llvm-project/clang/lib/Format/Format.cpp

1053 lines
38 KiB
C++

//===--- Format.cpp - Format C++ code -------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements functions declared in Format.h. This will be
/// split into separate files as we go.
///
/// This is EXPERIMENTAL code under heavy development. It is not in a state yet,
/// where it can be used to format real code.
///
//===----------------------------------------------------------------------===//
#include "clang/Format/Format.h"
#include "UnwrappedLineParser.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/OperatorPrecedence.h"
#include "clang/Lex/Lexer.h"
#include <string>
namespace clang {
namespace format {
// FIXME: Move somewhere sane.
struct TokenAnnotation {
enum TokenType {
TT_Unknown,
TT_TemplateOpener,
TT_TemplateCloser,
TT_BinaryOperator,
TT_UnaryOperator,
TT_TrailingUnaryOperator,
TT_OverloadedOperator,
TT_PointerOrReference,
TT_ConditionalExpr,
TT_CtorInitializerColon,
TT_LineComment,
TT_BlockComment,
TT_DirectorySeparator,
TT_ObjCMethodSpecifier
};
TokenType Type;
bool SpaceRequiredBefore;
bool CanBreakBefore;
bool MustBreakBefore;
};
static prec::Level getPrecedence(const FormatToken &Tok) {
return getBinOpPrecedence(Tok.Tok.getKind(), true, true);
}
using llvm::MutableArrayRef;
FormatStyle getLLVMStyle() {
FormatStyle LLVMStyle;
LLVMStyle.ColumnLimit = 80;
LLVMStyle.MaxEmptyLinesToKeep = 1;
LLVMStyle.PointerAndReferenceBindToType = false;
LLVMStyle.AccessModifierOffset = -2;
LLVMStyle.SplitTemplateClosingGreater = true;
LLVMStyle.IndentCaseLabels = false;
return LLVMStyle;
}
FormatStyle getGoogleStyle() {
FormatStyle GoogleStyle;
GoogleStyle.ColumnLimit = 80;
GoogleStyle.MaxEmptyLinesToKeep = 1;
GoogleStyle.PointerAndReferenceBindToType = true;
GoogleStyle.AccessModifierOffset = -1;
GoogleStyle.SplitTemplateClosingGreater = false;
GoogleStyle.IndentCaseLabels = true;
return GoogleStyle;
}
struct OptimizationParameters {
unsigned PenaltyIndentLevel;
unsigned PenaltyLevelDecrease;
};
class UnwrappedLineFormatter {
public:
UnwrappedLineFormatter(const FormatStyle &Style, SourceManager &SourceMgr,
const UnwrappedLine &Line,
const std::vector<TokenAnnotation> &Annotations,
tooling::Replacements &Replaces, bool StructuralError)
: Style(Style), SourceMgr(SourceMgr), Line(Line),
Annotations(Annotations), Replaces(Replaces),
StructuralError(StructuralError) {
Parameters.PenaltyIndentLevel = 15;
Parameters.PenaltyLevelDecrease = 10;
}
void format() {
// Format first token and initialize indent.
unsigned Indent = formatFirstToken();
// Initialize state dependent on indent.
IndentState State;
State.Column = Indent;
State.ConsumedTokens = 0;
State.Indent.push_back(Indent + 4);
State.LastSpace.push_back(Indent);
State.FirstLessLess.push_back(0);
State.ForLoopVariablePos = 0;
State.LineContainsContinuedForLoopSection = false;
State.StartOfLineLevel = 1;
// The first token has already been indented and thus consumed.
moveStateToNextToken(State);
// Check whether the UnwrappedLine can be put onto a single line. If so,
// this is bound to be the optimal solution (by definition) and we don't
// need to analyze the entire solution space.
unsigned Columns = State.Column;
bool FitsOnALine = true;
for (unsigned i = 1, n = Line.Tokens.size(); i != n; ++i) {
Columns += (Annotations[i].SpaceRequiredBefore ? 1 : 0) +
Line.Tokens[i].Tok.getLength();
// A special case for the colon of a constructor initializer as this only
// needs to be put on a new line if the line needs to be split.
if (Columns > Style.ColumnLimit ||
(Annotations[i].MustBreakBefore &&
Annotations[i].Type != TokenAnnotation::TT_CtorInitializerColon)) {
FitsOnALine = false;
break;
}
}
// Start iterating at 1 as we have correctly formatted of Token #0 above.
for (unsigned i = 1, n = Line.Tokens.size(); i != n; ++i) {
if (FitsOnALine) {
addTokenToState(false, false, State);
} else {
unsigned NoBreak = calcPenalty(State, false, UINT_MAX);
unsigned Break = calcPenalty(State, true, NoBreak);
addTokenToState(Break < NoBreak, false, State);
}
}
}
private:
/// \brief The current state when indenting a unwrapped line.
///
/// As the indenting tries different combinations this is copied by value.
struct IndentState {
/// \brief The number of used columns in the current line.
unsigned Column;
/// \brief The number of tokens already consumed.
unsigned ConsumedTokens;
/// \brief The parenthesis level of the first token on the current line.
unsigned StartOfLineLevel;
/// \brief The position to which a specific parenthesis level needs to be
/// indented.
std::vector<unsigned> Indent;
/// \brief The position of the last space on each level.
