;
return std::string();
}
RecordData Record;
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
if (Code == llvm::bitc::ENTER_SUBBLOCK) {
unsigned BlockID = Stream.ReadSubBlockID();
// We only know the AST subblock ID.
switch (BlockID) {
case AST_BLOCK_ID:
if (Stream.EnterSubBlock(AST_BLOCK_ID)) {
Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName;
return std::string();
}
break;
default:
if (Stream.SkipBlock()) {
Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName;
return std::string();
}
break;
}
continue;
}
if (Code == llvm::bitc::END_BLOCK) {
if (Stream.ReadBlockEnd()) {
Diags.Report(diag::err_fe_pch_error_at_end_block) << ASTFileName;
return std::string();
}
continue;
}
if (Code == llvm::bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
Record.clear();
const char *BlobStart = 0;
unsigned BlobLen = 0;
if (Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)
== ORIGINAL_FILE_NAME)
return std::string(BlobStart, BlobLen);
}
return std::string();
}
/// \brief Parse the record that corresponds to a LangOptions data
/// structure.
///
/// This routine parses the language options from the AST file and then gives
/// them to the AST listener if one is set.
///
/// \returns true if the listener deems the file unacceptable, false otherwise.
bool ASTReader::ParseLanguageOptions(
const llvm::SmallVectorImpl<uint64_t> &Record) {
if (Listener) {
LangOptions LangOpts;
#define PARSE_LANGOPT(Option) \
LangOpts.Option = Record[Idx]; \
++Idx
unsigned Idx = 0;
PARSE_LANGOPT(Trigraphs);
PARSE_LANGOPT(BCPLComment);
PARSE_LANGOPT(DollarIdents);
PARSE_LANGOPT(AsmPreprocessor);
PARSE_LANGOPT(GNUMode);
PARSE_LANGOPT(GNUKeywords);
PARSE_LANGOPT(ImplicitInt);
PARSE_LANGOPT(Digraphs);
PARSE_LANGOPT(HexFloats);
PARSE_LANGOPT(C99);
PARSE_LANGOPT(Microsoft);
PARSE_LANGOPT(CPlusPlus);
PARSE_LANGOPT(CPlusPlus0x);
PARSE_LANGOPT(CXXOperatorNames);
PARSE_LANGOPT(ObjC1);
PARSE_LANGOPT(ObjC2);
PARSE_LANGOPT(ObjCNonFragileABI);
PARSE_LANGOPT(ObjCNonFragileABI2);
PARSE_LANGOPT(NoConstantCFStrings);
PARSE_LANGOPT(PascalStrings);
PARSE_LANGOPT(WritableStrings);
PARSE_LANGOPT(LaxVectorConversions);
PARSE_LANGOPT(AltiVec);
PARSE_LANGOPT(Exceptions);
PARSE_LANGOPT(SjLjExceptions);
PARSE_LANGOPT(NeXTRuntime);
PARSE_LANGOPT(Freestanding);
PARSE_LANGOPT(NoBuiltin);
PARSE_LANGOPT(ThreadsafeStatics);
PARSE_LANGOPT(POSIXThreads);
PARSE_LANGOPT(Blocks);
PARSE_LANGOPT(EmitAllDecls);
PARSE_LANGOPT(MathErrno);
LangOpts.setSignedOverflowBehavior((LangOptions::SignedOverflowBehaviorTy)
Record[Idx++]);
PARSE_LANGOPT(HeinousExtensions);
PARSE_LANGOPT(Optimize);
PARSE_LANGOPT(OptimizeSize);
PARSE_LANGOPT(Static);
PARSE_LANGOPT(PICLevel);
PARSE_LANGOPT(GNUInline);
PARSE_LANGOPT(NoInline);
PARSE_LANGOPT(AccessControl);
PARSE_LANGOPT(CharIsSigned);
PARSE_LANGOPT(ShortWChar);
LangOpts.setGCMode((LangOptions::GCMode)Record[Idx++]);
LangOpts.setVisibilityMode((LangOptions::VisibilityMode)Record[Idx++]);
LangOpts.setStackProtectorMode((LangOptions::StackProtectorMode)
Record[Idx++]);
PARSE_LANGOPT(InstantiationDepth);
PARSE_LANGOPT(OpenCL);
PARSE_LANGOPT(CatchUndefined);
// FIXME: Missing ElideConstructors?!
#undef PARSE_LANGOPT
return Listener->ReadLanguageOptions(LangOpts);
}
return false;
}
void ASTReader::ReadPreprocessedEntities() {
ReadDefinedMacros();
}
/// \brief Get the correct cursor and offset for loading a type.
ASTReader::RecordLocation ASTReader::TypeCursorForIndex(unsigned Index) {
PerFileData *F = 0;
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
F = Chain[N - I - 1];
if (Index < F->LocalNumTypes)
break;
Index -= F->LocalNumTypes;
}
assert(F && F->LocalNumTypes > Index && "Broken chain");
return RecordLocation(&F->DeclsCursor, F->TypeOffsets[Index]);
}
/// \brief Read and return the type with the given index..
///
/// The index is the type ID, shifted and minus the number of predefs. This
/// routine actually reads the record corresponding to the type at the given
/// location. It is a helper routine for GetType, which deals with reading type
/// IDs.
QualType ASTReader::ReadTypeRecord(unsigned Index) {
RecordLocation Loc = TypeCursorForIndex(Index);
llvm::BitstreamCursor &DeclsCursor = *Loc.first;
// Keep track of where we are in the stream, then jump back there
// after reading this type.
SavedStreamPosition SavedPosition(DeclsCursor);
ReadingKindTracker ReadingKind(Read_Type, *this);
// Note that we are loading a type record.
Deserializing AType(this);
DeclsCursor.JumpToBit(Loc.second);
RecordData Record;
unsigned Code = DeclsCursor.ReadCode();
switch ((TypeCode)DeclsCursor.ReadRecord(Code, Record)) {
case TYPE_EXT_QUAL: {
if (Record.size() != 2) {
Error("Incorrect encoding of extended qualifier type");
return QualType();
}
QualType Base = GetType(Record[0]);
Qualifiers Quals = Qualifiers::fromOpaqueValue(Record[1]);
return Context->getQualifiedType(Base, Quals);
}
case TYPE_COMPLEX: {
if (Record.size() != 1) {
Error("Incorrect encoding of complex type");
return QualType();
}
QualType ElemType = GetType(Record[0]);
return Context->getComplexType(ElemType);
}
case TYPE_POINTER: {
if (Record.size() != 1) {
Error("Incorrect encoding of pointer type");
return QualType();
}
QualType PointeeType = GetType(Record[0]);
return Context->getPointerType(PointeeType);
}
case TYPE_BLOCK_POINTER: {
if (Record.size() != 1) {
Error("Incorrect encoding of block pointer type");
return QualType();
}
QualType PointeeType = GetType(Record[0]);
return Context->getBlockPointerType(PointeeType);
}
case TYPE_LVALUE_REFERENCE: {
if (Record.size() != 1) {
Error("Incorrect encoding of lvalue reference type");
return QualType();
}
QualType PointeeType = GetType(Record[0]);
return Context->getLValueReferenceType(PointeeType);
}
case TYPE_RVALUE_REFERENCE: {
if (Record.size() != 1) {
Error("Incorrect encoding of rvalue reference type");
return QualType();
}
QualType PointeeType = GetType(Record[0]);
return Context->getRValueReferenceType(PointeeType);
}
case TYPE_MEMBER_POINTER: {
if (Record.size() != 2) {
Error("Incorrect encoding of member pointer type");
return QualType();
}
QualType PointeeType = GetType(Record[0]);
QualType ClassType = GetType(Record[1]);
return Context->getMemberPointerType(PointeeType, ClassType.getTypePtr());
}
case TYPE_CONSTANT_ARRAY: {
QualType ElementType = GetType(Record[0]);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
unsigned Idx = 3;
llvm::APInt Size = ReadAPInt(Record, Idx);
return Context->getConstantArrayType(ElementType, Size,
ASM, IndexTypeQuals);
}
case TYPE_INCOMPLETE_ARRAY: {
QualType ElementType = GetType(Record[0]);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
return Context->getIncompleteArrayType(ElementType, ASM, IndexTypeQuals);
}
case TYPE_VARIABLE_ARRAY: {
QualType ElementType = GetType(Record[0]);
ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1];
unsigned IndexTypeQuals = Record[2];
SourceLocation LBLoc = SourceLocation::getFromRawEncoding(Record[3]);
SourceLocation RBLoc = SourceLocation::getFromRawEncoding(Record[4]);
return Context->getVariableArrayType(ElementType, ReadExpr(DeclsCursor),
ASM, IndexTypeQuals,
SourceRange(LBLoc, RBLoc));
}
case TYPE_VECTOR: {
