llvm-project/libcxx/docs/UsingLibcxx.rst

152 lines
5.1 KiB
ReStructuredText

============
Using libc++
============
.. contents::
:local:
Getting Started
===============
If you already have libc++ installed you can use it with clang.
.. code-block:: bash
$ clang++ -stdlib=libc++ test.cpp
$ clang++ -std=c++11 -stdlib=libc++ test.cpp
On OS X and FreeBSD libc++ is the default standard library
and the ``-stdlib=libc++`` is not required.
.. _alternate libcxx:
If you want to select an alternate installation of libc++ you
can use the following options.
.. code-block:: bash
$ clang++ -std=c++11 -stdlib=libc++ -nostdinc++ \
-I<libcxx-install-prefix>/include/c++/v1 \
-L<libcxx-install-prefix>/lib \
-Wl,-rpath,<libcxx-install-prefix>/lib \
test.cpp
The option ``-Wl,-rpath,<libcxx-install-prefix>/lib`` adds a runtime library
search path. Meaning that the systems dynamic linker will look for libc++ in
``<libcxx-install-prefix>/lib`` whenever the program is run. Alternatively the
environment variable ``LD_LIBRARY_PATH`` (``DYLD_LIBRARY_PATH`` on OS X) can
be used to change the dynamic linkers search paths after a program is compiled.
An example of using ``LD_LIBRARY_PATH``:
.. code-block:: bash
$ clang++ -stdlib=libc++ -nostdinc++ \
-I<libcxx-install-prefix>/include/c++/v1
-L<libcxx-install-prefix>/lib \
test.cpp -o
$ ./a.out # Searches for libc++ in the systems library paths.
$ export LD_LIBRARY_PATH=<libcxx-install-prefix>/lib
$ ./a.out # Searches for libc++ along LD_LIBRARY_PATH
Using libc++experimental and ``<experimental/...>``
=====================================================
Libc++ provides implementations of experimental technical specifications
in a separate library, ``libc++experimental.a``. Users of ``<experimental/...>``
headers may be required to link ``-lc++experimental``.
.. code-block:: bash
$ clang++ -std=c++14 -stdlib=libc++ test.cpp -lc++experimental
Libc++experimental.a may not always be available, even when libc++ is already
installed. For information on building libc++experimental from source see
:ref:`Building Libc++ <build instructions>` and
:ref:`libc++experimental CMake Options <libc++experimental options>`.
Also see the `Experimental Library Implementation Status <http://libcxx.llvm.org/ts1z_status.html>`__
page.
.. warning::
Experimental libraries are Experimental.
* The contents of the ``<experimental/...>`` headers and ``libc++experimental.a``
library will not remain compatible between versions.
* No guarantees of API or ABI stability are provided.
Using libc++ on Linux
=====================
On Linux libc++ can typically be used with only '-stdlib=libc++'. However
some libc++ installations require the user manually link libc++abi themselves.
If you are running into linker errors when using libc++ try adding '-lc++abi'
to the link line. For example:
.. code-block:: bash
$ clang++ -stdlib=libc++ test.cpp -lc++ -lc++abi -lm -lc -lgcc_s -lgcc
Alternately, you could just add libc++abi to your libraries list, which in
most situations will give the same result:
.. code-block:: bash
$ clang++ -stdlib=libc++ test.cpp -lc++abi
Using libc++ with GCC
---------------------
GCC does not provide a way to switch from libstdc++ to libc++. You must manually
configure the compile and link commands.
In particular you must tell GCC to remove the libstdc++ include directories
using ``-nostdinc++`` and to not link libstdc++.so using ``-nodefaultlibs``.
Note that ``-nodefaultlibs`` removes all of the standard system libraries and
not just libstdc++ so they must be manually linked. For example:
.. code-block:: bash
$ g++ -nostdinc++ -I<libcxx-install-prefix>/include/c++/v1 \
test.cpp -nodefaultlibs -lc++ -lc++abi -lm -lc -lgcc_s -lgcc
GDB Pretty printers for libc++
------------------------------
GDB does not support pretty-printing of libc++ symbols by default. Unfortunately
libc++ does not provide pretty-printers itself. However there are 3rd
party implementations available and although they are not officially
supported by libc++ they may be useful to users.
Known 3rd Party Implementations Include:
* `Koutheir's libc++ pretty-printers <https://github.com/koutheir/libcxx-pretty-printers>`_.
Libc++ Configuration Macros
===========================
Libc++ provides a number of configuration macros which can be used to enable
or disable extended libc++ behavior, including enabling "debug mode" or
thread safety annotations.
**_LIBCPP_DEBUG**:
This macro is used to enable assertions and other debugging checks within
libc++. All debugging checks are disabled by default.
**Values**: ``0``, ``1``
Defining ``_LIBCPP_DEBUG`` to ``0`` or greater enables most of libc++'s
assertions. Defining ``_LIBCPP_DEBUG`` to ``1`` enables "iterator debugging"
which provides additional assertions about the validity of iterators used by
the program.
Note that this option has no effect on libc++'s ABI
**_LIBCPP_ENABLE_THREAD_SAFETY_ANNOTATIONS**:
This macro is used to enable -Wthread-safety annotations on libc++'s
``std::mutex`` and ``std::lock_guard``. By default these annotations are
disabled and must be manually enabled by the user.