///
/// Used e.g. to break like:
/// functionCall(Parameter, otherCall(
/// OtherParameter));
std::vector<unsigned> LastSpace;
/// \brief The position the first "<<" operator encountered on each level.
///
/// Used to align "<<" operators. 0 if no such operator has been encountered
/// on a level.
std::vector<unsigned> FirstLessLess;
/// \brief The column of the first variable in a for-loop declaration.
///
/// Used to align the second variable if necessary.
unsigned ForLoopVariablePos;
/// \brief \c true if this line contains a continued for-loop section.
bool LineContainsContinuedForLoopSection;
/// \brief Comparison operator to be able to used \c IndentState in \c map.
bool operator<(const IndentState &Other) const {
if (Other.ConsumedTokens != ConsumedTokens)
return Other.ConsumedTokens > ConsumedTokens;
if (Other.Column != Column)
return Other.Column > Column;
if (Other.StartOfLineLevel != StartOfLineLevel)
return Other.StartOfLineLevel > StartOfLineLevel;
if (Other.Indent.size() != Indent.size())
return Other.Indent.size() > Indent.size();
for (int i = 0, e = Indent.size(); i != e; ++i) {
if (Other.Indent[i] != Indent[i])
return Other.Indent[i] > Indent[i];
}
if (Other.LastSpace.size() != LastSpace.size())
return Other.LastSpace.size() > LastSpace.size();
for (int i = 0, e = LastSpace.size(); i != e; ++i) {
if (Other.LastSpace[i] != LastSpace[i])
return Other.LastSpace[i] > LastSpace[i];
}
if (Other.FirstLessLess.size() != FirstLessLess.size())
return Other.FirstLessLess.size() > FirstLessLess.size();
for (int i = 0, e = FirstLessLess.size(); i != e; ++i) {
if (Other.FirstLessLess[i] != FirstLessLess[i])
return Other.FirstLessLess[i] > FirstLessLess[i];
}
if (Other.ForLoopVariablePos != ForLoopVariablePos)
return Other.ForLoopVariablePos < ForLoopVariablePos;
if (Other.LineContainsContinuedForLoopSection !=
LineContainsContinuedForLoopSection)
return LineContainsContinuedForLoopSection;
return false;
}
};
/// \brief Appends the next token to \p State and updates information
/// necessary for indentation.
///
/// Puts the token on the current line if \p Newline is \c true and adds a
/// line break and necessary indentation otherwise.
///
/// If \p DryRun is \c false, also creates and stores the required
/// \c Replacement.
void addTokenToState(bool Newline, bool DryRun, IndentState &State) {
unsigned Index = State.ConsumedTokens;
const FormatToken &Current = Line.Tokens[Index];
const FormatToken &Previous = Line.Tokens[Index - 1];
unsigned ParenLevel = State.Indent.size() - 1;
if (Newline) {
if (Current.Tok.is(tok::string_literal) &&
Previous.Tok.is(tok::string_literal)) {
State.Column = State.Column - Previous.Tok.getLength();
} else if (Current.Tok.is(tok::lessless) &&
State.FirstLessLess[ParenLevel] != 0) {
State.Column = State.FirstLessLess[ParenLevel];
} else if (ParenLevel != 0 &&
(Previous.Tok.is(tok::equal) || Current.Tok.is(tok::arrow) ||
Current.Tok.is(tok::period))) {
// Indent and extra 4 spaces after '=' as it continues an expression.
// Don't do that on the top level, as we already indent 4 there.
State.Column = State.Indent[ParenLevel] + 4;
} else if (
Line.Tokens[0].Tok.is(tok::kw_for) && Previous.Tok.is(tok::comma)) {
State.Column = State.ForLoopVariablePos;
} else {
State.Column = State.Indent[ParenLevel];
}
State.StartOfLineLevel = ParenLevel + 1;
if (Line.Tokens[0].Tok.is(tok::kw_for))
State.LineContainsContinuedForLoopSection =
Previous.Tok.isNot(tok::semi);
if (!DryRun)
replaceWhitespace(Current, 1, State.Column);
State.LastSpace[ParenLevel] = State.Indent[ParenLevel];
if (Current.Tok.is(tok::colon) &&
Annotations[Index].Type != TokenAnnotation::TT_ConditionalExpr &&
Annotations[0].Type != TokenAnnotation::TT_ObjCMethodSpecifier)
State.Indent[ParenLevel] += 2;
} else {
if (Current.Tok.is(tok::equal) && Line.Tokens[0].Tok.is(tok::kw_for))
State.ForLoopVariablePos = State.Column - Previous.Tok.getLength();
unsigned Spaces = Annotations[Index].SpaceRequiredBefore ? 1 : 0;
if (Annotations[Index].Type == TokenAnnotation::TT_LineComment)
Spaces = 2;
if (!DryRun)
replaceWhitespace(Current, 0, Spaces);
// FIXME: Look into using this alignment at other ParenLevels.
if (ParenLevel == 0 && (getPrecedence(Previous) == prec::Assignment ||
Previous.Tok.is(tok::kw_return)))
State.Indent[ParenLevel] = State.Column + Spaces;
if (Previous.Tok.is(tok::l_paren) ||
Annotations[Index - 1].Type == TokenAnnotation::TT_TemplateOpener)
State.Indent[ParenLevel] = State.Column;
// Top-level spaces are exempt as that mostly leads to better results.