if (Record.size() != 3) {
Error("incorrect encoding of vector type in AST file");
return QualType();
}
QualType ElementType = GetType(Record[0]);
unsigned NumElements = Record[1];
unsigned AltiVecSpec = Record[2];
return Context->getVectorType(ElementType, NumElements,
(VectorType::AltiVecSpecific)AltiVecSpec);
}
case TYPE_EXT_VECTOR: {
if (Record.size() != 3) {
Error("incorrect encoding of extended vector type in AST file");
return QualType();
}
QualType ElementType = GetType(Record[0]);
unsigned NumElements = Record[1];
return Context->getExtVectorType(ElementType, NumElements);
}
case TYPE_FUNCTION_NO_PROTO: {
if (Record.size() != 4) {
Error("incorrect encoding of no-proto function type");
return QualType();
}
QualType ResultType = GetType(Record[0]);
FunctionType::ExtInfo Info(Record[1], Record[2], (CallingConv)Record[3]);
return Context->getFunctionNoProtoType(ResultType, Info);
}
case TYPE_FUNCTION_PROTO: {
QualType ResultType = GetType(Record[0]);
bool NoReturn = Record[1];
unsigned RegParm = Record[2];
CallingConv CallConv = (CallingConv)Record[3];
unsigned Idx = 4;
unsigned NumParams = Record[Idx++];
llvm::SmallVector<QualType, 16> ParamTypes;
for (unsigned I = 0; I != NumParams; ++I)
ParamTypes.push_back(GetType(Record[Idx++]));
bool isVariadic = Record[Idx++];
unsigned Quals = Record[Idx++];
bool hasExceptionSpec = Record[Idx++];
bool hasAnyExceptionSpec = Record[Idx++];
unsigned NumExceptions = Record[Idx++];
llvm::SmallVector<QualType, 2> Exceptions;
for (unsigned I = 0; I != NumExceptions; ++I)
Exceptions.push_back(GetType(Record[Idx++]));
return Context->getFunctionType(ResultType, ParamTypes.data(), NumParams,
isVariadic, Quals, hasExceptionSpec,
hasAnyExceptionSpec, NumExceptions,
Exceptions.data(),
FunctionType::ExtInfo(NoReturn, RegParm,
CallConv));
}
case TYPE_UNRESOLVED_USING:
return Context->getTypeDeclType(
cast<UnresolvedUsingTypenameDecl>(GetDecl(Record[0])));
case TYPE_TYPEDEF: {
if (Record.size() != 2) {
Error("incorrect encoding of typedef type");
return QualType();
}
TypedefDecl *Decl = cast<TypedefDecl>(GetDecl(Record[0]));
QualType Canonical = GetType(Record[1]);
return Context->getTypedefType(Decl, Canonical);
}
case TYPE_TYPEOF_EXPR:
return Context->getTypeOfExprType(ReadExpr(DeclsCursor));
case TYPE_TYPEOF: {
if (Record.size() != 1) {
Error("incorrect encoding of typeof(type) in AST file");
return QualType();
}
QualType UnderlyingType = GetType(Record[0]);
return Context->getTypeOfType(UnderlyingType);
}
case TYPE_DECLTYPE:
return Context->getDecltypeType(ReadExpr(DeclsCursor));
case TYPE_RECORD: {
if (Record.size() != 2) {
Error("incorrect encoding of record type");
return QualType();
}
bool IsDependent = Record[0];
QualType T = Context->getRecordType(cast<RecordDecl>(GetDecl(Record[1])));
T->Dependent = IsDependent;
return T;
}
case TYPE_ENUM: {
if (Record.size() != 2) {
Error("incorrect encoding of enum type");
return QualType();
}
bool IsDependent = Record[0];
QualType T = Context->getEnumType(cast<EnumDecl>(GetDecl(Record[1])));
T->Dependent = IsDependent;
return T;
}
case TYPE_ELABORATED: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx);
QualType NamedType = GetType(Record[Idx++]);
return Context->getElaboratedType(Keyword, NNS, NamedType);
}
case TYPE_OBJC_INTERFACE: {
unsigned Idx = 0;
ObjCInterfaceDecl *ItfD = cast<ObjCInterfaceDecl>(GetDecl(Record[Idx++]));
return Context->getObjCInterfaceType(ItfD);
}
case TYPE_OBJC_OBJECT: {
unsigned Idx = 0;
QualType Base = GetType(Record[Idx++]);
unsigned NumProtos = Record[Idx++];
llvm::SmallVector<ObjCProtocolDecl*, 4> Protos;
for (unsigned I = 0; I != NumProtos; ++I)
Protos.push_back(cast<ObjCProtocolDecl>(GetDecl(Record[Idx++])));
return Context->getObjCObjectType(Base, Protos.data(), NumProtos);
}
case TYPE_OBJC_OBJECT_POINTER: {
unsigned Idx = 0;
QualType Pointee = GetType(Record[Idx++]);
return Context->getObjCObjectPointerType(Pointee);
}
case TYPE_SUBST_TEMPLATE_TYPE_PARM: {
unsigned Idx = 0;
QualType Parm = GetType(Record[Idx++]);
QualType Replacement = GetType(Record[Idx++]);
return
Context->getSubstTemplateTypeParmType(cast<TemplateTypeParmType>(Parm),
Replacement);
}
case TYPE_INJECTED_CLASS_NAME: {
CXXRecordDecl *D = cast<CXXRecordDecl>(GetDecl(Record[0]));
QualType TST = GetType(Record[1]); // probably derivable
// FIXME: ASTContext::getInjectedClassNameType is not currently suitable
// for AST reading, too much interdependencies.
return
QualType(new (*Context, TypeAlignment) InjectedClassNameType(D, TST), 0);
}
case TYPE_TEMPLATE_TYPE_PARM: {
unsigned Idx = 0;
unsigned Depth = Record[Idx++];
unsigned Index = Record[Idx++];
bool Pack = Record[Idx++];
IdentifierInfo *Name = GetIdentifierInfo(Record, Idx);
return Context->getTemplateTypeParmType(Depth, Index, Pack, Name);
}
case TYPE_DEPENDENT_NAME: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx);
const IdentifierInfo *Name = this->GetIdentifierInfo(Record, Idx);
QualType Canon = GetType(Record[Idx++]);
return Context->getDependentNameType(Keyword, NNS, Name, Canon);
}
case TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION: {
unsigned Idx = 0;
ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++];
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx);
const IdentifierInfo *Name = this->GetIdentifierInfo(Record, Idx);
unsigned NumArgs = Record[Idx++];
llvm::SmallVector<TemplateArgument, 8> Args;
Args.reserve(NumArgs);
while (NumArgs--)
Args.push_back(ReadTemplateArgument(DeclsCursor, Record, Idx));
return Context->getDependentTemplateSpecializationType(Keyword, NNS, Name,
Args.size(), Args.data());
}
case TYPE_DEPENDENT_SIZED_ARRAY: {
unsigned Idx = 0;
// ArrayType
QualType ElementType = GetType(Record[Idx++]);
ArrayType::ArraySizeModifier ASM
= (ArrayType::ArraySizeModifier)Record[Idx++];
unsigned IndexTypeQuals = Record[Idx++];
// DependentSizedArrayType
Expr *NumElts = ReadExpr(DeclsCursor);
SourceRange Brackets = ReadSourceRange(Record, Idx);
return Context->getDependentSizedArrayType(ElementType, NumElts, ASM,
IndexTypeQuals, Brackets);
}
case TYPE_TEMPLATE_SPECIALIZATION: {
unsigned Idx = 0;
bool IsDependent = Record[Idx++];
TemplateName Name = ReadTemplateName(Record, Idx);
llvm::SmallVector<TemplateArgument, 8> Args;
ReadTemplateArgumentList(Args, DeclsCursor, Record, Idx);
QualType Canon = GetType(Record[Idx++]);
QualType T;
if (Canon.isNull())
T = Context->getCanonicalTemplateSpecializationType(Name, Args.data(),
Args.size());
else
T = Context->getTemplateSpecializationType(Name, Args.data(),
Args.size(), Canon);
T->Dependent = IsDependent;
return T;
}
}
// Suppress a GCC warning
return QualType();
}
namespace {
class TypeLocReader : public TypeLocVisitor<TypeLocReader> {
ASTReader &Reader;
llvm::BitstreamCursor &DeclsCursor;
const ASTReader::RecordData &Record;
unsigned &Idx;
public:
TypeLocReader(ASTReader &Reader, llvm::BitstreamCursor &Cursor,
const ASTReader::RecordData &Record, unsigned &Idx)
: Reader(Reader), DeclsCursor(Cursor), Record(Record), Idx(Idx) { }
// We want compile-time assurance that we've enumerated all of
// these, so unfortunately we have to declare them first, then
// define them out-of-line.