State.Column += Spaces;
if (Spaces > 0 && ParenLevel != 0)
State.LastSpace[ParenLevel] = State.Column;
}
moveStateToNextToken(State);
}
/// \brief Mark the next token as consumed in \p State and modify its stacks
/// accordingly.
void moveStateToNextToken(IndentState &State) {
unsigned Index = State.ConsumedTokens;
const FormatToken &Current = Line.Tokens[Index];
unsigned ParenLevel = State.Indent.size() - 1;
if (Current.Tok.is(tok::lessless) && State.FirstLessLess[ParenLevel] == 0)
State.FirstLessLess[ParenLevel] = State.Column;
State.Column += Current.Tok.getLength();
// If we encounter an opening (, [, { or <, we add a level to our stacks to
// prepare for the following tokens.
if (Current.Tok.is(tok::l_paren) || Current.Tok.is(tok::l_square) ||
Current.Tok.is(tok::l_brace) ||
Annotations[Index].Type == TokenAnnotation::TT_TemplateOpener) {
State.Indent.push_back(4 + State.LastSpace.back());
State.LastSpace.push_back(State.LastSpace.back());
State.FirstLessLess.push_back(0);
}
// If we encounter a closing ), ], } or >, we can remove a level from our
// stacks.
if (Current.Tok.is(tok::r_paren) || Current.Tok.is(tok::r_square) ||
(Current.Tok.is(tok::r_brace) && State.ConsumedTokens > 0) ||
Annotations[Index].Type == TokenAnnotation::TT_TemplateCloser) {
State.Indent.pop_back();
State.LastSpace.pop_back();
State.FirstLessLess.pop_back();
}
++State.ConsumedTokens;
}
/// \brief Calculate the panelty for splitting after the token at \p Index.
unsigned splitPenalty(unsigned Index) {
assert(Index < Line.Tokens.size() &&
"Tried to calculate penalty for splitting after the last token");
const FormatToken &Left = Line.Tokens[Index];
const FormatToken &Right = Line.Tokens[Index + 1];
// In for-loops, prefer breaking at ',' and ';'.
if (Line.Tokens[0].Tok.is(tok::kw_for) &&
(Left.Tok.isNot(tok::comma) && Left.Tok.isNot(tok::semi)))
return 20;
if (Left.Tok.is(tok::semi) || Left.Tok.is(tok::comma))
return 0;
if (Left.Tok.is(tok::l_paren))
return 2;
prec::Level Level = getPrecedence(Line.Tokens[Index]);
if (Level != prec::Unknown)
return Level;
if (Right.Tok.is(tok::arrow) || Right.Tok.is(tok::period))
return 50;
return 3;
}
/// \brief Calculate the number of lines needed to format the remaining part
/// of the unwrapped line.
///
/// Assumes the formatting so far has led to
/// the \c IndentState \p State. If \p NewLine is set, a new line will be
/// added after the previous token.
///
/// \param StopAt is used for optimization. If we can determine that we'll
/// definitely need at least \p StopAt additional lines, we already know of a
/// better solution.
unsigned calcPenalty(IndentState State, bool NewLine, unsigned StopAt) {
// We are at the end of the unwrapped line, so we don't need any more lines.
if (State.ConsumedTokens >= Line.Tokens.size())
return 0;
if (!NewLine && Annotations[State.ConsumedTokens].MustBreakBefore)
return UINT_MAX;
if (NewLine && !Annotations[State.ConsumedTokens].CanBreakBefore)
return UINT_MAX;
if (!NewLine && Line.Tokens[State.ConsumedTokens - 1].Tok.is(tok::semi) &&
State.LineContainsContinuedForLoopSection)
return UINT_MAX;
unsigned CurrentPenalty = 0;
if (NewLine) {
CurrentPenalty += Parameters.PenaltyIndentLevel * State.Indent.size() +
splitPenalty(State.ConsumedTokens - 1);
} else {
if (State.Indent.size() < State.StartOfLineLevel)
CurrentPenalty += Parameters.PenaltyLevelDecrease *
(State.StartOfLineLevel - State.Indent.size());
}
addTokenToState(NewLine, true, State);
// Exceeding column limit is bad.
if (State.Column > Style.ColumnLimit)
return UINT_MAX;
if (StopAt <= CurrentPenalty)
return UINT_MAX;
StopAt -= CurrentPenalty;
StateMap::iterator I = Memory.find(State);
if (I != Memory.end()) {
// If this state has already been examined, we can safely return the
// previous result if we
// - have not hit the optimatization (and thus returned UINT_MAX) OR
// - are now computing for a smaller or equal StopAt.
unsigned SavedResult = I->second.first;
unsigned SavedStopAt = I->second.second;
if (SavedResult != UINT_MAX)
return SavedResult + CurrentPenalty;
else if (StopAt <= SavedStopAt)
return UINT_MAX;
}
unsigned NoBreak = calcPenalty(State, false, StopAt);
unsigned WithBreak = calcPenalty(State, true, std::min(StopAt, NoBreak));
unsigned Result = std::min(NoBreak, WithBreak);
// We have to store 'Result' without adding 'CurrentPenalty' as the latter
// can depend on 'NewLine'.
Memory[State] = std::pair<unsigned, unsigned>(Result, StopAt);
return Result == UINT_MAX ? UINT_MAX : Result + CurrentPenalty;
}
/// \brief Replaces the whitespace in front of \p Tok. Only call once for
/// each \c FormatToken.
void replaceWhitespace(const FormatToken &Tok, unsigned NewLines,
unsigned Spaces) {
Replaces.insert(tooling::Replacement(
SourceMgr, Tok.WhiteSpaceStart, Tok.WhiteSpaceLength,
std::string(NewLines, '\n') + std::string(Spaces, ' ')));
}
/// \brief Add a new line and the required indent before the first Token
/// of the \c UnwrappedLine if there was no structural parsing error.
/// Returns the indent level of the \c UnwrappedLine.
unsigned formatFirstToken() {
const FormatToken &Token = Line.Tokens[0];
if (!Token.WhiteSpaceStart.isValid() || StructuralError)
return SourceMgr.getSpellingColumnNumber(Token.Tok.getLocation()) - 1;
unsigned Newlines =
std::min(Token.NewlinesBefore, Style.MaxEmptyLinesToKeep + 1);
unsigned Offset = SourceMgr.getFileOffset(Token.WhiteSpaceStart);
if (Newlines == 0 && Offset != 0)
Newlines = 1;
unsigned Indent = Line.Level * 2;
if ((Token.Tok.is(tok::kw_public) || Token.Tok.is(tok::kw_protected) ||
Token.Tok.is(tok::kw_private)) &&
static_cast<int>(Indent) + Style.AccessModifierOffset >= 0)
Indent += Style.AccessModifierOffset;
replaceWhitespace(Token, Newlines, Indent);
return Indent;
}
FormatStyle Style;
SourceManager &SourceMgr;
const UnwrappedLine &Line;
const std::vector<TokenAnnotation> &Annotations;
tooling::Replacements &Replaces;
bool StructuralError;
// A map from an indent state to a pair (Result, Used-StopAt).
typedef std::map<IndentState, std::pair<unsigned, unsigned> > StateMap;
StateMap Memory;
OptimizationParameters Parameters;
};
/// \brief Determines extra information about the tokens comprising an
/// \c UnwrappedLine.
class TokenAnnotator {
public:
TokenAnnotator(const UnwrappedLine &Line, const FormatStyle &Style,
SourceManager &SourceMgr)
: Line(Line), Style(Style), SourceMgr(SourceMgr) {
}
/// \brief A parser that gathers additional information about tokens.
///
/// The \c TokenAnnotator tries to matches parenthesis and square brakets and
/// store a parenthesis levels. It also tries to resolve matching "<" and ">"
/// into template parameter lists.
class AnnotatingParser {
public:
AnnotatingParser(const SmallVector<FormatToken, 16> &Tokens,
std::vector<TokenAnnotation> &Annotations)
: Tokens(Tokens), Annotations(Annotations), Index(0) {
}
bool parseAngle() {
while (Index < Tokens.size()) {
if (Tokens[Index].Tok.is(tok::greater)) {
Annotations[Index].Type = TokenAnnotation::TT_TemplateCloser;
next();
return true;
}
if (Tokens[Index].Tok.is(tok::r_paren) ||
Tokens[Index].Tok.is(tok::r_square))
return false;
if (Tokens[Index].Tok.is(tok::pipepipe) ||
Tokens[Index].Tok.is(tok::ampamp) ||
Tokens[Index].Tok.is(tok::question) ||
Tokens[Index].Tok.is(tok::colon))
return false;
consumeToken();
}
return false;
}
bool parseParens() {
while (Index < Tokens.size()) {
if (Tokens[Index].Tok.is(tok::r_paren)) {
next();
return true;
}
if (Tokens[Index].Tok.is(tok::r_square))
return false;
consumeToken();
}
return false;
}
bool parseSquare() {
while (Index < Tokens.size()) {
if (Tokens[Index].Tok.is(tok::r_square)) {
next();
return true;
}
if (Tokens[Index].Tok.is(tok::r_paren))
return false;
consumeToken();
}
return false;
}
bool parseConditional() {
while (Index < Tokens.size()) {
if (Tokens[Index].Tok.is(tok::colon)) {
Annotations[Index].Type = TokenAnnotation::TT_ConditionalExpr;
next();
return true;
}
consumeToken();
}
return false;
}
void consumeToken() {
unsigned CurrentIndex = Index;
next();
switch (Tokens[CurrentIndex].Tok.getKind()) {