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc);
#include "clang/AST/TypeLocNodes.def"
void VisitFunctionTypeLoc(FunctionTypeLoc);
void VisitArrayTypeLoc(ArrayTypeLoc);
};
}
void TypeLocReader::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
// nothing to do
}
void TypeLocReader::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
TL.setBuiltinLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
if (TL.needsExtraLocalData()) {
TL.setWrittenTypeSpec(static_cast<DeclSpec::TST>(Record[Idx++]));
TL.setWrittenSignSpec(static_cast<DeclSpec::TSS>(Record[Idx++]));
TL.setWrittenWidthSpec(static_cast<DeclSpec::TSW>(Record[Idx++]));
TL.setModeAttr(Record[Idx++]);
}
}
void TypeLocReader::VisitComplexTypeLoc(ComplexTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitPointerTypeLoc(PointerTypeLoc TL) {
TL.setStarLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
TL.setCaretLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
TL.setAmpLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
TL.setAmpAmpLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
TL.setStarLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitArrayTypeLoc(ArrayTypeLoc TL) {
TL.setLBracketLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setRBracketLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
if (Record[Idx++])
TL.setSizeExpr(Reader.ReadExpr(DeclsCursor));
else
TL.setSizeExpr(0);
}
void TypeLocReader::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitDependentSizedArrayTypeLoc(
DependentSizedArrayTypeLoc TL) {
VisitArrayTypeLoc(TL);
}
void TypeLocReader::VisitDependentSizedExtVectorTypeLoc(
DependentSizedExtVectorTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitVectorTypeLoc(VectorTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
TL.setLParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) {
TL.setArg(i, cast_or_null<ParmVarDecl>(Reader.GetDecl(Record[Idx++])));
}
}
void TypeLocReader::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocReader::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) {
VisitFunctionTypeLoc(TL);
}
void TypeLocReader::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
TL.setTypeofLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setLParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
TL.setTypeofLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setLParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setRParenLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(DeclsCursor, Record, Idx));
}
void TypeLocReader::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitRecordTypeLoc(RecordTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitEnumTypeLoc(EnumTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitSubstTemplateTypeParmTypeLoc(
SubstTemplateTypeParmTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitTemplateSpecializationTypeLoc(
TemplateSpecializationTypeLoc TL) {
TL.setTemplateNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setLAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setRAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
TL.setArgLocInfo(i,
Reader.GetTemplateArgumentLocInfo(TL.getTypePtr()->getArg(i).getKind(),
DeclsCursor, Record, Idx));
}
void TypeLocReader::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
TL.setKeywordLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setQualifierRange(Reader.ReadSourceRange(Record, Idx));
}
void TypeLocReader::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
TL.setKeywordLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setQualifierRange(Reader.ReadSourceRange(Record, Idx));
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitDependentTemplateSpecializationTypeLoc(
DependentTemplateSpecializationTypeLoc TL) {
TL.setKeywordLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setQualifierRange(Reader.ReadSourceRange(Record, Idx));
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setLAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setRAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I)
TL.setArgLocInfo(I,
Reader.GetTemplateArgumentLocInfo(TL.getTypePtr()->getArg(I).getKind(),
DeclsCursor, Record, Idx));
}
void TypeLocReader::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
TL.setNameLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
TL.setHasBaseTypeAsWritten(Record[Idx++]);
TL.setLAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
TL.setRAngleLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i)
TL.setProtocolLoc(i, SourceLocation::getFromRawEncoding(Record[Idx++]));
}
void TypeLocReader::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
TL.setStarLoc(SourceLocation::getFromRawEncoding(Record[Idx++]));
}
TypeSourceInfo *ASTReader::GetTypeSourceInfo(llvm::BitstreamCursor &DeclsCursor,
const RecordData &Record,
unsigned &Idx) {
QualType InfoTy = GetType(Record[Idx++]);
if (InfoTy.isNull())
return 0;
TypeSourceInfo *TInfo = getContext()->CreateTypeSourceInfo(InfoTy);
TypeLocReader TLR(*this, DeclsCursor, Record, Idx);
for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc())
TLR.Visit(TL);
return TInfo;
}
QualType ASTReader::GetType(TypeID ID) {
unsigned FastQuals = ID & Qualifiers::FastMask;
unsigned Index = ID >> Qualifiers::FastWidth;
if (Index < NUM_PREDEF_TYPE_IDS) {
QualType T;
switch ((PredefinedTypeIDs)Index) {
case PREDEF_TYPE_NULL_ID: return QualType();
case PREDEF_TYPE_VOID_ID: T = Context->VoidTy; break;
case PREDEF_TYPE_BOOL_ID: T = Context->BoolTy; break;
case PREDEF_TYPE_CHAR_U_ID:
case PREDEF_TYPE_CHAR_S_ID:
// FIXME: Check that the signedness of CharTy is correct!
T = Context->CharTy;
break;
case PREDEF_TYPE_UCHAR_ID: T = Context->UnsignedCharTy; break;
case PREDEF_TYPE_USHORT_ID: T = Context->UnsignedShortTy; break;
case PREDEF_TYPE_UINT_ID: T = Context->UnsignedIntTy; break;
case PREDEF_TYPE_ULONG_ID: T = Context->UnsignedLongTy; break;
case PREDEF_TYPE_ULONGLONG_ID: T = Context->UnsignedLongLongTy; break;
case PREDEF_TYPE_UINT128_ID: T = Context->UnsignedInt128Ty; break;
case PREDEF_TYPE_SCHAR_ID: T = Context->SignedCharTy; break;
case PREDEF_TYPE_WCHAR_ID: T = Context->WCharTy; break;
case PREDEF_TYPE_SHORT_ID: T = Context->ShortTy; break;
case PREDEF_TYPE_INT_ID: T = Context->IntTy; break;
case PREDEF_TYPE_LONG_ID: T = Context->LongTy; break;
case PREDEF_TYPE_LONGLONG_ID: T = Context->LongLongTy; break;
case PREDEF_TYPE_INT128_ID: T = Context->Int128Ty; break;
case PREDEF_TYPE_FLOAT_ID: T = Context->FloatTy; break;
case PREDEF_TYPE_DOUBLE_ID: T = Context->DoubleTy; break;
case PREDEF_TYPE_LONGDOUBLE_ID: T = Context->LongDoubleTy; break;
case PREDEF_TYPE_OVERLOAD_ID: T = Context->OverloadTy; break;
case PREDEF_TYPE_DEPENDENT_ID: T = Context->DependentTy; break;
case PREDEF_TYPE_NULLPTR_ID: T = Context->NullPtrTy; break;
case PREDEF_TYPE_CHAR16_ID: T = Context->Char16Ty; break;
case PREDEF_TYPE_CHAR32_ID: T = Context->Char32Ty; break;
case PREDEF_TYPE_OBJC_ID: T = Context->ObjCBuiltinIdTy; break;
case PREDEF_TYPE_OBJC_CLASS: T = Context->ObjCBuiltinClassTy; break;
case PREDEF_TYPE_OBJC_SEL: T = Context->ObjCBuiltinSelTy; break;
}
assert(!T.isNull() && "Unknown predefined type");
return T.withFastQualifiers(FastQuals);
}
Index -= NUM_PREDEF_TYPE_IDS;
assert(Index < TypesLoaded.size() && "Type index out-of-range");
if (TypesLoaded[Index].isNull()) {
TypesLoaded[Index] = ReadTypeRecord(Index);
TypesLoaded[Index]->setFromAST();
TypeIdxs[TypesLoaded[Index]] = TypeIdx::fromTypeID(ID);
if (DeserializationListener)
DeserializationListener->TypeRead(TypeIdx::fromTypeID(ID),
TypesLoaded[Index]);
}
return TypesLoaded[Index].withFastQualifiers(FastQuals);
}
TypeID ASTReader::GetTypeID(QualType T) const {
return MakeTypeID(T,
std::bind1st(std::mem_fun(&ASTReader::GetTypeIdx), this));
}
TypeIdx ASTReader::GetTypeIdx(QualType T) const {
if (T.isNull())
return TypeIdx();
assert(!T.getLocalFastQualifiers());
TypeIdxMap::const_iterator I = TypeIdxs.find(T);
// GetTypeIdx is mostly used for computing the hash of DeclarationNames and
// comparing keys of ASTDeclContextNameLookupTable.
// If the type didn't come from the AST file use a specially marked index
// so that any hash/key comparison fail since no such index is stored
// in a AST file.
if (I == TypeIdxs.end())
return TypeIdx(-1);
return I->second;
}
TemplateArgumentLocInfo
ASTReader::GetTemplateArgumentLocInfo(TemplateArgument::ArgKind Kind,
llvm::BitstreamCursor &DeclsCursor,
const RecordData &Record,
unsigned &Index) {
switch (Kind) {
case TemplateArgument::Expression:
return ReadExpr(DeclsCursor);
case TemplateArgument::Type:
return GetTypeSourceInfo(DeclsCursor, Record, Index);
case TemplateArgument::Template: {
SourceRange QualifierRange = ReadSourceRange(Record, Index);
SourceLocation TemplateNameLoc = ReadSourceLocation(Record, Index);
return TemplateArgumentLocInfo(QualifierRange, TemplateNameLoc);
}
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Declaration:
case TemplateArgument::Pack:
return TemplateArgumentLocInfo();
}
llvm_unreachable("unexpected template argument loc");
return TemplateArgumentLocInfo();
}
TemplateArgumentLoc
ASTReader::ReadTemplateArgumentLoc(llvm::BitstreamCursor &DeclsCursor,
const RecordData &Record, unsigned &Index) {
TemplateArgument Arg = ReadTemplateArgument(DeclsCursor, Record, Index);
if (Arg.getKind() == TemplateArgument::Expression) {
if (Record[Index++]) // bool InfoHasSameExpr.
return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo(Arg.getAsExpr()));
}
return TemplateArgumentLoc(Arg, GetTemplateArgumentLocInfo(Arg.getKind(),
DeclsCursor,
Record, Index));
}
Decl *ASTReader::GetExternalDecl(uint32_t ID) {
return GetDecl(ID);
}
TranslationUnitDecl *ASTReader::GetTranslationUnitDecl() {
if (!DeclsLoaded[0]) {
ReadDeclRecord(0, 1);
if (DeserializationListener)
DeserializationListener->DeclRead(1, DeclsLoaded[0]);
}
return cast<TranslationUnitDecl>(DeclsLoaded[0]);
}
Decl *ASTReader::GetDecl(DeclID ID) {
if (ID == 0)
return 0;
if (ID > DeclsLoaded.size()) {
Error("declaration ID out-of-range for AST file");
return 0;
}
unsigned Index = ID - 1;
if (!DeclsLoaded[Index]) {
ReadDeclRecord(Index, ID);
if (DeserializationListener)
DeserializationListener->DeclRead(ID, DeclsLoaded[Index]);
}
return DeclsLoaded[Index];
}
/// \brief Resolve the offset of a statement into a statement.
///
/// This operation will read a new statement from the external
/// source each time it is called, and is meant to be used via a
/// LazyOffsetPtr (which is used by Decls for the body of functions, etc).
Stmt *ASTReader::GetExternalDeclStmt(uint64_t Offset) {
// Offset here is a global offset across the entire chain.
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
PerFileData &F = *Chain[N - I - 1];
if (Offset < F.SizeInBits) {
// Since we know that this statement is part of a decl, make sure to use
// the decl cursor to read it.
F.DeclsCursor.JumpToBit(Offset);
return ReadStmtFromStream(F.DeclsCursor);
}
Offset -= F.SizeInBits;
}
llvm_unreachable("Broken chain");
}
bool ASTReader::FindExternalLexicalDecls(const DeclContext *DC,
llvm::SmallVectorImpl<Decl*> &Decls) {
assert(DC->hasExternalLexicalStorage() &&
"DeclContext has no lexical decls in storage");
// There might be lexical decls in multiple parts of the chain, for the TU
// at least.
DeclContextInfos &Infos = DeclContextOffsets[DC];
for (DeclContextInfos::iterator I = Infos.begin(), E = Infos.end();
I != E; ++I) {
// IDs can be 0 if this context doesn't contain declarations.
if (!I->LexicalDecls)
continue;
// Load all of the declaration IDs
for (const DeclID *ID = I->LexicalDecls,
*IDE = ID + I->NumLexicalDecls;
ID != IDE; ++ID)
Decls.push_back(GetDecl(*ID));
}
++NumLexicalDeclContextsRead;
return false;
}
DeclContext::lookup_result
ASTReader::FindExternalVisibleDeclsByName(const DeclContext *DC,
DeclarationName Name) {
assert(DC->hasExternalVisibleStorage() &&
"DeclContext has no visible decls in storage");
if (!Name)
return DeclContext::lookup_result(DeclContext::lookup_iterator(0),
DeclContext::lookup_iterator(0));
llvm::SmallVector<NamedDecl *, 64> Decls;
// There might be visible decls in multiple parts of the chain, for the TU
// and namespaces. For any given name, the last available results replace
// all earlier ones. For this reason, we walk in reverse.
DeclContextInfos &Infos = DeclContextOffsets[DC];
for (DeclContextInfos::reverse_iterator I = Infos.rbegin(), E = Infos.rend();
I != E; ++I) {
if (!I->NameLookupTableData)
continue;
ASTDeclContextNameLookupTable *LookupTable =
(ASTDeclContextNameLookupTable*)I->NameLookupTableData;
ASTDeclContextNameLookupTable::iterator Pos = LookupTable->find(Name);
if (Pos == LookupTable->end())
continue;
ASTDeclContextNameLookupTrait::data_type Data = *Pos;
for (; Data.first != Data.second; ++Data.first)
Decls.push_back(cast<NamedDecl>(GetDecl(*Data.first)));
break;
}
++NumVisibleDeclContextsRead;
SetExternalVisibleDeclsForName(DC, Name, Decls);
return const_cast<DeclContext*>(DC)->lookup(Name);
}
void ASTReader::MaterializeVisibleDecls(const DeclContext *DC) {
assert(DC->hasExternalVisibleStorage() &&
"DeclContext has no visible decls in storage");
llvm::SmallVector<NamedDecl *, 64> Decls;
// There might be visible decls in multiple parts of the chain, for the TU
// and namespaces.
DeclContextInfos &Infos = DeclContextOffsets[DC];
for (DeclContextInfos::iterator I = Infos.begin(), E = Infos.end();
I != E; ++I) {
if (!I->NameLookupTableData)
continue;
ASTDeclContextNameLookupTable *LookupTable =
(ASTDeclContextNameLookupTable*)I->NameLookupTableData;
for (ASTDeclContextNameLookupTable::item_iterator
ItemI = LookupTable->item_begin(),
ItemEnd = LookupTable->item_end() ; ItemI != ItemEnd; ++ItemI) {
ASTDeclContextNameLookupTable::item_iterator::value_type Val
= *ItemI;
ASTDeclContextNameLookupTrait::data_type Data = Val.second;
Decls.clear();
for (; Data.first != Data.second; ++Data.first)
Decls.push_back(cast<NamedDecl>(GetDecl(*Data.first)));
MaterializeVisibleDeclsForName(DC, Val.first, Decls);
}
}
}
void ASTReader::PassInterestingDeclsToConsumer() {
assert(Consumer);
while (!InterestingDecls.empty()) {
DeclGroupRef DG(InterestingDecls.front());
InterestingDecls.pop_front();
Consumer->HandleInterestingDecl(DG);
}
}
void ASTReader::StartTranslationUnit(ASTConsumer *Consumer) {
this->Consumer = Consumer;
if (!Consumer)
return;
for (unsigned I = 0, N = ExternalDefinitions.size(); I != N; ++I) {
// Force deserialization of this decl, which will cause it to be queued for
// passing to the consumer.