case tok::l_paren:
parseParens();
if (Index < Tokens.size() && Tokens[Index].Tok.is(tok::colon)) {
Annotations[Index].Type = TokenAnnotation::TT_CtorInitializerColon;
next();
}
break;
case tok::l_square:
parseSquare();
break;
case tok::less:
if (parseAngle())
Annotations[CurrentIndex].Type = TokenAnnotation::TT_TemplateOpener;
else {
Annotations[CurrentIndex].Type = TokenAnnotation::TT_BinaryOperator;
Index = CurrentIndex + 1;
}
break;
case tok::greater:
Annotations[CurrentIndex].Type = TokenAnnotation::TT_BinaryOperator;
break;
case tok::kw_operator:
if (Tokens[Index].Tok.is(tok::l_paren)) {
Annotations[Index].Type = TokenAnnotation::TT_OverloadedOperator;
next();
if (Index < Tokens.size() && Tokens[Index].Tok.is(tok::r_paren)) {
Annotations[Index].Type = TokenAnnotation::TT_OverloadedOperator;
next();
}
} else {
while (Index < Tokens.size() && !Tokens[Index].Tok.is(tok::l_paren)) {
Annotations[Index].Type = TokenAnnotation::TT_OverloadedOperator;
next();
}
}
break;
case tok::question:
parseConditional();
break;
default:
break;
}
}
void parseIncludeDirective() {
while (Index < Tokens.size()) {
if (Tokens[Index].Tok.is(tok::slash))
Annotations[Index].Type = TokenAnnotation::TT_DirectorySeparator;
else if (Tokens[Index].Tok.is(tok::less))
Annotations[Index].Type = TokenAnnotation::TT_TemplateOpener;
else if (Tokens[Index].Tok.is(tok::greater))
Annotations[Index].Type = TokenAnnotation::TT_TemplateCloser;
next();
}
}
void parsePreprocessorDirective() {
next();
if (Index >= Tokens.size())
return;
switch (Tokens[Index].Tok.getIdentifierInfo()->getPPKeywordID()) {
case tok::pp_include:
case tok::pp_import:
parseIncludeDirective();
break;
default:
break;
}
}
void parseLine() {
if (Tokens[Index].Tok.is(tok::hash)) {
parsePreprocessorDirective();
return;
}
while (Index < Tokens.size()) {
consumeToken();
}
}
void next() {
++Index;
}
private:
const SmallVector<FormatToken, 16> &Tokens;
std::vector<TokenAnnotation> &Annotations;
unsigned Index;
};
void annotate() {
Annotations.clear();
for (int i = 0, e = Line.Tokens.size(); i != e; ++i) {
Annotations.push_back(TokenAnnotation());
}
AnnotatingParser Parser(Line.Tokens, Annotations);
Parser.parseLine();
determineTokenTypes();
bool IsObjCMethodDecl =
(Line.Tokens.size() > 0 &&
(Annotations[0].Type == TokenAnnotation::TT_ObjCMethodSpecifier));
for (int i = 1, e = Line.Tokens.size(); i != e; ++i) {
TokenAnnotation &Annotation = Annotations[i];
Annotation.CanBreakBefore = canBreakBefore(i);
if (Annotation.Type == TokenAnnotation::TT_CtorInitializerColon) {
Annotation.MustBreakBefore = true;
Annotation.SpaceRequiredBefore = true;
} else if (Annotation.Type == TokenAnnotation::TT_OverloadedOperator) {
Annotation.SpaceRequiredBefore =
Line.Tokens[i].Tok.is(tok::identifier) ||
Line.Tokens[i].Tok.is(tok::kw_new) ||
Line.Tokens[i].Tok.is(tok::kw_delete);
} else if (
Annotations[i - 1].Type == TokenAnnotation::TT_OverloadedOperator) {
Annotation.SpaceRequiredBefore = false;
} else if (IsObjCMethodDecl && Line.Tokens[i].Tok.is(tok::identifier) &&
(i != e - 1) && Line.Tokens[i + 1].Tok.is(tok::colon) &&
Line.Tokens[i - 1].Tok.is(tok::identifier)) {
Annotation.CanBreakBefore = true;
Annotation.SpaceRequiredBefore = true;
} else if (IsObjCMethodDecl && Line.Tokens[i].Tok.is(tok::identifier) &&
Line.Tokens[i - 1].Tok.is(tok::l_paren) &&
Line.Tokens[i - 2].Tok.is(tok::colon)) {
// Don't break this identifier as ':' or identifier
// before it will break.
Annotation.CanBreakBefore = false;
} else if (Line.Tokens[i].Tok.is(tok::at) &&
Line.Tokens[i - 2].Tok.is(tok::at)) {
// Don't put two objc's '@' on the same line. This could happen,
// as in, @optional @property ...
Annotation.MustBreakBefore = true;
} else if (Line.Tokens[i].Tok.is(tok::colon)) {
Annotation.SpaceRequiredBefore =
Line.Tokens[0].Tok.isNot(tok::kw_case) && !IsObjCMethodDecl &&
(i != e - 1);
// Don't break at ':' if identifier before it can beak.
if (IsObjCMethodDecl && Line.Tokens[i - 1].Tok.is(tok::identifier) &&
Annotations[i - 1].CanBreakBefore)
Annotation.CanBreakBefore = false;
} else if (
Annotations[i - 1].Type == TokenAnnotation::TT_ObjCMethodSpecifier) {
Annotation.SpaceRequiredBefore = true;
} else if (Annotations[i - 1].Type == TokenAnnotation::TT_UnaryOperator) {
Annotation.SpaceRequiredBefore = false;
} else if (Annotation.Type == TokenAnnotation::TT_UnaryOperator) {
Annotation.SpaceRequiredBefore =
Line.Tokens[i - 1].Tok.isNot(tok::l_paren) &&
Line.Tokens[i - 1].Tok.isNot(tok::l_square);
} else if (Line.Tokens[i - 1].Tok.is(tok::greater) &&
Line.Tokens[i].Tok.is(tok::greater)) {
if (Annotation.Type == TokenAnnotation::TT_TemplateCloser &&
Annotations[i - 1].Type == TokenAnnotation::TT_TemplateCloser)
Annotation.SpaceRequiredBefore = Style.SplitTemplateClosingGreater;
else
Annotation.SpaceRequiredBefore = false;
} else if (
Annotation.Type == TokenAnnotation::TT_DirectorySeparator ||
Annotations[i - 1].Type == TokenAnnotation::TT_DirectorySeparator) {
Annotation.SpaceRequiredBefore = false;
} else if (
Annotation.Type == TokenAnnotation::TT_BinaryOperator ||
Annotations[i - 1].Type == TokenAnnotation::TT_BinaryOperator) {
Annotation.SpaceRequiredBefore = true;
} else if (
Annotations[i - 1].Type == TokenAnnotation::TT_TemplateCloser &&
Line.Tokens[i].Tok.is(tok::l_paren)) {
Annotation.SpaceRequiredBefore = false;
} else if (Line.Tokens[i].Tok.is(tok::less) &&
Line.Tokens[0].Tok.is(tok::hash)) {
Annotation.SpaceRequiredBefore = true;
} else if (IsObjCMethodDecl && Line.Tokens[i - 1].Tok.is(tok::r_paren) &&
Line.Tokens[i].Tok.is(tok::identifier)) {
// Don't space between ')' and <id>
Annotation.SpaceRequiredBefore = false;
} else if (IsObjCMethodDecl && Line.Tokens[i - 1].Tok.is(tok::colon) &&
Line.Tokens[i].Tok.is(tok::l_paren)) {
// Don't space between ':' and '('
Annotation.SpaceRequiredBefore = false;
} else if (Annotation.Type == TokenAnnotation::TT_TrailingUnaryOperator) {
Annotation.SpaceRequiredBefore = false;
} else {
Annotation.SpaceRequiredBefore =
spaceRequiredBetween(Line.Tokens[i - 1].Tok, Line.Tokens[i].Tok);
}
if (Annotations[i - 1].Type == TokenAnnotation::TT_LineComment ||
(Line.Tokens[i].Tok.is(tok::string_literal) &&
Line.Tokens[i - 1].Tok.is(tok::string_literal))) {
Annotation.MustBreakBefore = true;
}
if (Annotation.MustBreakBefore)
Annotation.CanBreakBefore = true;
}
}
const std::vector<TokenAnnotation> &getAnnotations() {
return Annotations;
}
private:
void determineTokenTypes() {
bool IsRHS = false;
for (int i = 0, e = Line.Tokens.size(); i != e; ++i) {
TokenAnnotation &Annotation = Annotations[i];
const FormatToken &Tok = Line.Tokens[i];
if (getPrecedence(Tok) == prec::Assignment)
IsRHS = true;
else if (Tok.Tok.is(tok::kw_return))
IsRHS = true;
if (Annotation.Type != TokenAnnotation::TT_Unknown)
continue;
if (Tok.Tok.is(tok::star) || Tok.Tok.is(tok::amp)) {
Annotation.Type = determineStarAmpUsage(i, IsRHS);
} else if (Tok.Tok.is(tok::minus) || Tok.Tok.is(tok::plus)) {
Annotation.Type = determinePlusMinusUsage(i);
} else if (Tok.Tok.is(tok::minusminus) || Tok.Tok.is(tok::plusplus)) {
Annotation.Type = determineIncrementUsage(i);
} else if (Tok.Tok.is(tok::exclaim)) {
Annotation.Type = TokenAnnotation::TT_UnaryOperator;
} else if (isBinaryOperator(Line.Tokens[i])) {
Annotation.Type = TokenAnnotation::TT_BinaryOperator;
} else if (Tok.Tok.is(tok::comment)) {
StringRef Data(SourceMgr.getCharacterData(Tok.Tok.getLocation()),
Tok.Tok.getLength());
if (Data.startswith("//"))
Annotation.Type = TokenAnnotation::TT_LineComment;
else
Annotation.Type = TokenAnnotation::TT_BlockComment;
}
}
}
bool isBinaryOperator(const FormatToken &Tok) {
// Comma is a binary operator, but does not behave as such wrt. formatting.