GetDecl(ExternalDefinitions[I]);
}
PassInterestingDeclsToConsumer();
}
void ASTReader::PrintStats() {
std::fprintf(stderr, "*** AST File Statistics:\n");
unsigned NumTypesLoaded
= TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(),
QualType());
unsigned NumDeclsLoaded
= DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(),
(Decl *)0);
unsigned NumIdentifiersLoaded
= IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(),
IdentifiersLoaded.end(),
(IdentifierInfo *)0);
unsigned NumSelectorsLoaded
= SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(),
SelectorsLoaded.end(),
Selector());
std::fprintf(stderr, " %u stat cache hits\n", NumStatHits);
std::fprintf(stderr, " %u stat cache misses\n", NumStatMisses);
if (TotalNumSLocEntries)
std::fprintf(stderr, " %u/%u source location entries read (%f%%)\n",
NumSLocEntriesRead, TotalNumSLocEntries,
((float)NumSLocEntriesRead/TotalNumSLocEntries * 100));
if (!TypesLoaded.empty())
std::fprintf(stderr, " %u/%u types read (%f%%)\n",
NumTypesLoaded, (unsigned)TypesLoaded.size(),
((float)NumTypesLoaded/TypesLoaded.size() * 100));
if (!DeclsLoaded.empty())
std::fprintf(stderr, " %u/%u declarations read (%f%%)\n",
NumDeclsLoaded, (unsigned)DeclsLoaded.size(),
((float)NumDeclsLoaded/DeclsLoaded.size() * 100));
if (!IdentifiersLoaded.empty())
std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n",
NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(),
((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100));
if (!SelectorsLoaded.empty())
std::fprintf(stderr, " %u/%u selectors read (%f%%)\n",
NumSelectorsLoaded, (unsigned)SelectorsLoaded.size(),
((float)NumSelectorsLoaded/SelectorsLoaded.size() * 100));
if (TotalNumStatements)
std::fprintf(stderr, " %u/%u statements read (%f%%)\n",
NumStatementsRead, TotalNumStatements,
((float)NumStatementsRead/TotalNumStatements * 100));
if (TotalNumMacros)
std::fprintf(stderr, " %u/%u macros read (%f%%)\n",
NumMacrosRead, TotalNumMacros,
((float)NumMacrosRead/TotalNumMacros * 100));
if (TotalLexicalDeclContexts)
std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n",
NumLexicalDeclContextsRead, TotalLexicalDeclContexts,
((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts
* 100));
if (TotalVisibleDeclContexts)
std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n",
NumVisibleDeclContextsRead, TotalVisibleDeclContexts,
((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts
* 100));
if (TotalNumMethodPoolEntries) {
std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n",
NumMethodPoolEntriesRead, TotalNumMethodPoolEntries,
((float)NumMethodPoolEntriesRead/TotalNumMethodPoolEntries
* 100));
std::fprintf(stderr, " %u method pool misses\n", NumMethodPoolMisses);
}
std::fprintf(stderr, "\n");
}
void ASTReader::InitializeSema(Sema &S) {
SemaObj = &S;
S.ExternalSource = this;
// Makes sure any declarations that were deserialized "too early"
// still get added to the identifier's declaration chains.
if (SemaObj->TUScope) {
for (unsigned I = 0, N = PreloadedDecls.size(); I != N; ++I) {
SemaObj->TUScope->AddDecl(PreloadedDecls[I]);
SemaObj->IdResolver.AddDecl(PreloadedDecls[I]);
}
}
PreloadedDecls.clear();
// If there were any tentative definitions, deserialize them and add
// them to Sema's list of tentative definitions.
for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) {
VarDecl *Var = cast<VarDecl>(GetDecl(TentativeDefinitions[I]));
SemaObj->TentativeDefinitions.push_back(Var);
}
// If there were any unused file scoped decls, deserialize them and add to
// Sema's list of unused file scoped decls.
for (unsigned I = 0, N = UnusedFileScopedDecls.size(); I != N; ++I) {
DeclaratorDecl *D = cast<DeclaratorDecl>(GetDecl(UnusedFileScopedDecls[I]));
SemaObj->UnusedFileScopedDecls.push_back(D);
}
// If there were any weak undeclared identifiers, deserialize them and add to
// Sema's list of weak undeclared identifiers.
if (!WeakUndeclaredIdentifiers.empty()) {
unsigned Idx = 0;
for (unsigned I = 0, N = WeakUndeclaredIdentifiers[Idx++]; I != N; ++I) {
IdentifierInfo *WeakId = GetIdentifierInfo(WeakUndeclaredIdentifiers,Idx);
IdentifierInfo *AliasId=GetIdentifierInfo(WeakUndeclaredIdentifiers,Idx);
SourceLocation Loc = ReadSourceLocation(WeakUndeclaredIdentifiers, Idx);
bool Used = WeakUndeclaredIdentifiers[Idx++];
Sema::WeakInfo WI(AliasId, Loc);
WI.setUsed(Used);
SemaObj->WeakUndeclaredIdentifiers.insert(std::make_pair(WeakId, WI));
}
}
// If there were any locally-scoped external declarations,
// deserialize them and add them to Sema's table of locally-scoped
// external declarations.
for (unsigned I = 0, N = LocallyScopedExternalDecls.size(); I != N; ++I) {
NamedDecl *D = cast<NamedDecl>(GetDecl(LocallyScopedExternalDecls[I]));
SemaObj->LocallyScopedExternalDecls[D->getDeclName()] = D;
}
// If there were any ext_vector type declarations, deserialize them
// and add them to Sema's vector of such declarations.
for (unsigned I = 0, N = ExtVectorDecls.size(); I != N; ++I)
SemaObj->ExtVectorDecls.push_back(
cast<TypedefDecl>(GetDecl(ExtVectorDecls[I])));
// FIXME: Do VTable uses and dynamic classes deserialize too much ?
// Can we cut them down before writing them ?
// If there were any VTable uses, deserialize the information and add it
// to Sema's vector and map of VTable uses.
if (!VTableUses.empty()) {
unsigned Idx = 0;
for (unsigned I = 0, N = VTableUses[Idx++]; I != N; ++I) {
CXXRecordDecl *Class = cast<CXXRecordDecl>(GetDecl(VTableUses[Idx++]));
SourceLocation Loc = ReadSourceLocation(VTableUses, Idx);
bool DefinitionRequired = VTableUses[Idx++];
SemaObj->VTableUses.push_back(std::make_pair(Class, Loc));
SemaObj->VTablesUsed[Class] = DefinitionRequired;
}
}
// If there were any dynamic classes declarations, deserialize them
// and add them to Sema's vector of such declarations.
for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I)
SemaObj->DynamicClasses.push_back(
cast<CXXRecordDecl>(GetDecl(DynamicClasses[I])));
// If there were any pending implicit instantiations, deserialize them
// and add them to Sema's queue of such instantiations.
assert(PendingInstantiations.size() % 2 == 0 && "Expected pairs of entries");
for (unsigned Idx = 0, N = PendingInstantiations.size(); Idx < N;) {
ValueDecl *D=cast<ValueDecl>(GetDecl(PendingInstantiations[Idx++]));
SourceLocation Loc = ReadSourceLocation(PendingInstantiations, Idx);
SemaObj->PendingInstantiations.push_back(std::make_pair(D, Loc));
}
// Load the offsets of the declarations that Sema references.
// They will be lazily deserialized when needed.
if (!SemaDeclRefs.empty()) {
assert(SemaDeclRefs.size() == 2 && "More decl refs than expected!");
SemaObj->StdNamespace = SemaDeclRefs[0];
SemaObj->StdBadAlloc = SemaDeclRefs[1];
}
// If there are @selector references added them to its pool. This is for
// implementation of -Wselector.
if (!ReferencedSelectorsData.empty()) {
unsigned int DataSize = ReferencedSelectorsData.size()-1;
unsigned I = 0;
while (I < DataSize) {
Selector Sel = DecodeSelector(ReferencedSelectorsData[I++]);
SourceLocation SelLoc =
SourceLocation::getFromRawEncoding(ReferencedSelectorsData[I++]);
SemaObj->ReferencedSelectors.insert(std::make_pair(Sel, SelLoc));
}
}
}
IdentifierInfo* ASTReader::get(const char *NameStart, const char *NameEnd) {
// Try to find this name within our on-disk hash tables. We start with the
// most recent one, since that one contains the most up-to-date info.
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
ASTIdentifierLookupTable *IdTable
= (ASTIdentifierLookupTable *)Chain[I]->IdentifierLookupTable;
if (!IdTable)
continue;
std::pair<const char*, unsigned> Key(NameStart, NameEnd - NameStart);
ASTIdentifierLookupTable::iterator Pos = IdTable->find(Key);
if (Pos == IdTable->end())
continue;
// Dereferencing the iterator has the effect of building the
// IdentifierInfo node and populating it with the various
// declarations it needs.
return *Pos;
}
return 0;
}
std::pair<ObjCMethodList, ObjCMethodList>
ASTReader::ReadMethodPool(Selector Sel) {
// Find this selector in a hash table. We want to find the most recent entry.
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
PerFileData &F = *Chain[I];
if (!F.SelectorLookupTable)
continue;
ASTSelectorLookupTable *PoolTable
= (ASTSelectorLookupTable*)F.SelectorLookupTable;
ASTSelectorLookupTable::iterator Pos = PoolTable->find(Sel);
if (Pos != PoolTable->end()) {
++NumSelectorsRead;
// FIXME: Not quite happy with the statistics here. We probably should
// disable this tracking when called via LoadSelector.
// Also, should entries without methods count as misses?
++NumMethodPoolEntriesRead;
ASTSelectorLookupTrait::data_type Data = *Pos;
if (DeserializationListener)
DeserializationListener->SelectorRead(Data.ID, Sel);
return std::make_pair(Data.Instance, Data.Factory);
}
}
++NumMethodPoolMisses;
return std::pair<ObjCMethodList, ObjCMethodList>();
}
void ASTReader::LoadSelector(Selector Sel) {
// It would be complicated to avoid reading the methods anyway. So don't.