return getPrecedence(Tok) > prec::Comma;
}
TokenAnnotation::TokenType determineStarAmpUsage(unsigned Index, bool IsRHS) {
if (Index == Annotations.size())
return TokenAnnotation::TT_Unknown;
if (Index == 0 || Line.Tokens[Index - 1].Tok.is(tok::l_paren) ||
Line.Tokens[Index - 1].Tok.is(tok::comma) ||
Line.Tokens[Index - 1].Tok.is(tok::kw_return) ||
Line.Tokens[Index - 1].Tok.is(tok::colon) ||
Annotations[Index - 1].Type == TokenAnnotation::TT_BinaryOperator)
return TokenAnnotation::TT_UnaryOperator;
if (Line.Tokens[Index - 1].Tok.isLiteral() ||
Line.Tokens[Index + 1].Tok.isLiteral() ||
Line.Tokens[Index + 1].Tok.is(tok::kw_sizeof))
return TokenAnnotation::TT_BinaryOperator;
// It is very unlikely that we are going to find a pointer or reference type
// definition on the RHS of an assignment.
if (IsRHS)
return TokenAnnotation::TT_BinaryOperator;
return TokenAnnotation::TT_PointerOrReference;
}
TokenAnnotation::TokenType determinePlusMinusUsage(unsigned Index) {
// At the start of the line, +/- specific ObjectiveC method declarations.
if (Index == 0)
return TokenAnnotation::TT_ObjCMethodSpecifier;
// Use heuristics to recognize unary operators.
const Token &PreviousTok = Line.Tokens[Index - 1].Tok;
if (PreviousTok.is(tok::equal) || PreviousTok.is(tok::l_paren) ||
PreviousTok.is(tok::comma) || PreviousTok.is(tok::l_square) ||
PreviousTok.is(tok::question) || PreviousTok.is(tok::colon))
return TokenAnnotation::TT_UnaryOperator;
// There can't be to consecutive binary operators.
if (Annotations[Index - 1].Type == TokenAnnotation::TT_BinaryOperator)
return TokenAnnotation::TT_UnaryOperator;
// Fall back to marking the token as binary operator.
return TokenAnnotation::TT_BinaryOperator;
}
/// \brief Determine whether ++/-- are pre- or post-increments/-decrements.
TokenAnnotation::TokenType determineIncrementUsage(unsigned Index) {
if (Index != 0 && Line.Tokens[Index - 1].Tok.is(tok::identifier))
return TokenAnnotation::TT_TrailingUnaryOperator;
return TokenAnnotation::TT_UnaryOperator;
}
bool spaceRequiredBetween(Token Left, Token Right) {
if (Right.is(tok::r_paren) || Right.is(tok::semi) || Right.is(tok::comma))
return false;
if (Left.is(tok::kw_template) && Right.is(tok::less))
return true;
if (Left.is(tok::arrow) || Right.is(tok::arrow))
return false;
if (Left.is(tok::exclaim) || Left.is(tok::tilde))
return false;
if (Left.is(tok::at) && Right.is(tok::identifier))
return false;
if (Left.is(tok::less) || Right.is(tok::greater) || Right.is(tok::less))
return false;
if (Right.is(tok::amp) || Right.is(tok::star))
return Left.isLiteral() ||
(Left.isNot(tok::star) && Left.isNot(tok::amp) &&
!Style.PointerAndReferenceBindToType);
if (Left.is(tok::amp) || Left.is(tok::star))
return Right.isLiteral() || Style.PointerAndReferenceBindToType;
if (Right.is(tok::star) && Left.is(tok::l_paren))
return false;
if (Left.is(tok::l_square) || Right.is(tok::l_square) ||
Right.is(tok::r_square))
return false;
if (Left.is(tok::coloncolon) ||
(Right.is(tok::coloncolon) &&
(Left.is(tok::identifier) || Left.is(tok::greater))))
return false;
if (Left.is(tok::period) || Right.is(tok::period))
return false;
if (Left.is(tok::colon) || Right.is(tok::colon))
return true;
if (Left.is(tok::l_paren))
return false;
if (Left.is(tok::hash))
return false;
if (Right.is(tok::l_paren)) {
return Left.is(tok::kw_if) || Left.is(tok::kw_for) ||
Left.is(tok::kw_while) || Left.is(tok::kw_switch) ||
(Left.isNot(tok::identifier) && Left.isNot(tok::kw_sizeof) &&
Left.isNot(tok::kw_typeof));
}
return true;
}
bool canBreakBefore(unsigned i) {
if (Annotations[i - 1].Type == TokenAnnotation::TT_PointerOrReference ||
Annotations[i].Type == TokenAnnotation::TT_ConditionalExpr) {
return false;
}
const FormatToken &Left = Line.Tokens[i - 1];
const FormatToken &Right = Line.Tokens[i];
if (Right.Tok.is(tok::r_paren) || Right.Tok.is(tok::l_brace) ||
Right.Tok.is(tok::comment) || Right.Tok.is(tok::greater))