ReadMethodPool(Sel);
}
void ASTReader::SetIdentifierInfo(unsigned ID, IdentifierInfo *II) {
assert(ID && "Non-zero identifier ID required");
assert(ID <= IdentifiersLoaded.size() && "identifier ID out of range");
IdentifiersLoaded[ID - 1] = II;
if (DeserializationListener)
DeserializationListener->IdentifierRead(ID, II);
}
/// \brief Set the globally-visible declarations associated with the given
/// identifier.
///
/// If the AST reader is currently in a state where the given declaration IDs
/// cannot safely be resolved, they are queued until it is safe to resolve
/// them.
///
/// \param II an IdentifierInfo that refers to one or more globally-visible
/// declarations.
///
/// \param DeclIDs the set of declaration IDs with the name @p II that are
/// visible at global scope.
///
/// \param Nonrecursive should be true to indicate that the caller knows that
/// this call is non-recursive, and therefore the globally-visible declarations
/// will not be placed onto the pending queue.
void
ASTReader::SetGloballyVisibleDecls(IdentifierInfo *II,
const llvm::SmallVectorImpl<uint32_t> &DeclIDs,
bool Nonrecursive) {
if (NumCurrentElementsDeserializing && !Nonrecursive) {
PendingIdentifierInfos.push_back(PendingIdentifierInfo());
PendingIdentifierInfo &PII = PendingIdentifierInfos.back();
PII.II = II;
PII.DeclIDs.append(DeclIDs.begin(), DeclIDs.end());
return;
}
for (unsigned I = 0, N = DeclIDs.size(); I != N; ++I) {
NamedDecl *D = cast<NamedDecl>(GetDecl(DeclIDs[I]));
if (SemaObj) {
if (SemaObj->TUScope) {
// Introduce this declaration into the translation-unit scope
// and add it to the declaration chain for this identifier, so
// that (unqualified) name lookup will find it.
SemaObj->TUScope->AddDecl(D);
SemaObj->IdResolver.AddDeclToIdentifierChain(II, D);
}
} else {
// Queue this declaration so that it will be added to the
// translation unit scope and identifier's declaration chain
// once a Sema object is known.
PreloadedDecls.push_back(D);
}
}
}
IdentifierInfo *ASTReader::DecodeIdentifierInfo(unsigned ID) {
if (ID == 0)
return 0;
if (IdentifiersLoaded.empty()) {
Error("no identifier table in AST file");
return 0;
}
assert(PP && "Forgot to set Preprocessor ?");
ID -= 1;
if (!IdentifiersLoaded[ID]) {
unsigned Index = ID;
const char *Str = 0;
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
PerFileData *F = Chain[N - I - 1];
if (Index < F->LocalNumIdentifiers) {
uint32_t Offset = F->IdentifierOffsets[Index];
Str = F->IdentifierTableData + Offset;
break;
}
Index -= F->LocalNumIdentifiers;
}
assert(Str && "Broken Chain");
// All of the strings in the AST file are preceded by a 16-bit length.
// Extract that 16-bit length to avoid having to execute strlen().
// NOTE: 'StrLenPtr' is an 'unsigned char*' so that we load bytes as
// unsigned integers. This is important to avoid integer overflow when
// we cast them to 'unsigned'.
const unsigned char *StrLenPtr = (const unsigned char*) Str - 2;
unsigned StrLen = (((unsigned) StrLenPtr[0])
| (((unsigned) StrLenPtr[1]) << 8)) - 1;
IdentifiersLoaded[ID]
= &PP->getIdentifierTable().get(Str, StrLen);
if (DeserializationListener)
DeserializationListener->IdentifierRead(ID + 1, IdentifiersLoaded[ID]);
}
return IdentifiersLoaded[ID];
}
void ASTReader::ReadSLocEntry(unsigned ID) {
ReadSLocEntryRecord(ID);
}
Selector ASTReader::DecodeSelector(unsigned ID) {
if (ID == 0)
return Selector();
if (ID > SelectorsLoaded.size()) {
Error("selector ID out of range in AST file");
return Selector();
}
if (SelectorsLoaded[ID - 1].getAsOpaquePtr() == 0) {
// Load this selector from the selector table.
unsigned Idx = ID - 1;
for (unsigned I = 0, N = Chain.size(); I != N; ++I) {
PerFileData &F = *Chain[N - I - 1];
if (Idx < F.LocalNumSelectors) {
ASTSelectorLookupTrait Trait(*this);
SelectorsLoaded[ID - 1] =
Trait.ReadKey(F.SelectorLookupTableData + F.SelectorOffsets[Idx], 0);
if (DeserializationListener)
DeserializationListener->SelectorRead(ID, SelectorsLoaded[ID - 1]);
break;
}
Idx -= F.LocalNumSelectors;
}
}
return SelectorsLoaded[ID - 1];
}
Selector ASTReader::GetExternalSelector(uint32_t ID) {
return DecodeSelector(ID);
}
uint32_t ASTReader::GetNumExternalSelectors() {
// ID 0 (the null selector) is considered an external selector.
return getTotalNumSelectors() + 1;
}
DeclarationName
ASTReader::ReadDeclarationName(const RecordData &Record, unsigned &Idx) {
DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++];
switch (Kind) {
case DeclarationName::Identifier:
return DeclarationName(GetIdentifierInfo(Record, Idx));
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
return DeclarationName(GetSelector(Record, Idx));
case DeclarationName::CXXConstructorName:
return Context->DeclarationNames.getCXXConstructorName(
Context->getCanonicalType(GetType(Record[Idx++])));
case DeclarationName::CXXDestructorName:
return Context->DeclarationNames.getCXXDestructorName(
Context->getCanonicalType(GetType(Record[Idx++])));
case DeclarationName::CXXConversionFunctionName:
return Context->DeclarationNames.getCXXConversionFunctionName(
Context->getCanonicalType(GetType(Record[Idx++])));
case DeclarationName::CXXOperatorName:
return Context->DeclarationNames.getCXXOperatorName(
(OverloadedOperatorKind)Record[Idx++]);
case DeclarationName::CXXLiteralOperatorName:
return Context->DeclarationNames.getCXXLiteralOperatorName(
GetIdentifierInfo(Record, Idx));
case DeclarationName::CXXUsingDirective:
return DeclarationName::getUsingDirectiveName();
}
// Required to silence GCC warning
return DeclarationName();
}
TemplateName
ASTReader::ReadTemplateName(const RecordData &Record, unsigned &Idx) {
TemplateName::NameKind Kind = (TemplateName::NameKind)Record[Idx++];
switch (Kind) {
case TemplateName::Template:
return TemplateName(cast_or_null<TemplateDecl>(GetDecl(Record[Idx++])));
case TemplateName::OverloadedTemplate: {
unsigned size = Record[Idx++];
UnresolvedSet<8> Decls;
while (size--)
Decls.addDecl(cast<NamedDecl>(GetDecl(Record[Idx++])));
return Context->getOverloadedTemplateName(Decls.begin(), Decls.end());
}
case TemplateName::QualifiedTemplate: {
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx);
bool hasTemplKeyword = Record[Idx++];
TemplateDecl *Template = cast<TemplateDecl>(GetDecl(Record[Idx++]));
return Context->getQualifiedTemplateName(NNS, hasTemplKeyword, Template);
}
case TemplateName::DependentTemplate: {
NestedNameSpecifier *NNS = ReadNestedNameSpecifier(Record, Idx);
if (Record[Idx++]) // isIdentifier
return Context->getDependentTemplateName(NNS,
GetIdentifierInfo(Record, Idx));
return Context->getDependentTemplateName(NNS,
(OverloadedOperatorKind)Record[Idx++]);
}
}
assert(0 && "Unhandled template name kind!");
return TemplateName();
}
TemplateArgument
ASTReader::ReadTemplateArgument(llvm::BitstreamCursor &DeclsCursor,
const RecordData &Record, unsigned &Idx) {
switch ((TemplateArgument::ArgKind)Record[Idx++]) {
case TemplateArgument::Null:
return TemplateArgument();
case TemplateArgument::Type:
return TemplateArgument(GetType(Record[Idx++]));
case TemplateArgument::Declaration:
return TemplateArgument(GetDecl(Record[Idx++]));
case TemplateArgument::Integral: {
llvm::APSInt Value = ReadAPSInt(Record, Idx);
QualType T = GetType(Record[Idx++]);
return TemplateArgument(Value, T);
}
case TemplateArgument::Template:
return TemplateArgument(ReadTemplateName(Record, Idx));
case TemplateArgument::Expression:
return TemplateArgument(ReadExpr(DeclsCursor));
case TemplateArgument::Pack: {
unsigned NumArgs = Record[Idx++];
llvm::SmallVector<TemplateArgument, 8> Args;
Args.reserve(NumArgs);
while (NumArgs--)
Args.push_back(ReadTemplateArgument(DeclsCursor, Record, Idx));
TemplateArgument TemplArg;
TemplArg.setArgumentPack(Args.data(), Args.size(), /*CopyArgs=*/true);
return TemplArg;
}
}
assert(0 && "Unhandled template argument kind!");
return TemplateArgument();
}
TemplateParameterList *
ASTReader::ReadTemplateParameterList(const RecordData &Record, unsigned &Idx) {
SourceLocation TemplateLoc = ReadSourceLocation(Record, Idx);
SourceLocation LAngleLoc = ReadSourceLocation(Record, Idx);
SourceLocation RAngleLoc = ReadSourceLocation(Record, Idx);
unsigned NumParams = Record[Idx++];
llvm::SmallVector<NamedDecl *, 16> Params;
Params.reserve(NumParams);
while (NumParams--)
Params.push_back(cast<NamedDecl>(GetDecl(Record[Idx++])));
TemplateParameterList* TemplateParams =
TemplateParameterList::Create(*Context, TemplateLoc, LAngleLoc,
Params.data(), Params.size(), RAngleLoc);
return TemplateParams;
}
void
ASTReader::
ReadTemplateArgumentList(llvm::SmallVector<TemplateArgument, 8> &TemplArgs,
llvm::BitstreamCursor &DeclsCursor,
const RecordData &Record, unsigned &Idx) {
unsigned NumTemplateArgs = Record[Idx++];
TemplArgs.reserve(NumTemplateArgs);
while (NumTemplateArgs--)
TemplArgs.push_back(ReadTemplateArgument(DeclsCursor, Record, Idx));
}
/// \brief Read a UnresolvedSet structure.
void ASTReader::ReadUnresolvedSet(UnresolvedSetImpl &Set,
const RecordData &Record, unsigned &Idx) {
unsigned NumDecls = Record[Idx++];
while (NumDecls--) {
NamedDecl *D = cast<NamedDecl>(GetDecl(Record[Idx++]));
AccessSpecifier AS = (AccessSpecifier)Record[Idx++];
Set.addDecl(D, AS);
}
}
CXXBaseSpecifier
ASTReader::ReadCXXBaseSpecifier(llvm::BitstreamCursor &DeclsCursor,
const RecordData &Record, unsigned &Idx) {
bool isVirtual = static_cast<bool>(Record[Idx++]);
bool isBaseOfClass = static_cast<bool>(Record[Idx++]);
AccessSpecifier AS = static_cast<AccessSpecifier>(Record[Idx++]);
TypeSourceInfo *TInfo = GetTypeSourceInfo(DeclsCursor, Record, Idx);
SourceRange Range = ReadSourceRange(Record, Idx);
return CXXBaseSpecifier(Range, isVirtual, isBaseOfClass, AS, TInfo);
}
std::pair<CXXBaseOrMemberInitializer **, unsigned>
ASTReader::ReadCXXBaseOrMemberInitializers(llvm::BitstreamCursor &Cursor,
const RecordData &Record,
unsigned &Idx) {
CXXBaseOrMemberInitializer **BaseOrMemberInitializers = 0;
unsigned NumInitializers = Record[Idx++];
if (NumInitializers) {
ASTContext &C = *getContext();
BaseOrMemberInitializers
= new (C) CXXBaseOrMemberInitializer*[NumInitializers];
for (unsigned i=0; i != NumInitializers; ++i) {
TypeSourceInfo *BaseClassInfo = 0;
bool IsBaseVirtual = false;
FieldDecl *Member = 0;
bool IsBaseInitializer = Record[Idx++];
if (IsBaseInitializer) {
BaseClassInfo = GetTypeSourceInfo(Cursor, Record, Idx);
IsBaseVirtual = Record[Idx++];
} else {
Member = cast<FieldDecl>(GetDecl(Record[Idx++]));
}
SourceLocation MemberLoc = ReadSourceLocation(Record, Idx);
Expr *Init = ReadExpr(Cursor);
FieldDecl *AnonUnionMember
= cast_or_null<FieldDecl>(GetDecl(Record[Idx++]));
SourceLocation LParenLoc = ReadSourceLocation(Record, Idx);
SourceLocation RParenLoc = ReadSourceLocation(Record, Idx);
bool IsWritten = Record[Idx++];
unsigned SourceOrderOrNumArrayIndices;
llvm::SmallVector<VarDecl *, 8> Indices;
if (IsWritten) {
SourceOrderOrNumArrayIndices = Record[Idx++];
} else {
SourceOrderOrNumArrayIndices = Record[Idx++];
Indices.reserve(SourceOrderOrNumArrayIndices);
for (unsigned i=0; i != SourceOrderOrNumArrayIndices; ++i)
Indices.push_back(cast<VarDecl>(GetDecl(Record[Idx++])));
}
CXXBaseOrMemberInitializer *BOMInit;
if (IsBaseInitializer) {
BOMInit = new (C) CXXBaseOrMemberInitializer(C, BaseClassInfo,
IsBaseVirtual, LParenLoc,
Init, RParenLoc);
} else if (IsWritten) {
BOMInit = new (C) CXXBaseOrMemberInitializer(C, Member, MemberLoc,
LParenLoc, Init, RParenLoc);
} else {
BOMInit = CXXBaseOrMemberInitializer::Create(C, Member, MemberLoc,
LParenLoc, Init, RParenLoc,
Indices.data(),
Indices.size());
}
if (IsWritten)
BOMInit->setSourceOrder(SourceOrderOrNumArrayIndices);
BOMInit->setAnonUnionMember(AnonUnionMember);
BaseOrMemberInitializers[i] = BOMInit;
}
}
return std::make_pair(BaseOrMemberInitializers, NumInitializers);
}
NestedNameSpecifier *
ASTReader::ReadNestedNameSpecifier(const RecordData &Record, unsigned &Idx) {
unsigned N = Record[Idx++];
NestedNameSpecifier *NNS = 0, *Prev = 0;
for (unsigned I = 0; I != N; ++I) {
NestedNameSpecifier::SpecifierKind Kind
= (NestedNameSpecifier::SpecifierKind)Record[Idx++];
switch (Kind) {
case NestedNameSpecifier::Identifier: {
IdentifierInfo *II = GetIdentifierInfo(Record, Idx);
NNS = NestedNameSpecifier::Create(*Context, Prev, II);
break;
}
case NestedNameSpecifier::Namespace: {
NamespaceDecl *NS = cast<NamespaceDecl>(GetDecl(Record[Idx++]));
NNS = NestedNameSpecifier::Create(*Context, Prev, NS);
break;
}
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
Type *T = GetType(Record[Idx++]).getTypePtr();
bool Template = Record[Idx++];
NNS = NestedNameSpecifier::Create(*Context, Prev, Template, T);
break;
}
case NestedNameSpecifier::Global: {
NNS = NestedNameSpecifier::GlobalSpecifier(*Context);
// No associated value, and there can't be a prefix.
break;
}
}
Prev = NNS;
}
return NNS;
}
SourceRange
ASTReader::ReadSourceRange(const RecordData &Record, unsigned &Idx) {
SourceLocation beg = SourceLocation::getFromRawEncoding(Record[Idx++]);
SourceLocation end = SourceLocation::getFromRawEncoding(Record[Idx++]);
return SourceRange(beg, end);
}
/// \brief Read an integral value
llvm::APInt ASTReader::ReadAPInt(const RecordData &Record, unsigned &Idx) {
unsigned BitWidth = Record[Idx++];
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
llvm::APInt Result(BitWidth, NumWords, &Record[Idx]);
Idx += NumWords;
return Result;
}
/// \brief Read a signed integral value
llvm::APSInt ASTReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) {
bool isUnsigned = Record[Idx++];
return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned);
}
/// \brief Read a floating-point value
llvm::APFloat ASTReader::ReadAPFloat(const RecordData &Record, unsigned &Idx) {
return llvm::APFloat(ReadAPInt(Record, Idx));
}
// \brief Read a string
std::string ASTReader::ReadString(const RecordData &Record, unsigned &Idx) {
unsigned Len = Record[Idx++];
std::string Result(Record.data() + Idx, Record.data() + Idx + Len);
Idx += Len;
return Result;
}
CXXTemporary *ASTReader::ReadCXXTemporary(const RecordData &Record,
unsigned &Idx) {
CXXDestructorDecl *Decl = cast<CXXDestructorDecl>(GetDecl(Record[Idx++]));
return CXXTemporary::Create(*Context, Decl);
}
DiagnosticBuilder ASTReader::Diag(unsigned DiagID) {
return Diag(SourceLocation(), DiagID);
}
DiagnosticBuilder ASTReader::Diag(SourceLocation Loc, unsigned DiagID) {
return Diags.Report(FullSourceLoc(Loc, SourceMgr), DiagID);
}
/// \brief Retrieve the identifier table associated with the
/// preprocessor.