return false;
return (isBinaryOperator(Left) && Left.Tok.isNot(tok::lessless)) ||
Left.Tok.is(tok::comma) || Right.Tok.is(tok::lessless) ||
Right.Tok.is(tok::arrow) || Right.Tok.is(tok::period) ||
Right.Tok.is(tok::colon) || Left.Tok.is(tok::semi) ||
Left.Tok.is(tok::l_brace) ||
(Left.Tok.is(tok::l_paren) && !Right.Tok.is(tok::r_paren));
}
const UnwrappedLine &Line;
FormatStyle Style;
SourceManager &SourceMgr;
std::vector<TokenAnnotation> Annotations;
};
class LexerBasedFormatTokenSource : public FormatTokenSource {
public:
LexerBasedFormatTokenSource(Lexer &Lex, SourceManager &SourceMgr)
: GreaterStashed(false), Lex(Lex), SourceMgr(SourceMgr),
IdentTable(Lex.getLangOpts()) {
Lex.SetKeepWhitespaceMode(true);
}
virtual FormatToken getNextToken() {
if (GreaterStashed) {
FormatTok.NewlinesBefore = 0;
FormatTok.WhiteSpaceStart =
FormatTok.Tok.getLocation().getLocWithOffset(1);
FormatTok.WhiteSpaceLength = 0;
GreaterStashed = false;
return FormatTok;
}
FormatTok = FormatToken();
Lex.LexFromRawLexer(FormatTok.Tok);
FormatTok.WhiteSpaceStart = FormatTok.Tok.getLocation();
// Consume and record whitespace until we find a significant token.
while (FormatTok.Tok.is(tok::unknown)) {
FormatTok.NewlinesBefore += tokenText(FormatTok.Tok).count('\n');
FormatTok.WhiteSpaceLength += FormatTok.Tok.getLength();
if (FormatTok.Tok.is(tok::eof))
return FormatTok;
Lex.LexFromRawLexer(FormatTok.Tok);
}
if (FormatTok.Tok.is(tok::raw_identifier)) {
IdentifierInfo &Info = IdentTable.get(tokenText(FormatTok.Tok));
FormatTok.Tok.setIdentifierInfo(&Info);
FormatTok.Tok.setKind(Info.getTokenID());
}
if (FormatTok.Tok.is(tok::greatergreater)) {
FormatTok.Tok.setKind(tok::greater);
GreaterStashed = true;
}
return FormatTok;
}
private:
FormatToken FormatTok;
bool GreaterStashed;
Lexer &Lex;
SourceManager &SourceMgr;
IdentifierTable IdentTable;
/// Returns the text of \c FormatTok.
StringRef tokenText(Token &Tok) {
return StringRef(SourceMgr.getCharacterData(Tok.getLocation()),
Tok.getLength());
}
};
class Formatter : public UnwrappedLineConsumer {
public:
Formatter(const FormatStyle &Style, Lexer &Lex, SourceManager &SourceMgr,
const std::vector<CharSourceRange> &Ranges)
: Style(Style), Lex(Lex), SourceMgr(SourceMgr), Ranges(Ranges),
StructuralError(false) {
}
virtual ~Formatter() {
}
tooling::Replacements format() {
LexerBasedFormatTokenSource Tokens(Lex, SourceMgr);
UnwrappedLineParser Parser(Style, Tokens, *this);
StructuralError = Parser.parse();
for (std::vector<UnwrappedLine>::iterator I = UnwrappedLines.begin(),
E = UnwrappedLines.end();
I != E; ++I)
formatUnwrappedLine(*I);
return Replaces;
}
private:
virtual void consumeUnwrappedLine(const UnwrappedLine &TheLine) {
UnwrappedLines.push_back(TheLine);
}
void formatUnwrappedLine(const UnwrappedLine &TheLine) {
if (TheLine.Tokens.size() == 0)
return;
CharSourceRange LineRange =
CharSourceRange::getTokenRange(TheLine.Tokens.front().Tok.getLocation(),
TheLine.Tokens.back().Tok.getLocation());
for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
if (SourceMgr.isBeforeInTranslationUnit(LineRange.getEnd(),
Ranges[i].getBegin()) ||
SourceMgr.isBeforeInTranslationUnit(Ranges[i].getEnd(),
LineRange.getBegin()))
continue;
TokenAnnotator Annotator(TheLine, Style, SourceMgr);
Annotator.annotate();
UnwrappedLineFormatter Formatter(Style, SourceMgr, TheLine,
Annotator.getAnnotations(), Replaces,
StructuralError);
Formatter.format();
return;
}
}
FormatStyle Style;
Lexer &Lex;
SourceManager &SourceMgr;
tooling::Replacements Replaces;
std::vector<CharSourceRange> Ranges;
std::vector<UnwrappedLine> UnwrappedLines;
bool StructuralError;
};
tooling::Replacements reformat(const FormatStyle &Style, Lexer &Lex,
SourceManager &SourceMgr,
std::vector<CharSourceRange> Ranges) {
Formatter formatter(Style, Lex, SourceMgr, Ranges);
return formatter.format();
}
} // namespace format
} // namespace clang