IdentifierTable &ASTReader::getIdentifierTable() {
assert(PP && "Forgot to set Preprocessor ?");
return PP->getIdentifierTable();
}
/// \brief Record that the given ID maps to the given switch-case
/// statement.
void ASTReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) {
assert(SwitchCaseStmts[ID] == 0 && "Already have a SwitchCase with this ID");
SwitchCaseStmts[ID] = SC;
}
/// \brief Retrieve the switch-case statement with the given ID.
SwitchCase *ASTReader::getSwitchCaseWithID(unsigned ID) {
assert(SwitchCaseStmts[ID] != 0 && "No SwitchCase with this ID");
return SwitchCaseStmts[ID];
}
/// \brief Record that the given label statement has been
/// deserialized and has the given ID.
void ASTReader::RecordLabelStmt(LabelStmt *S, unsigned ID) {
assert(LabelStmts.find(ID) == LabelStmts.end() &&
"Deserialized label twice");
LabelStmts[ID] = S;
// If we've already seen any goto statements that point to this
// label, resolve them now.
typedef std::multimap<unsigned, GotoStmt *>::iterator GotoIter;
std::pair<GotoIter, GotoIter> Gotos = UnresolvedGotoStmts.equal_range(ID);
for (GotoIter Goto = Gotos.first; Goto != Gotos.second; ++Goto)
Goto->second->setLabel(S);
UnresolvedGotoStmts.erase(Gotos.first, Gotos.second);
// If we've already seen any address-label statements that point to
// this label, resolve them now.
typedef std::multimap<unsigned, AddrLabelExpr *>::iterator AddrLabelIter;
std::pair<AddrLabelIter, AddrLabelIter> AddrLabels
= UnresolvedAddrLabelExprs.equal_range(ID);
for (AddrLabelIter AddrLabel = AddrLabels.first;
AddrLabel != AddrLabels.second; ++AddrLabel)
AddrLabel->second->setLabel(S);
UnresolvedAddrLabelExprs.erase(AddrLabels.first, AddrLabels.second);
}
/// \brief Set the label of the given statement to the label
/// identified by ID.
///
/// Depending on the order in which the label and other statements
/// referencing that label occur, this operation may complete
/// immediately (updating the statement) or it may queue the
/// statement to be back-patched later.
void ASTReader::SetLabelOf(GotoStmt *S, unsigned ID) {
std::map<unsigned, LabelStmt *>::iterator Label = LabelStmts.find(ID);
if (Label != LabelStmts.end()) {
// We've already seen this label, so set the label of the goto and
// we're done.
S->setLabel(Label->second);
} else {
// We haven't seen this label yet, so add this goto to the set of
// unresolved goto statements.
UnresolvedGotoStmts.insert(std::make_pair(ID, S));
}
}
/// \brief Set the label of the given expression to the label
/// identified by ID.
///
/// Depending on the order in which the label and other statements
/// referencing that label occur, this operation may complete
/// immediately (updating the statement) or it may queue the
/// statement to be back-patched later.
void ASTReader::SetLabelOf(AddrLabelExpr *S, unsigned ID) {
std::map<unsigned, LabelStmt *>::iterator Label = LabelStmts.find(ID);
if (Label != LabelStmts.end()) {
// We've already seen this label, so set the label of the
// label-address expression and we're done.
S->setLabel(Label->second);
} else {
// We haven't seen this label yet, so add this label-address
// expression to the set of unresolved label-address expressions.
UnresolvedAddrLabelExprs.insert(std::make_pair(ID, S));
}
}
void ASTReader::FinishedDeserializing() {
assert(NumCurrentElementsDeserializing &&
"FinishedDeserializing not paired with StartedDeserializing");
if (NumCurrentElementsDeserializing == 1) {
// If any identifiers with corresponding top-level declarations have
// been loaded, load those declarations now.
while (!PendingIdentifierInfos.empty()) {
SetGloballyVisibleDecls(PendingIdentifierInfos.front().II,
PendingIdentifierInfos.front().DeclIDs, true);
PendingIdentifierInfos.pop_front();
}
// We are not in recursive loading, so it's safe to pass the "interesting"
// decls to the consumer.
if (Consumer)
PassInterestingDeclsToConsumer();
}
--NumCurrentElementsDeserializing;
}
ASTReader::ASTReader(Preprocessor &PP, ASTContext *Context,
const char *isysroot, bool DisableValidation)
: Listener(new PCHValidator(PP, *this)), DeserializationListener(0),
SourceMgr(PP.getSourceManager()), FileMgr(PP.getFileManager()),
Diags(PP.getDiagnostics()), SemaObj(0), PP(&PP), Context(Context),
Consumer(0), isysroot(isysroot), DisableValidation(DisableValidation),
NumStatHits(0), NumStatMisses(0), NumSLocEntriesRead(0),
TotalNumSLocEntries(0), NumStatementsRead(0), TotalNumStatements(0),
NumMacrosRead(0), TotalNumMacros(0), NumSelectorsRead(0),
NumMethodPoolEntriesRead(0), NumMethodPoolMisses(0),
TotalNumMethodPoolEntries(0), NumLexicalDeclContextsRead(0),
TotalLexicalDeclContexts(0), NumVisibleDeclContextsRead(0),
TotalVisibleDeclContexts(0), NumCurrentElementsDeserializing(0) {
RelocatablePCH = false;
}
ASTReader::ASTReader(SourceManager &SourceMgr, FileManager &FileMgr,
Diagnostic &Diags, const char *isysroot,
bool DisableValidation)
: DeserializationListener(0), SourceMgr(SourceMgr), FileMgr(FileMgr),
Diags(Diags), SemaObj(0), PP(0), Context(0), Consumer(0),
isysroot(isysroot), DisableValidation(DisableValidation), NumStatHits(0),
NumStatMisses(0), NumSLocEntriesRead(0), TotalNumSLocEntries(0),
NumStatementsRead(0), TotalNumStatements(0), NumMacrosRead(0),
TotalNumMacros(0), NumSelectorsRead(0), NumMethodPoolEntriesRead(0),
NumMethodPoolMisses(0), TotalNumMethodPoolEntries(0),
NumLexicalDeclContextsRead(0), TotalLexicalDeclContexts(0),
NumVisibleDeclContextsRead(0), TotalVisibleDeclContexts(0),
NumCurrentElementsDeserializing(0) {
RelocatablePCH = false;
}
ASTReader::~ASTReader() {
for (unsigned i = 0, e = Chain.size(); i != e; ++i)
delete Chain[e - i - 1];
// Delete all visible decl lookup tables
for (DeclContextOffsetsMap::iterator I = DeclContextOffsets.begin(),
E = DeclContextOffsets.end();
I != E; ++I) {
for (DeclContextInfos::iterator J = I->second.begin(), F = I->second.end();
J != F; ++J) {
if (J->NameLookupTableData)
delete static_cast<ASTDeclContextNameLookupTable*>(
J->NameLookupTableData);
}
}
for (DeclContextVisibleUpdatesPending::iterator
I = PendingVisibleUpdates.begin(),
E = PendingVisibleUpdates.end();
I != E; ++I) {
for (DeclContextVisibleUpdates::iterator J = I->second.begin(),
F = I->second.end();
J != F; ++J)
delete static_cast<ASTDeclContextNameLookupTable*>(*J);
}
}
ASTReader::PerFileData::PerFileData()
: StatCache(0), LocalNumSLocEntries(0), LocalNumTypes(0), TypeOffsets(0),
LocalNumDecls(0), DeclOffsets(0), LocalNumIdentifiers(0),
IdentifierOffsets(0), IdentifierTableData(0), IdentifierLookupTable(0),
LocalNumMacroDefinitions(0), MacroDefinitionOffsets(0),
NumPreallocatedPreprocessingEntities(0), SelectorLookupTable(0),
SelectorLookupTableData(0), SelectorOffsets(0), LocalNumSelectors(0)
{}
ASTReader::PerFileData::~PerFileData() {
delete static_cast<ASTIdentifierLookupTable *>(IdentifierLookupTable);
delete static_cast<ASTSelectorLookupTable *>(SelectorLookupTable);
}